Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions

Kablia Aicha\textsuperscript{1,3}, Benferhat Rabia\textsuperscript{1,2}, Tahar Hassaine Daouadj\textsuperscript{i}\textsuperscript{1,2} and Ahmed Bouzidene\textsuperscript{3}

\textsuperscript{1}Laboratory of Geomatics and Sustainable Development, University of Tiaret, Algeria  
\textsuperscript{2}Department of Civil Engineering, University of Tiaret, Algeria  
\textsuperscript{3}Department of Mechanical Engineering, University of Tiaret, Algeria

(Received July 29, 2020, Revised December 2, 2020, Accepted December 3, 2020)

Abstract. Equilibrium equations of a porous FG plate resting on Winkler-Pasternak foundations with various boundary conditions are derived using a new refined shear deformation theory. Different types of porosity distribution rate are considered. Governing equations are obtained including the plate-foundation interaction. This new model meets the nullity of the transverse shear stress at the upper and lower surfaces of the plate. The novel rule of mixture is proposed to describe and approximate material properties of the FG plates with different distribution case of porosity. The validity of this theory is studied by comparing some of the present results with other higher-order theories reported in the literature. Effects of variation of porosity distribution rate, boundary conditions, foundation parameter, power law index, plate aspect ratio, side-to-thickness ratio on the deflections and stresses are all discussed.

Keywords: functionally graded materials; refined plate theory; various boundary conditions; imperfect plates; effect of porosity distribution rate

1. Introduction

In recent years, the concept of functionally graded materials (FGMs) was first introduced by material scientists in the Sendai area of Japan. Functionally graded materials (FGMs) are a class of composites that have continuous variation of material properties from one surface to another and thus eliminate the stress concentration found in laminated composites. The FGMs which are often isotropic and nonhomogeneous, are made from a mixture of two materials to achieve a composition that provides a certain functionality. In FGM, these problems are avoided or reduced by gradual variation of the constituents’ volume fraction rather than abruptly changing it across the interface. Power-law function and exponential function are commonly used to describe the variations of material properties of FGM. However, in both power-law and exponential functions, the stress concentrations appear in one of the interfaces in which the material is continuously but rapidly changing.

*Corresponding author, Professor, E-mail: daouadjitahar@gmail.com

Copyright © 2020 Techno-Press, Ltd.
http://www.techno-press.org/?journal=csm&subpage=8 ISSN: 2234-2184 (Print), 2234-2192 (Online)
Since the shear deformation effects are more pronounced in thick functionally graded materials (FGM) plates, shear deformation theories should be used to analyze FGM plates. In addition, the increasing use of plates as structural components in various fields such as marine technology; civil and aerospace has made it necessary to study their mechanical behavior. Several studies have been undertaken on the mechanical behavior of FGM plates. All authors (Abdelaziz et al. 2017, Adim 2018, Abualnour et al. 2018, Ait Atmame et al. 2015, Carrera et al. 2011, Chikr et al. 2020, Refrafi et al. 2020, Bousaha et al. 2020, Bellal et al. 2020, Bensatalla et al. 2018, Dauadji et al. 2016b, Hamrat et al. 2020, Hassaine Dauadji 2013, Hassaine Dauadji et al. 2020, Tounsi et al. 2020, Shariati et al. 2020, Al-Furjan et al. 2020, Al-Furjan et al. 2020, Benhenni et al. 2019, Benferhat et al. 2018, Bensatalla et al. 2020, Boukhlaïf et al. 2019, Boulefakh et al. 2019, Chaabane et al. 2019, Benferhat et al. 2016b, El-Haina et al. 2017, Hassaine Dauadji et al. 2016, Demirhan et al. 2019, Khalifa et al. 2018, Reddy 2001, Slimane et al. 2018, Zenkour 2009), have studied the bending of a simply supported polygonal plate with a property gradient given by a order shear deformation theory. The first-order shear deformation theory (FSDT) gives acceptable results, but requires a shear correction factor. Whereas, the higher-order shear deformation theories (HSDTs) do not require a shear correction factor, but their equations of motion are more complicated than those of the FSDT. Therefore, Tounsi (2013) has developed a four variable plate theory. The four variable plate theory of Tounsi (2013) accounts for a parabolic variation of the transverse shear strains through the thickness, and hence, a shear correction factor is not required. The displacement field of the four variable plate theory is chosen based on the partition of the transverse displacements into the bending and shear parts. The most interesting feature of the four variable plate theory is that it contains fewer unknowns and governing equations than those of the FSDT and does not require a shear correction factor. Thus, it is the most efficient theory. The four variable plate theory was first developed for isotropic plates, and recently extended to FGM plates, FGM sandwich plates, and nanoplates.


In this paper, a new and refined theory for the flexural analysis of imperfect FGM plates under different boundary conditions taking into account the porosities that can possibly occur inside
functional gradation materials (FGM) during their manufacture. Numerical examples are presented to illustrate the precision and the efficiency of the present solution, by showing the influence of the distribution rate of the porosity of the base material on the mechanical behavior of the FGM plate.

2. Problem formulation

2.1 Constitutive relations of (metal/ ceramic) functionally graded plates

Consider an imperfect FGM with a porosity volume fraction, \( \alpha (\alpha << 1) \), distributed evenly among the metal and ceramic, the modified rule of mixture proposed by Wattanasakulpong and Unghbakorn (2014) is used as (Benferhat et al. 2016a, Hassaine Daou adji 2017, Rabahi et al. 2016)

\[
P = P_m(V_m - \frac{\alpha}{2}) + P_c(V_c - \frac{\alpha}{2})
\]

Now, the total volume fraction of the metal and ceramic is: \( V_m + V_c = 1 \) and the power law of volume fraction of the ceramic is described as (Table 1):

\[
V_c = \left( \frac{z}{h} \right)^{\frac{1}{k}}
\]

Hence, all properties of the imperfect FGM can be written as (Benferhat et al. 2016a)

\[
\rho(z) = (\rho_c - \rho_m) \left( \frac{z}{h} \right)^{\frac{1}{k}} + \rho_m - (\rho_c + \rho_m) \frac{\alpha}{2}
\]

It is noted that the positive real number \( k \) (0 \( \leq k < \infty \)) is the power law or volume fraction index, and \( z \) is the distance from the mid-plane of the FGM plate. The FGM plate becomes a fully ceramic plate when \( k \) is set to zero and fully metal for large value of \( k \).

Thus, the Young’s modulus \( (E) \) and material density \( (\rho) \) equations of the imperfect FGM plate can be expressed as (Benferhat et al. 2016a), including a summary table which groups together the different porosity distributions in the FGMs will be presented in Table 1.

\[
E(z) = (E_c - E_m) \left( \frac{z}{h} \right)^{\frac{1}{k}} + \frac{1}{2} k + E_m - (E_c + E_m) \frac{\alpha}{2}
\]

\[
\rho(z) = (\rho_c - \rho_m) \left( \frac{z}{h} \right)^{\frac{1}{k}} + \frac{1}{2} k + \rho_m - (\rho_c + \rho_m) \frac{\alpha}{2}
\]

Table 1 Summary table which groups the different distribution of porosity in the FGM (Ceramic / Metal)

<table>
<thead>
<tr>
<th>Types</th>
<th>Distribution of porosity rate in the FGM</th>
<th>Young module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic</td>
<td>Metal</td>
<td></td>
</tr>
<tr>
<td>Type-I</td>
<td>Without porosity</td>
<td>( E(z) = (E_c - E_m) \left( \frac{z}{h} \right)^{\frac{1}{k}} + \frac{1}{2} k + E_m )</td>
</tr>
<tr>
<td>Type-II</td>
<td>50%</td>
<td>( E(z) = (E_c - E_m) \left( \frac{z}{h} \right)^{\frac{1}{k}} + \frac{1}{2} k + E_m - (E_c + E_m) \frac{\alpha}{2} )</td>
</tr>
<tr>
<td>Type-III</td>
<td>60%</td>
<td>( E(z) = (E_c - E_m) \left( \frac{z}{h} \right)^{\frac{1}{k}} + \frac{1}{2} k + E_m - (3E_c + 2E_m) \frac{\alpha}{8} )</td>
</tr>
<tr>
<td>Type-IV</td>
<td>40%</td>
<td>( E(z) = (E_c - E_m) \left( \frac{z}{h} \right)^{\frac{1}{k}} + \frac{1}{2} k + E_m - (2E_c + 3E_m) \frac{\alpha}{5} )</td>
</tr>
<tr>
<td>Type-V</td>
<td>75%</td>
<td>( E(z) = (E_c - E_m) \left( \frac{z}{h} \right)^{\frac{1}{k}} + \frac{1}{2} k + E_m - (3E_c + E_m) \frac{\alpha}{4} )</td>
</tr>
<tr>
<td>Type-VI</td>
<td>25%</td>
<td>( E(z) = (E_c - E_m) \left( \frac{z}{h} \right)^{\frac{1}{k}} + \frac{1}{2} k + E_m - (E_c + 3E_m) \frac{\alpha}{4} )</td>
</tr>
</tbody>
</table>
However, Poisson’s ratio \( \nu \) is assumed to be constant. The material properties of a perfect FG plate can be obtained when \( \alpha \) is set to zero.

As
\[
V_c + V_m = 1 \implies V_c = 1 - V_m
\]
and
\[
V_c = \left( \frac{z}{h} + \frac{1}{2} \right)^k
\]

**Type I: perfect FG plate (Without porosity \( \alpha = 0 \))**
\[
E(z) = (E_c - E_m) \left( \frac{z}{h} + \frac{1}{2} \right)^k + E_m
\]

**Type II: 50% Ceramic, 50% Metal**
\[
E = E_m(V_m - \frac{a}{2}) + E_c(V_c - \frac{a}{2})
\]
\[
E(z) = (E_c - E_m) \left( \frac{z}{h} + \frac{1}{2} \right)^k + E_m - (E_c + E_m) \frac{a}{2}
\]

**Type III: 60% Ceramic, 40% Metal**
\[
E = E_m(V_m - \frac{2a}{5}) + E_c(V_c - \frac{3a}{5})
\]
\[
E(z) = (E_c - E_m) \left( \frac{z}{h} + \frac{1}{2} \right)^k + E_m - (3E_c - 2E_m) \frac{a}{5}
\]

**Type IV: 40% Ceramic, 60% Metal**
\[
E = E_m(V_m - \frac{3a}{5}) + E_c(V_c - \frac{2a}{5})
\]
\[
E(z) = (E_c - E_m) \left( \frac{z}{h} + \frac{1}{2} \right)^k + E_m - (2E_c - 3E_m) \frac{a}{5}
\]

**Type V: 75% Ceramic, 25% Metal**
\[
E = E_m(V_m - \frac{a}{4}) + E_c(V_c - \frac{3a}{4})
\]
\[
E(z) = (E_c - E_m) \left( \frac{z}{h} + \frac{1}{2} \right)^k + E_m - (3E_c - E_m) \frac{a}{4}
\]

**Type VI: 25% Ceramic, 75% Metal**
\[
E = E_m(V_m - \frac{3a}{4}) + E_c(V_c - \frac{a}{4})
\]
\[
E(z) = (E_c - E_m) \left( \frac{z}{h} + \frac{1}{2} \right)^k + E_m - (E_c - 3E_m) \frac{a}{4}
\]

### 2.2 Theoretical formulations

#### 2.2.1 Basic assumptions
Consider a plate of total thickness \( h \) and composed of functionally graded material through the thickness (Fig. 1). It is assumed that the material is isotropic and grading is assumed to be only
through the thickness. The $xy$ plane is taken to be the undeformed mid plane of the plate with the $z$ axis positive upward from the mid plane.

- The displacements are small in comparison with the plate thickness and, therefore, strains involved are infinitesimal.
- The transverse displacement $w$ includes three components of bending $w_b$ and shear $w_s$. These components are functions of coordinates $x, y,$ and time $t$ only.

$$w(x, y, z, t) = w_b(x, y, t) + w_s(x, y, t)$$ (15)

- The transverse normal stress $\sigma_z$ is negligible in comparison with in-plane stresses $\sigma_x$ and $\sigma_y$.
- The displacements $U$ in $x$-direction and $V$ in $y$-direction consist of extension, bending, and shear components

$$U = u + u_b + u_s, V = v + v_b + v_s$$ (16)

- The bending components $u_b$ and $v_b$ are assumed to be similar to the displacements given by the classical plate theory. Therefore, the expression for $u_b$ and $v_b$ can be given as

$$u_b = -z \frac{\partial w_b}{\partial x}, v_b = -z \frac{\partial w_b}{\partial y}$$ (17)

- The shear components $u_s$ and $v_s$ give rise, in conjunction with $w_s$, to the parabolic variations of shear strains $\gamma_{xz}, \gamma_{yz}$, and hence to shear stresses $\sigma_{xz}, \sigma_{yz}$ through the thickness of the plate in such a way that shear stresses $\sigma_{xz}, \sigma_{yz}$ are zero at the top and bottom faces of the plate. Consequently, the expression for $u_s$ and $v_s$ can be given as

$$u_s = f(z) \frac{\partial w_s}{\partial x}, v_s = f(z) \frac{\partial w_s}{\partial y}$$ (18)

2.2.2 Kinematics:

Based on the assumptions made in the preceding section, the displacement field can be obtained using Eqs. (15)-(18)

$$u(x, y, z) = u_0(x, y) - z \frac{\partial w_b}{\partial x} - z \left[1 - \sec h \left(\frac{\pi z}{\beta}\right) + \sec h \left(\frac{\pi}{4}\right)(1 - \frac{\pi}{2} \tan \frac{\pi}{4})\right] \frac{\partial w_s}{\partial x}$$

$$v(x, y, z) = v_0(x, y) - z \frac{\partial w_b}{\partial y} - z \left[1 - \sec h \left(\frac{\pi z}{\beta}\right) + \sec h \left(\frac{\pi}{4}\right)(1 - \frac{\pi}{2} \tan \frac{\pi}{4})\right] \frac{\partial w_s}{\partial y}$$

$$w(x, y, z) = w_b(x, y) + w_s(x, y)$$ (19)
where \( u_0 \) and \( v_0 \) are the mid-plane displacements of the plate in the \( x \) and \( y \) direction, respectively; \( w_b \) and \( w_s \) are the bending and shear components of transverse displacement, respectively, while \( f(z) \) represents the functions of form; it is indeed a new theory of hyperbolic shear strain (Hassaine Daouadj 2016), determining the distribution of transverse shear strains and stresses along the thickness and is given by

\[
f(z) = z[1 - \sec h \left( \pi \frac{z^2}{h^2} \right) + \sec h \left( \frac{\pi z}{h} \right)(1 - \frac{\pi z}{2} \tan h \left( \frac{\pi}{4} \right))] \quad (20)
\]

It should be noted that unlike the first-order shear deformation theory, this theory does not require shear correction factors. The kinematic relations can be obtained as follows

\[
\begin{align*}
\varepsilon_x &= \varepsilon_x^0 + z k_x^b + z[1 - \sec h \left( \pi \frac{z^2}{h} \right) + \sec h \left( \frac{\pi z}{h} \right)(1 - \frac{\pi z}{2} \tan h \left( \frac{\pi}{4} \right))] k_x^s \\
\varepsilon_y &= \varepsilon_y^0 + z k_y^b + z[1 - \sec h \left( \pi \frac{z^2}{h} \right) + \sec h \left( \frac{\pi z}{h} \right)(1 - \frac{\pi z}{2} \tan h \left( \frac{\pi}{4} \right))] k_y^s \\
\gamma_{xy} &= \gamma_{xy}^0 + z k_{xy}^b + z[1 - \sec h \left( \pi \frac{z^2}{h} \right) + \sec h \left( \frac{\pi z}{h} \right)(1 - \frac{\pi z}{2} \tan h \left( \frac{\pi}{4} \right))] k_{xy}^s \\
\gamma_{yz} &= 1 - \frac{d[z[1 - \sec h \left( \pi \frac{z^2}{h} \right) + \sec h \left( \frac{\pi z}{h} \right)(1 - \frac{\pi z}{2} \tan h \left( \frac{\pi}{4} \right))]]}{dz} \gamma_{yz}^s \\
\gamma_{xz} &= 1 - \frac{d[z[1 - \sec h \left( \pi \frac{z^2}{h} \right) + \sec h \left( \frac{\pi z}{h} \right)(1 - \frac{\pi z}{2} \tan h \left( \frac{\pi}{4} \right))]]}{dz} \gamma_{xz}^s
\end{align*}
\]

where

\[
\begin{align*}
\varepsilon_x^0 &= \frac{\partial u_0}{\partial x}, \quad k_x^b = -\frac{\partial^2 w_b}{\partial x^2}, \quad k_x^s = -\frac{\partial^2 w_s}{\partial x^2} \\
\varepsilon_y^0 &= \frac{\partial v_0}{\partial y}, \quad k_y^b = -\frac{\partial^2 w_b}{\partial y^2}, \quad k_y^s = -\frac{\partial^2 w_s}{\partial y^2} \\
\gamma_{xy}^0 &= \frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x}, \quad k_{xy}^b = -2\frac{\partial^2 w_b}{\partial x \partial y}, \\
k_{xy}^s &= -2\frac{\partial^2 w_s}{\partial x \partial y}, \quad \gamma_{yz}^s = \frac{\partial w_z}{\partial y}, \quad \gamma_{xz}^s = \frac{\partial w_x}{\partial x}, \\
f'(z) &= \frac{df(z)}{dz} = \frac{d[z[1 - \sec h \left( \pi \frac{z^2}{h} \right) + \sec h \left( \frac{\pi z}{h} \right)(1 - \frac{\pi z}{2} \tan h \left( \frac{\pi}{4} \right))]}{dz} \\
g(z) &= 1 - f'(z) = 1 - \frac{d[z[1 - \sec h \left( \pi \frac{z^2}{h} \right) + \sec h \left( \frac{\pi z}{h} \right)(1 - \frac{\pi z}{2} \tan h \left( \frac{\pi}{4} \right))]}{dz}
\end{align*}
\]

The stress state in each layer is given by Hooke’s law

\[
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{yz} \\
\tau_{xz} \\
\tau_{xy}
\end{bmatrix} =
\begin{bmatrix}
\frac{E(z)}{1-v^2} & \frac{v E(z)}{1-v^2} & 0 & 0 & 0 \\
\frac{v E(z)}{1-v^2} & \frac{E(z)}{1-v^2} & 0 & 0 & 0 \\
0 & 0 & \frac{E(z)}{2(1+v)} & 0 & 0 \\
0 & 0 & 0 & \frac{E(z)}{2(1+v)} & 0 \\
0 & 0 & 0 & 0 & \frac{E(z)}{2(1+v)}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{yz} \\
\gamma_{xz} \\
\gamma_{xy}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{yz} \\
\gamma_{xz} \\
\gamma_{xy}
\end{bmatrix} =
\begin{bmatrix}
\frac{E(z)}{1-v^2} & \frac{v E(z)}{1-v^2} & 0 & 0 & 0 \\
\frac{v E(z)}{1-v^2} & \frac{E(z)}{1-v^2} & 0 & 0 & 0 \\
0 & 0 & \frac{E(z)}{2(1+v)} & 0 & 0 \\
0 & 0 & 0 & \frac{E(z)}{2(1+v)} & 0 \\
0 & 0 & 0 & 0 & \frac{E(z)}{2(1+v)}
\end{bmatrix}
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{yz} \\
\tau_{xz} \\
\tau_{xy}
\end{bmatrix}
\]
2.2.3 Governing equations

The governing equations of equilibrium can be derived by using the principle of virtual displacements. The principle of virtual work in the present case yields

\[ \int_{\Omega} \int_{\Omega} \left[ \sigma \delta \varepsilon_x + \sigma \delta \varepsilon_y + \tau \delta \gamma_{xy} + \tau \delta \gamma_{yz} + \tau \delta \gamma_{zx} \right] d\Omega \, dz - \int_{\Omega} q \, \delta \, w \, d\Omega = 0 \]  

(24)

where \( \Omega \) is the top surface and \( q \) is the applied transverse load.

Substituting Eqs. (19) and (22) into Eq. (24) and integrating through the thickness of the plate, Eq (24) can be rewritten as

\[ \int_{\Omega} \int_{\Omega} \left[ N_x \delta \varepsilon_x^0 + N_y \delta \varepsilon_y^0 + N_{xy} \delta \gamma_{xy}^0 + M_{x}^b \delta k_y^b + M_{y}^b \delta k_y^b + M_{xy}^b \delta \gamma_{xy}^0 + \right. 

\[ + M_{x}^s \delta k_y^s + M_{y}^s \delta \gamma_{xy}^s + S_{xz}^s \delta \gamma_{xz}^s + S_{yz}^s \delta \gamma_{yz}^s \right] d\Omega \, dz - \int_{\Omega} q \, \delta \, w \, d\Omega = 0 \]  

(25)

where

\[ \left\{ \begin{array}{c} N_x, N_y, N_{xy} \\ M_x^b, M_y^b, M_{xy}^b \\ M_x^s, M_y^s, M_{xy}^s \end{array} \right\} = \int_{-h/2}^{h/2} \left( \sigma_x, \sigma_y, \tau_{xy} \right) \int_{-h/2}^{h/2} \left( \begin{array}{c} 1 \\ z \left[ 1 - \sec \left( \frac{\pi z}{h} \right) - \sec \left( \frac{\pi}{4} \right) (1 - \frac{\pi}{2} \tan \left( \frac{\pi}{4} \right)) \right] \right) dz, \]

(26)

and

\[ \left( \delta S_{xz}^s, \delta S_{yz}^s \right) = \int_{-h/2}^{h/2} \left( \tau_{xz}, \tau_{yz} \right) (1 - \frac{dz}{dz}) \int_{-h/2}^{h/2} \left[ d \left[ z \left( 1 - \sec \left( \frac{\pi z}{h} \right) - \sec \left( \frac{\pi}{4} \right) (1 - \frac{\pi}{2} \tan \left( \frac{\pi}{4} \right)) \right] \right] dz. \]

(27)

The governing equations of equilibrium can be derived from Eq. (25) by integrating the displacement gradients by parts and setting the coefficients \( \delta u_0, \delta v_0, \delta w_0 \) and \( \delta v_1 \) zero separately. Thus one can obtain the equilibrium equations associated with the present shear deformation theory.

\[ \delta u: \frac{\partial N_x}{\partial x} + \frac{\partial N_{xy}}{\partial y} = 0 \]

\[ \delta v: \frac{\partial N_{xy}}{\partial x} + \frac{\partial N_y}{\partial y} = 0 \]

\[ \delta w_b: \frac{\partial^2 M_x^b}{\partial x^2} + 2 \frac{\partial^2 M_{xy}^b}{\partial x \partial y} + \frac{\partial^2 M_y^b}{\partial y^2} + q = 0 \]

\[ \delta w_s: \frac{\partial^2 M_x^s}{\partial x^2} + 2 \frac{\partial^2 M_{xy}^s}{\partial x \partial y} + \frac{\partial^2 M_y^s}{\partial y^2} + \frac{\partial s_{xz}^s}{\partial x} + \frac{\partial s_{yz}^s}{\partial y} + q = 0 \]  

(28)

Using Eq. (22) in Eq. (26), the stress resultants of a plate made up of three layers can be related to the total strains by

\[ \begin{pmatrix} N \\ M^b \\ M^s \end{pmatrix} = \begin{pmatrix} A & B & B^s \\
A & D & D^s \\
B^s & D^s & H^s \end{pmatrix} \begin{pmatrix} \varepsilon \\ k^b \\ k^s \end{pmatrix}, \]  

(29a)

\[ S = A^s \gamma, \]  

(29b)

where

\[ N = \{ N_x, N_y, N_{xy} \}^T, \quad M^b = \{ M_x^b, M_y^b, M_{xy}^b \}^T, \quad M^s = \{ M_x^s, M_y^s, M_{xy}^s \}^T, \]

(30a)

\[ \varepsilon = \{ \varepsilon_x^0, \varepsilon_y^0, \varepsilon_{xy}^0 \}^T, \quad k^b = \{ k_x^b, k_y^b, k_{xy}^b \}^T, \quad k^s = \{ k_x^s, k_y^s, k_{xy}^s \}^T, \]  

(30b)
\[ A = \begin{bmatrix} A_{11} & A_{12} & 0 \\ A_{12} & A_{22} & 0 \\ 0 & 0 & A_{66} \end{bmatrix}, \quad B = \begin{bmatrix} B_{11} & B_{12} & 0 \\ B_{12} & B_{22} & 0 \\ 0 & 0 & B_{66} \end{bmatrix}, \quad D = \begin{bmatrix} D_{11} & D_{12} & 0 \\ D_{12} & D_{22} & 0 \\ 0 & 0 & D_{66} \end{bmatrix}, \tag{30c} \]

\[ B^s = \begin{bmatrix} B_{11}^s & B_{12}^s & 0 \\ B_{12}^s & B_{22}^s & 0 \\ 0 & 0 & B_{66}^s \end{bmatrix}, \quad D^s = \begin{bmatrix} D_{11}^s & D_{12}^s & 0 \\ D_{12}^s & D_{22}^s & 0 \\ 0 & 0 & D_{66}^s \end{bmatrix}, \quad H^s = \begin{bmatrix} H_{11}^s & H_{12}^s & 0 \\ H_{12}^s & H_{22}^s & 0 \\ 0 & 0 & H_{66}^s \end{bmatrix}, \tag{30e} \]

\[ S = \{ s_{xz}, s_{yz} \}^t, \quad y = \{ y_{xz}, y_{yz} \}^t, \quad A^s = \begin{bmatrix} A_{44}^s & 0 \\ 0 & A_{55}^s \end{bmatrix}, \tag{30d} \]

where \( A_{ij}, B_{ij}, \) etc., are the plate stiffness, defined by

\[ \begin{bmatrix} A_{11} & B_{11} & D_{11} & B_{11}^s & D_{11}^s & H_{11}^s \\ B_{12} & B_{12} & D_{12} & B_{12}^s & D_{12}^s & H_{12}^s \\ A_{66} & B_{66} & D_{66} & B_{66}^s & D_{66}^s & H_{66}^s \end{bmatrix} = \int_{-\frac{j}{2}}^{\frac{j}{2}} Q_{11}(1, z, w(z)) w(z) \left( \frac{1}{\nu - \frac{j}{2}} \right) dz, \tag{31a} \]

and

\[ (A_{22}, B_{22}, D_{22}, B_{22}^s, D_{22}^s, H_{22}^s) = (A_{11}, B_{11}, D_{11}, B_{11}^s, D_{11}^s, H_{11}^s) \tag{31b} \]

\[ A_{44}^s = A_{55}^s = \int_{-\frac{j}{2}}^{\frac{i}{2}} Q_{44}[g(z)] dz, \tag{31c} \]

Substituting from Eq. (28) into Eq. (29), we obtain the following equation

\[ A_{11} d_{11} u_0 + A_{66} d_{22} u_0 + (A_{12} + A_{66}) d_{12} v_0 - B_{11} d_{111} w_0 - (B_{11} + 2B_{66}) d_{122} w_0 - (B_{11} + 2B_{66}) d_{112} w_0 = 0, \tag{32a} \]

\[ A_{22} d_{22} v_0 + A_{66} d_{11} v_0 + (A_{12} + A_{66}) d_{12} u_0 - B_{22} d_{222} w_0 - (B_{12} + 2B_{66}) d_{112} w_0 - (B_{12} + 2B_{66}) d_{222} w_0 = 0, \tag{32b} \]

\[ B_{11} d_{11} u_0 + (B_{12} + 2B_{66}) d_{22} u_0 + (B_{12} + 2B_{66}) d_{112} v_0 - B_{22} d_{222} v_0 - D_{111} d_{111} w_0 - 2(D_{12} + 2D_{66}) d_{122} w_0 - D_{112} d_{111} w_0 - 2(D_{12} + 2D_{66}) d_{112} w_0 - D_{222} d_{222} w_0 = q, \tag{32c} \]

\[ B_{11} d_{111} u_0 + (B_{12} + 2B_{66}) d_{122} u_0 + (B_{12} + 2B_{66}) d_{112} v_0 + B_{22} d_{222} v_0 - D_{111} d_{111} w_0 - 2(D_{12} + 2D_{66}) d_{122} w_0 - D_{112} d_{111} w_0 - 2(D_{12} + 2D_{66}) d_{112} w_0 - D_{222} d_{222} w_0 + A_{55} d_{55} w_0 + A_{44} d_{44} d_{22} w_0 = q \tag{32d} \]

Where \( d_{ij}, d_{ijl}, \) and \( d_{ijlm} \) are the following differential operators:

\[ d_{ij} = \frac{\partial^2}{\partial x_i \partial x_j}, \quad d_{ijl} = \frac{\partial^3}{\partial x_i \partial x_j \partial x_l}, \quad d_{ijlm} = \frac{\partial^4}{\partial x_i \partial x_j \partial x_l \partial x_m}, \quad d_i = \frac{\partial}{\partial x_i} \quad (i, j, l, m = 1, 2). \tag{33} \]

### 2.2.4 Exact solutions for FGMs plates

The exact solution of Eq. (32) for the FGM plate under various boundary conditions can be constructed. The boundary conditions for an arbitrary edge with simply supported and clamped edge conditions are:

**Clamped (C)**

\[ u = v = w = \frac{\partial w}{\partial x} = \frac{\partial w}{\partial y} = \frac{\partial w}{\partial x} = \frac{\partial w}{\partial y} = 0 \quad \text{at} \quad x = 0, a \quad \text{and} \quad y = 0, b \tag{34} \]

**Simply supported (S)**
Table 2 Admissible functions $X_m(x)$ and $Y_n(y)$

<table>
<thead>
<tr>
<th>Boundary conditions</th>
<th>The functions $X_m(x)$ and $Y_n(y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>at $x=0, a$</td>
<td>at $y=0, b$</td>
</tr>
<tr>
<td>SSSS $X_m(0) = X'_m(0) = 0$</td>
<td>$Y_n(0) = Y'_n(0) = 0$</td>
</tr>
<tr>
<td>$X_m(a) = X'_m(a) = 0$</td>
<td>$Y_n(b) = Y'_n(b) = 0$</td>
</tr>
<tr>
<td>$X_m(a) = X'_m(a) = 0$</td>
<td>$Y_n(b) = Y'_n(b) = 0$</td>
</tr>
<tr>
<td>CCSS $X_m(0) = X'_m(0) = 0$</td>
<td>$Y_n(0) = Y'_n(0) = 0$</td>
</tr>
<tr>
<td>$X_m(a) = X'_m(a) = 0$</td>
<td>$Y_n(b) = Y'_n(b) = 0$</td>
</tr>
<tr>
<td>$X_m(a) = X'_m(a) = 0$</td>
<td>$Y_n(b) = Y'_n(b) = 0$</td>
</tr>
<tr>
<td>CCCC $X_m(0) = X'_m(0) = 0$</td>
<td>$Y_n(0) = Y'_n(0) = 0$</td>
</tr>
<tr>
<td>$X_m(a) = X'_m(a) = 0$</td>
<td>$Y_n(b) = Y'_n(b) = 0$</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
v &= w_b = w_s = \frac{\partial w_b}{\partial y} = \frac{\partial w_s}{\partial y} = 0 \quad \text{at} \quad x = 0, a \\
u &= w_b = w_s = \frac{\partial w_b}{\partial x} = \frac{\partial w_s}{\partial x} = 0 \quad \text{at} \quad y = 0, b
\end{align*}
\] (35)

The following representation for the displacement quantities, that satisfy the above boundary conditions, is appropriate in the case of our problem. Then the boundary conditions in Eq. (34) and (35) are satisfied by the following expansions

\[
\begin{pmatrix}
u_0 \\
v_0 \\
w_b \\
w_s
\end{pmatrix} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}
\begin{pmatrix}
U_{mn}X'_m(x)Y_n(y) \\
V_{mn}X_m(x)Y'_n(y) \\
W_{bmn}X'_m(x)Y_n(y) \\
W_{smn}X'_m(x)Y'_n(y)
\end{pmatrix}
\] (36)

where $U_{mn}$, $V_{mn}$, $W_{bmn}$ and $W_{smn}$ unknown parameters that should be determined, Eigen-mode and $(\cdot)'$ denotes the derivative with respect to the corresponding coordinate. The functions $X_m(x)$ and $Y_n(x)$ are proposed to satisfy at least the geometric boundary conditions given in Eqs. (34) and (35) and represent the approximate shapes of the deflected surface of the plate. These functions are listed in Table 2 for different boundary conditions cases with $\lambda = mn/a$ and $\mu = np/b$.

Substituting Eqs. (36) and (32) into Eq. (31), the exact solution of FGM plate can be determined from the following equations:

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{pmatrix}
\begin{pmatrix}
U_{mn} \\
V_{mn} \\
W_{bmn} \\
W_{smn}
\end{pmatrix} =
\begin{pmatrix}
0 \\
0 \\
-\kappa \\
-\kappa
\end{pmatrix}
\] (37)

where

\[
a_{11} = \int_0^a \int_0^b (A_{11}X_m''Y_n + A_{66}X'_mY'_n) X'_mY_n \, dx \, dy \quad \text{(38a)}
\]

\[
a_{12} = \int_0^a \int_0^b (A_{12} + A_{66}) X'_mY'_nX_mY_n \, dx \, dy \quad \text{(38b)}
\]

\[
a_{13} = -\int_0^a \int_0^b [B_{11}X_m''Y_n + (B_{12} + 2B_{66})X'_mY'_n] X'_mY_n \, dx \, dy \quad \text{(38c)}
\]

\[
a_{14} = -\int_0^a \int_0^b [B_{11}X_m''Y_n + (B_{12} + 2B_{66})X'_mY'_n] X'_mY_n \, dx \, dy \quad \text{(38d)}
\]
\begin{equation}
al_{21} = \int_0^a \int_0^b (A_{12} + A_{66}) x_m y_n' x_m y_n' dx dy
\end{equation}
\begin{equation}
al_{22} = \int_0^a \int_0^b (A_{22} x_m y_n'' + A_{66} x_m y_n') x_m y_n' dx dy
\end{equation}
\begin{equation}
al_{23} = -\int_0^a \int_0^b [B_{22} x_m y_m'' + (B_{12} + 2B_{66}) x_m y_n'] x_m y_n' dx dy
\end{equation}
\begin{equation}
al_{24} = -\int_0^a \int_0^b [B_{22} x_m y_m'' + (B_{12} + 2B_{66}) x_m y_n'] x_m y_n' dx dy
\end{equation}
\begin{equation}
al_{31} = \int_0^a \int_0^b [B_{11} x_m y_m'' + (B_{12} + 2B_{66}) x_m y_n'] x_m y_n' dx dy
\end{equation}
\begin{equation}
al_{32} = \int_0^a \int_0^b [B_{22} x_m y_m'' + (B_{12} + 2B_{66}) x_m y_n'] x_m y_n' dx dy
\end{equation}
\begin{equation}
al_{33} = \int_0^a \int_0^b [D_{11} x_m y_m'' + 2(D_{12} + 2D_{66}) x_m y_n'' + D_{22} x_m y_n''] x_m y_n' dx dy
\end{equation}
\begin{equation}
al_{34} = \int_0^a \int_0^b [D_{11} x_m y_m'' + 2(D_{12} + 2D_{66}) x_m y_n'' + D_{22} x_m y_n''] x_m y_n' dx dy
\end{equation}
\begin{equation}
al_{41} = \int_0^a \int_0^b [B_{11} x_m y_m'' + (B_{12} + 2B_{66}) x_m y_n'] x_m y_n' dx dy
\end{equation}
\begin{equation}
al_{42} = \int_0^a \int_0^b [B_{22} x_m y_m'' + (B_{12} + 2B_{66}) x_m y_n'] x_m y_n' dx dy
\end{equation}
\begin{equation}
al_{43} = \int_0^a \int_0^b [D_{22} x_m y_m'' + 2(D_{12} + 2D_{66}) x_m y_n'' + D_{22} x_m y_n''] x_m y_n' dx dy
\end{equation}
\begin{equation}
al_{44} = \int_0^a \int_0^b \left[ H_{11} x_m y_m'' + 2(H_{12} + 2H_{66}) x_m y_n'' + H_{22} x_m y_n'' \right] x_m y_n' dx dy
\end{equation}
\begin{equation}
m_{11} = \int_0^a \int_0^b -I_1 x_m y_m x_m' y_n' dx dy
\end{equation}
\begin{equation}
m_{11} = \int_0^a \int_0^b -I_1 x_m y_m x_m' y_n' dx dy
\end{equation}

3. Presentation and analysis of results

In numerical analysis, the deflections and stresses of perfect and imperfect FG plates with various boundary conditions are evaluated. The FG plate is taken to be made of aluminum and alumina with the following material properties:
- Ceramic ($P_c$: Alumina, $A_1^c$: $E_c = 380$ GPa);

<table>
<thead>
<tr>
<th>Method</th>
<th>$a = b$</th>
<th>$a = 0.5b$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$a/h = 25$</td>
<td>$a/h = 25$</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Reddy et al.</td>
<td>0.410</td>
<td>0.427</td>
</tr>
<tr>
<td>Cooke and Levinson</td>
<td>0.410</td>
<td>0.427</td>
</tr>
<tr>
<td>Lee et al.</td>
<td>0.410</td>
<td>0.427</td>
</tr>
<tr>
<td>Zenkour and Radwan</td>
<td>0.40960</td>
<td>0.427</td>
</tr>
<tr>
<td>Present: Type-I</td>
<td>0.4096</td>
<td>0.4272</td>
</tr>
</tbody>
</table>

Table 3 Maximum dimensionless deflections of homogeneous rectangular FG plates under uniform loads for different case of porosity distribution rate
The bottom surfaces of the FG plate are aluminum rich, whereas the top surfaces of the FG plate are uniform. Their properties change through the thickness of the plate according to power-law. The present solution is realized for maximum dimensionless deflections of homogeneous rectangular FG plates under uniform loads. It is to be noted that the present results of the deflection and stresses compare very well with the other theories solution for perfect FG plate.

For the sake of comparison, some results are tabulated here for comparison with the available ones in the literature. Tables 4 and 5 shows the normalized displacements and stresses of SSSS porous rectangular plates for different case of porosity distribution rate according to uniform loads $\alpha = 0$. It is to be noted that the present results of the deflection and stresses compare very well with the other theories solution for perfect FG plate ($\alpha = 0$). We can also note that the variation in the porosity distribution rate has a significant effect in the

<table>
<thead>
<tr>
<th>$a/h$</th>
<th>Theory</th>
<th>$w$</th>
<th>$\sigma_x$</th>
<th>$\sigma_y$</th>
<th>$\tau_{xy}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Karama (2003)-ESDPT $\alpha = 0$</td>
<td>4.0569</td>
<td>5.2804</td>
<td>0.6644</td>
<td>0.6084</td>
</tr>
<tr>
<td></td>
<td>Tounsi (2013)-PSDPT $\alpha = 0$</td>
<td>4.0529</td>
<td>5.2759</td>
<td>0.6652</td>
<td>0.6058</td>
</tr>
<tr>
<td></td>
<td>Benferhat (2016a) $\alpha = 0$</td>
<td>3.8716</td>
<td>5.4197</td>
<td>0.66778</td>
<td>0.6096</td>
</tr>
<tr>
<td></td>
<td>Benferhat (2016a) $\alpha = 0.2$</td>
<td>6.2567</td>
<td>6.8649</td>
<td>0.6809</td>
<td>0.6598</td>
</tr>
<tr>
<td>10</td>
<td>Present theory $\alpha = 0$</td>
<td>3.5543</td>
<td>12.9252</td>
<td>1.6938</td>
<td>0.61959</td>
</tr>
<tr>
<td></td>
<td>Present theory $\alpha = 0.2$</td>
<td>3.5537</td>
<td>12.9234</td>
<td>1.6941</td>
<td>0.6155</td>
</tr>
<tr>
<td>20</td>
<td>Present theory $\alpha = 0$</td>
<td>3.4824</td>
<td>25.7712</td>
<td>3.3971</td>
<td>0.6214</td>
</tr>
<tr>
<td></td>
<td>Present theory $\alpha = 0.2$</td>
<td>3.48225</td>
<td>25.7703</td>
<td>3.3972</td>
<td>0.6217</td>
</tr>
</tbody>
</table>

- Metal ($P_{Al}$: Aluminium, Al): $E_m = 70$ GPa; $v = 0.3$.

And their properties change through the thickness of the plate according to power-law. The bottom surfaces of the FG plate are aluminum rich, whereas the top surfaces of the FG plate are alumina rich.

To validate accuracy of the results, the comparisons between the present theory and the available results obtained by Reddy et al., Cooke and Levinson, Lee et al. and Zenkour and Radwan in Table 3. The present solution is realized for maximum dimensionless deflections of homogeneous rectangular FG plates under uniform loads. It is to be noted that the present results of the deflection and stresses compare very well with the other theories solution for perfect FG plate.
bending and stresses.

Tables 6 and 7 shows the effect of the type of loading and the variation in the porosity distribution rate in the deflection of SSSS FG square plates. The present theory gives excellent results for side-to-thickness a/h ratios as well as for the FG parameter P. We can see that the deflection becomes larger when the porosity rate is higher in the ceramic. The deflection increases as the FG parameter P increases.

Table 7 present a comparison study of nondimensionalized deflection of FG square plates resting on elastic foundations under sinusoidal loads. The power law index varied from 1 to 10. The
Table 8 Nondimensionalized deflection \( w \) of FG square plates resting on elastic foundations under sinusoidal loads \( (\alpha = 10h, \alpha = 0.2) \) (Al/Al₂O₃)

<table>
<thead>
<tr>
<th>( k_0 )</th>
<th>( k_1 )</th>
<th>Theory</th>
<th>( k )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Present</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ameur et al. (2009)</td>
<td>0.5889</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tounsi (2013)</td>
<td>0.5680</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>Present</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ameur et al. (2011)</td>
<td>0.3825</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tounsi (2013)</td>
<td>0.3747</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>Present</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ameur et al. (2011)</td>
<td>0.2261</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tounsi (2013)</td>
<td>0.2241</td>
</tr>
</tbody>
</table>

Nondimensionalized deflection is calculated with 6 types of rule of mixture. It is to be noted that the present results of the deflection (type-I) compare very well with the ones of Ameur et al. (2011) and Zenkour et al. (2014) of FGM plate with and without elastic foundation. We can see that the deflection is maximum when the pore distribution is of type V.

For the sake of completeness, additional results for the effect of the variation in the porosity distribution rate on the deflections are presented in Tables 9 and 10. Table 8 shows the deflection of FG plates under uniform loads \( (k_0=k_1=0) \) while Table 8 shows the deflection of FG plates resting on Winkler-Pasternak foundation \( (k_0=k_1=10) \). Different boundary conditions as well as different values of the side-to-thickness ratio \( a/h \) are used in these tables. With the increase of the side-to-thickness ratio \( a/h \) a decrement for deflection can be clearly observed. The CCCC FG plate gives the largest deflections while the SSSS FG plate gives the smallest ones.

The dimensionless center deflection as function of the aspect ratio \((a/h)\) and side-to-thickness ratio \((a/h)\) of porous FGM plate for different variation of porosity distribution rate are illustrated in Figs. 2 and 3, respectively. The gradient index is taken equal to \( P=10 \). The FGM plate is considered without an elastic foundation \( (a) \), reposed on winkle foundation \( (b) \) and reposed on winkle-
pasternak foundation (c). It can be seen that the deflection decreases as the aspect ratio a/b and the side-to-thickness ratio a/h increase. Also, the case of FG plate without elastic foundation gives the largest deflection. The type-V of the variation in the porosity distribution rate in FG plate gives the largest deflections while the type-I gives the smallest ones.

The effect of the variation of porosity distribution rate on the in-plane longitudinal stress $\sigma_{xx}$ and in the in-plane normal stress $\sigma_{yy}$ through-the thickness of porous FGM plate subjected to uniform distribution load is shown in Figs. 4 and 5, respectively. As it can be seen, the in-plane normal and longitudinal stresses are more important in the case of FG plate without elastic foundation. It can also be noted that the variation in the porosity distribution rate has a considerable effect on the stresses.

Table 9 Dimensionless deflections w of FG square plates according to various boundary conditions without elastic foundations for different case of porosity distribution rate. $P=10$

<table>
<thead>
<tr>
<th>$a/h$</th>
<th>Method present</th>
<th>Boundary conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SSSS</td>
</tr>
<tr>
<td>10</td>
<td>Type-I</td>
<td>1.5874</td>
</tr>
<tr>
<td></td>
<td>Type-II</td>
<td>2.1019</td>
</tr>
<tr>
<td></td>
<td>Type-III</td>
<td>2.2063</td>
</tr>
<tr>
<td></td>
<td>Type-IV</td>
<td>2.0084</td>
</tr>
<tr>
<td></td>
<td>Type-V</td>
<td>2.3888</td>
</tr>
<tr>
<td></td>
<td>Type-VI</td>
<td>1.8851</td>
</tr>
<tr>
<td>100</td>
<td>Type-I</td>
<td>1.4817</td>
</tr>
<tr>
<td></td>
<td>Type-II</td>
<td>1.9539</td>
</tr>
<tr>
<td></td>
<td>Type-III</td>
<td>2.0497</td>
</tr>
<tr>
<td></td>
<td>Type-IV</td>
<td>1.8682</td>
</tr>
<tr>
<td></td>
<td>Type-V</td>
<td>2.2170</td>
</tr>
<tr>
<td></td>
<td>Type-VI</td>
<td>1.7551</td>
</tr>
</tbody>
</table>

Table 10 Dimensionless deflections w of FG square plates according to various boundary conditions with elastic foundations for different case of porosity distribution rate. $K_o/K_1=10$, $P=10$

<table>
<thead>
<tr>
<th>$a/h$</th>
<th>Present method</th>
<th>Boundary conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SSSS</td>
</tr>
<tr>
<td>10</td>
<td>Type-I</td>
<td>0.5290</td>
</tr>
<tr>
<td></td>
<td>Type-II</td>
<td>0.5741</td>
</tr>
<tr>
<td></td>
<td>Type-III</td>
<td>0.5813</td>
</tr>
<tr>
<td></td>
<td>Type-IV</td>
<td>0.5672</td>
</tr>
<tr>
<td></td>
<td>Type-V</td>
<td>0.5926</td>
</tr>
<tr>
<td></td>
<td>Type-VI</td>
<td>0.5573</td>
</tr>
<tr>
<td>100</td>
<td>Type-I</td>
<td>0.5200</td>
</tr>
<tr>
<td></td>
<td>Type-II</td>
<td>0.5665</td>
</tr>
<tr>
<td></td>
<td>Type-III</td>
<td>0.5739</td>
</tr>
<tr>
<td></td>
<td>Type-IV</td>
<td>0.5593</td>
</tr>
<tr>
<td></td>
<td>Type-V</td>
<td>0.5858</td>
</tr>
<tr>
<td></td>
<td>Type-VI</td>
<td>0.5491</td>
</tr>
</tbody>
</table>
Fig. 2 Dimensionless center deflection \( (w) \) as function of the aspect ratio \( (a/b) \) of porous FGM plate for different case of porosity distribution rate

Fig. 3 Dimensionless center deflection \( (w) \) as a function of the side-to-thickness ratio \( (a/h) \) of porous FGM square plate for different case of porosity distribution rate

Fig. 6 display the variation In plane shear stresses \( \sigma_{xy} \) through-the thickness of an FGM plate for different case of porosity distribution rate. The gradient index is taken equal \( P=10 \). The side-to-
thickness ratio is considered equal $a/h=10$. It can be observed that the effect of the variation of the porosity distribution rate on the stresses becomes more important in the case of FGM plates resting on a Winkler or Winkler-pasternak type foundation.

Fig. 4 Variation of in-plane longitudinal stress $\sigma_{xx}$ through the thickness of porous FGM plate for different case of porosity distribution rate

Fig. 5 Variation of in-plane normal stress $\sigma_{yy}$ through the thickness of porous FGM plate for different case of porosity distribution rate
Effect of porosity distribution rate for bending analysis of imperfect FGM plates...

4. Conclusions

In this paper, a new refined shear deformation theory is used for the bending response of porous FG plates resting on Winkler-Pasternak foundation. The bending analysis is presented here for FG
plates subjected uniform and sinusoidal loads with three different boundary conditions. The present model satisfies the zero shear stresses on the lower and upper surfaces of the plate without requiring any shear correction factors. The modified rule of mixture covering different variation of porosity distribution rate is used to describe and approximate material properties of the imperfect FG plates. The results have been included the effects of the variation of porosity distribution rate and elastic foundations parameters as well as different boundary conditions. It is clear that the present theory gives results that compared well with the available ones in the literature. The effect of the variation in the porosity distribution rate is demonstrated. Numerical examples show that the proposed theory gives solutions which are almost identical with those obtained using other shear deformation theories.

Acknowledgments

This research was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the grant for the PRFU research project n° A01L02UN140120200002 and by the University of Tiaret, in Algeria.

References


Daouadji, T.H. and Benferhat, R. (2016), “Bending analysis of an imperfect FGM plates under hygro-thermo-


Effect of porosity distribution rate for bending analysis of imperfect FGM plates…

https://doi.org/10.1016/j.ijadhadh.2008.06.008.


