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Abstract. The aim of this paper is to develop a procedure able to calculate the long-term stress and
strain patterns in modern prestressed composite structures which are largely influenced by creep and
shrinkage and whose final static configuration is the result of many phases of loading and restraints
conditions. The introduction of equivalent moduli, depending on the viscous and elastic features of
materials, can guarantee a significant simplification of the problem presented above. The proposed
calculation model has been used to design the “Quattroquercie Viaduct” located on the highway “A3”
Salerno-Reggio Calabria, Italy.
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1. Introduction

Precast prestressed beams connected by a cast in-situ slab are largely applied in civil engineering,

most frequently in bridges and viaducts. The long-term behaviour of these structures is the result of

a complex sequence of constructive phases. In fact loads are usually applied at different times; in

addition beams, often simply supported at the extremities, are joined together in order to realize a

continuous structure. The subsequent increase of the degree of mutual connection between the

different parts of the structure is dictated by the aim of increasing the serviceability level and the

ultimate strength of the construction.

Due to the significant variability of static schemes as a result of the strains transferred with time

by concrete, modern construction techniques produce a complex structural behaviour strongly

depending on time (Dezi and Tarantino 1991, Dezi et al. 2006). The variations of structural schemes

consist in the application of partial or permanent restraints (Fiore and Monaco 2009); consequently

the strain state of the structure, due to loads already existing before their introduction, changes. 

Moreover construction techniques involving different stages cause significant heterogeneity in the

behaviour of concrete, since various structural parts or segments are constituted by concrete with

different maturation age (Mola 1986, Mola 1988, Mola and Giussani 2003). 

If suitable design criteria are not adopted, the just mentioned structures in the long time may be

affected by large deformations and undesirable cracking (Bazant 2000). That is why it is necessary

to analyze in detail the evolution of the stress-strain state of these structures and the influence of

construction phases and static scheme variations. 
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Several methods have been proposed for computing time-dependent effects in un-cracked

composite sections, but they concern most of all composite steel-concrete structures (Gilbert 1989,

Dezi et al. 2006, Gara et al. 2009, Kwak et al. 2000, Marì et al. 2003) or simple-spans girders

(Ghali 1989). Also many efforts to analyze the cracked prestressed and reinforced concrete sections

have been undertaken, with the assumption of perfect bonds between the constitutive materials

(Neville et al. 2003, Bae et al. 2010). However relatively little research has been published on the

time-dependent behaviour of girders which behave as simple-spans for dead loads and as continuous

structures for loads applied after casting the slab (Kwak and Seo 2002).

In the present study an analytical model to predict the time-dependent behaviour of precast

prestressed variable-section concrete girders is introduced, at the aim to furnish a valid procedure

for practical purpose. 

In particular the formulation includes the variation in time of both resistant sections and inertia

along the beam axis and the variation of static scheme due to the elimination of provisional

constraints and the introduction of permanent ones.

A correct design cannot neglect the above listed aspects, in order to obtain a realistic analysis of

the behaviour with time of concrete.

2. Stess-strain state

Shrinkage and creep constitutive laws are assumed according to CEB-FIP Model Code 1990.

The shrinkage strains  are expressed by

 (1)

The creep coefficient can be calculated by

  (2)

The meaning of the above terms can be found in CEB (1991, 1993).

Due to the complexity of exact laws, for practical purpose simplifying hypotheses are usually

introduced. In fact performing creep and shrinkage analyses by means of step-by-step procedures gives the

most accurate solutions, but may involve some computational difficulties due to the overlarge number of

calculations required (Pisani 1994, Fragiacomo et al. 2004, Gara et al. 2009).

Otherwise in practice acceptable results can be obtained by applying algebraic methods (Mola and

Giussani 2003, Sassone and Chiorino 2005) which allow to perform one-step analyses. These methods are

also characterized by a formal analogy with the associated elastic problem. In the following,

algebraic methods are adopted, focusing on the Age-Adjusted Effective Modulus (AAEM) method

(Bazant 1972, Bazant and Cedolin 2003). 

In general the stress-strain relations can be expressed as follows

(3)

(4)

The ageing coefficient  is given by
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 (5)

where  and Ec are respectively the relaxation function and the modulus of elasticity of

concrete at 28 days (Chiorino 2005). The relaxation function can be obtained by the following semi-

empirical expression (CEB 1991)

  (6)

with .

The ageing coefficient was firstly introduced by Bazant within the AAEM method, in fact the

ratio  represents the age-adjusted effective modulus.

The structure consists of prestressed concrete precast beams with pre-tensioned tendons. Precast

beams are firstly joined by cast-in-place concrete in the vicinity of the supports and successively

prestressed with post-tensioned tendons. The stress calculation in significant sections of the deck is

carried out considering the elementary strip constituted by the individual precast beam, the cast-in-

place concrete connection at supports and the top cast in-situ slab at mid-spans. 

In order to generalize the proposed method, the following time steps are introduced: 

− t0 = age at which the precast beam is prestressed;

− t1 = age at which, after the beams are placed, concrete is placed in-situ at supports;

− t2 = age at which concrete at supports is prestressed and provisional restraints are replaced with

permanent restraints;

− t3 = age at which the slab is cast in-place at mid-spans;

− t4 = age at which structural sections reach their final resistance and dead overloads are applied; 

− t = age at which final forces and strains are calculated.

In each time step  the analysis will be carried out taking into

account a time t+ corresponding to the upper limit of the step. 

Fig. 1 shows the resistant sections referring to the just mentioned steps. 

The composite beam is constituted by two main elements: the precast beam N and the in-situ

concrete R. In the following  and  represent respectively the strains and the

curvatures in correspondence of the centres of mass GN and GR; moreover  and 

are the shrinkage strains in the two materials. 

As to the cracking of the concrete slab, the condition is introduced that at the end of each time

step the maximum tensile stresses do not exceed the tensile strength of concrete, that is all sections
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1
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Fig. 1 Characteristic sections
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are considered un-cracked. The slab-to-beam connection is realized through stud shear connectors

able to absorb the longitudinal shear forces at the interface between the two elements, in order to

guarantee a monolithic behaviour. Under this assumption sections remain plane to represent the

linearity in the strain distribution on any section and at any time.

Therefore, in order to respect compatibility, at a generic time step ∆t the strain-increment

diagrams of the two parts constituting the composite section have to be parallel and the strain

increments at the contact points of the precast beam with the in-situ concrete and with the

prestressing tendons have to be equal. 

With reference to the time interval , at time t1 the prestressing force  decreases as a

result of shrinkage and creep and increases as a result of the bending moment due to the dead load

of the beam , ξ being the abscissa of the generic section. Moreover the simplifying

hypothesis is introduced that the prestress losses due to the relaxation of the steel develop

exclusively during prestressing (Mola 2000); so  represents the force in the tendons at the

stressing jacks less the losses due to the relaxation of the steel. 

At the time interval  concrete is placed in-situ at supports;  represents the bending

moment due to this action. In this step the resistant section is represented exclusively by the precast

beam (Fig. 2). At time t2 the prestress force is given by (Mola 2000)

(7)

 

where  

AN and rN are respectively the area and the radius of inertia of the cross section of the precast

concrete beam;  and eN are respectively the area of prestressing tendons and the eccentricity of

the prestressing resultant; EN and Es are respectively the moduli of elasticity of concrete and

prestressing steel; χN is the ageing coefficient referred to the precast beam. In Eq. (7) the coefficient

(1-D) is connected to the instantaneous reduction of the prestress force  due to the shortening of

concrete fibres at the steel-concrete interface. 

From time t2 two resistant sections can be identified: the precast beam with the in-situ concrete at

supports (region a); the only precast beam (region b). At this instant the second prestressing  is

introduced in region a; more precisely  represents the prestress force less the losses due to the

relaxation of the steel. 

At time t3 the structure is completed by a cast-in-place concrete slab in region b; 

represents the corresponding bending moment.

At time t4 all structural sections reach their final resistance and dead overloads are applied;

 represents the corresponding bending moment. From time t4 the beam is so characterized

only by composite sections (Fig. 3).
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Finally, as to the casting technique, a stay-in-place formwork is used for slab casting and consequently

the corresponding weight is included in the slab permanent load.

3. Connection of beams

The problem is herein simplified introducing the hypothesis that all beams are simultaneously

connected through the formation of n−1 continuity restraints. The actual load condition in the m-th

beam at a generic time  is given by the superimposition of the external actions, the prestressing

forces and the hyperstatic unknowns  applied respectively at the right and left ends

of the m-th beam. The bending moment due to the hyperstatic unknowns in the generic section can

be expressed as

  (8)

At time tj the bending moment is given by

t t2>
X1m ti( )  X2m ti( ),

Mx ξ ti,( ) X1m ti( )L ξ–

L
---------- X2m ti( )ξ

L
---+⎝ ⎠

⎛ ⎞       t t2>( )=

Fig. 2 Construction stages

Fig. 3 Construction stages and actions
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 (9)

 and  being the variations of hyperstatic unknowns with respect to time ti.

The bending moment  produces the following forces in the various elements of the

composite section

The above quantities can be easily obtained by applying balance and compatibility equations.

Since these forces are equal to zero at the beginning of each step and reach the indicated values

only at the end of the step, the corresponding viscoelastic strains of concrete can be estimated by

  (10) 

while the strains of steel are given by

(11)

4. Composite section

The present paragraph deals with the evaluation of the forces due to external actions, prestress and

hyperstatic unknowns in each interval  following time t2. The just mentioned forces are

referred to the centres of mass of the two parts constituting the composite section. 

In particular they can be divided into two groups. The first one is constituted by the forces

 and , acting respectively in the precast beam and in the in-

situ concrete of the second stage. These forces already exist at the beginning of the specified step

and produce only creep strains (that is without any elastic contribution). 

The second one comprises the forces  and , due to the loads

applied at time ti and involves the two parts of the concrete composite section. These forces produce

viscoelastic strains, that is both the effects induced by creep and the corresponding elastic quantities occur. 

Finally  and  are the tensile forces in the two centres of mass of the prestressing

tendons already existing at the initial instant of the step, while  and  are the tensile

forces produced by the external loads applied at the initial instant of the step (Fig. 4). 

After determining the described forces, in the specified time interval it is possible to calculate the

strains of the composite section materials.
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In order to respect compatibility conditions, a system of “migration forces” is introduced:  and

 acting in the girder;  and  acting in the in-situ concrete; 

and  acting in the prestressing tendons. This system of forces has to be self-balanced.

With reference to the symbols reported in Fig. 4, the total strains, including elastic, shrinkage,

creep and hyperstatic unknowns contributions, in the time step  are given by
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(12)

where  and . 

In Eqs. (12) tk represents the time at which loads preexisting at age ti are applied. The corresponding

forces include migration and hyperstatic unknowns effects. 

The migration forces can be obtained by applying two balance equations and four compatibility

equations involving the structural parts of the section

(13)

In order to express creep strains as particular elastic strains, the following ideal or equivalent

homogenization coefficients are introduced

 

 

  

(14)
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(16)

where

;

; 

; 
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The system of equation in six unknowns (13) has been solved by the software Mathematica. The

expressions so obtained have been also implemented in MATLAB, in order to facilitate the

application of the procedure for practical purpose. 

At each step it is then possible to determine the forces acting in the different parts of the

composite section and the corresponding strains.

The migration quantities depend on the hyperstatic unknowns. The hyperstatic unknowns  and

 can be calculated by solving the following system of compatibility equations

 (18)

 and  being the rotations in the extreme sections of the generic m-th beam at the

end of each time step

(19) 

It can be noted that Eq. (18) express the equality of rotations in two contiguous sections respectively of

the m-th and (m+1)-th beams; that is the hyperstatic unknowns are those moments whose

application at the ends of the released beams allows to satisfy the compatibility conditions of the

beam-end rotations. 

In this study temperature effects are neglected since a temperature difference between the slab and

the precast beam leads to an overall reduction of the maximum stresses of the beam (at the bottom

fibre). However they can be easily taken into account according to CEN (2001).

The above exposed principles are applied in order to determine the stress-strain state in the beam

sections with reference to different construction stages. 

4.1 Time step (t2, t3)

At time t2 the second prestress is transferred to concrete in region a. Prestress consequently

involves only the regions of the beam completed with cast-in-place concrete in the first stage. At

the step under examination both the creep strains due to preexisting actions and the instantaneous

elastic and creep strains produced by the second prestress and the hyperstatic unknowns are present;

obviously shrinkage effects develop in the two parts of the composite section. Since external

constraints do not avoid the elastic shortenings due to the second stage prestress in region a, region

b is not affected by the elastic strains produced by this coercion. 

At time t2, in region a the forces due to the second prestress are given by 

 (20)

with . 

Thus at time t3 it is possible to calculate the migration forces and the hyperstatic unknowns by

applying respectively Eqs. (16) and (18).

4.2 Time step (t3, t4)

At time t3, the slab is placed in-situ in the central region of beams (region b);  is the
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corresponding bending moment.

In region a, where a composite section is already present, the forces due to  are

 (21)

where SN and SR are the static moments of the two parts of the composite section with respect to the

barycentric axis of the homogenised section; SA1 is the static moment of the first prestressing

tendons with respect to the barycentric axis of the homogenised section; Ji is the inertial moment of

the homogenised section with respect to its barycentric axis. 

4.3 Time step (t4, t)

The slab in region b contributes to the section resistance. Therefore the beam is subject to another

variation of inertia. Moreover the hypothesis is introduced that dead overloads are applied at the

beginning of this interval;  is the corresponding bending moment.

In region a the forces acting at time t4 and producing viscoelastic strains in concrete and elastic

strains in prestressing tendons are

 (22) 

At time t the final forces are

(23)

The same forces act in region b, obviously with different values of the quantities SR and JR.

5. Numerical application

The proposed method has been utilized in order to evaluate the stress-strain state of the viaduct

“Quattroquerce”, built on the “A3” Salerno-Reggio Calabria (Fig. 5). The viaduct is constituted by
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15 spans, the first and last of which are 33.7 m in length and the others 38.00 m. The girder is

characterized by precast prestressed beams, with pre-tensioned tendons placed at an interval of 4.00

m. The height of the beams is 2.00 m, the width of the slab is 25 cm. Fig. 6 shows two

characteristic transversal sections of the girder, in correspondence respectively of the pier and the

mid-span. Fig. 7 illustrates the longitudinal section of the girder in correspondence of the pier. The

structural characteristics of the girder are reported in Table 1, while the values of the main loads are

Fig. 5 Viaduct “Quattroquerce”

Fig. 6 Sections of the viaduct respectively up to 8 metres from the pier axis and at mid-span

Fig. 7 Longitudinal section of the girder in correspondence of the pier

Table 1 Structural characteristics of the composite section

Rck [MPa] A [cm2] J [cm4] RH% T Prestress force [kN]

Prestressed beam 55 8587 39886500 50 20° 28690

Cast-in-place concrete at supports 40 30184 103871200 50 20° 11330

Slab 35 10000 520834 50 20°
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summarized in Table 2. The time steps considered in the analysis are reported in Table 3. 

Fig. 8 provides two images of the anchorage devices of tendons, at a distance of 8.00 m from the

pier axis, before in place post-tensioning.

The results of the analysis are shown with reference to a final time equal to t7 = 4000 days. In

fact, taking into account that CEB-FIB model is characterized by an asymptotic limit value of strain

for t→ ∞, adopting t0= 3 days, the solution for t > 4000 days can be considered practically constant

in time. Contrarily more recent models, such as the B3 model, are characterized by a linear law of

strain (in logarithmic scale) for t > 1000 days (Bazant 1995, Gardner and Lockman 2001). However

the above prediction models are validated on the basis of experimental data referring to a time t = 3

years (Data Base Rilem), while a reliable determination of the final value of the stress-strain state

would require measurements of at least 5 years duration, which are not available in literature.

Therefore, since for t = 3 years CEB-FIB and B3 models furnish comparable results, in this

numerical application the CEB-FIB model is applied and the analysis refers to a final time t7= 4000

days (Bazant 2001, Ceccoli et al. 2000). 

Since the final stress state is considerably influenced by the time t2, at which the structural

continuity is realized, two extreme cases are firstly analyzed, corresponding to a realization time TR

of the structure equal respectively to 30 days (theoretical value) and 2 years (upper limit). Fig. 9

shows a comparison in terms of stresses of the results so obtained. The results are expressed

separating the effects due to prestressing and dead loads from the effects produced by shrinkage and

creep. In fact the first ones do not depend on time, while the second ones are considerably

influenced by the realization time of the viaduct. In particular as the realization time TR decreases,

Table 2 Main loads

Prestressed beam 
self-weight [kN/m]

Cast-in-place concrete at supports
 self-weight [kN/m] (1st stage) 

Slab self-weight [kN/m] 
(2nd stage)

Dead overloads 
[kN/m]

22 76 29 23

Table 3 Main time steps

Casting of 
beams

1st stage 
cast-in-place 

concrete

Post-
tensioning

2nd stage 
cast-in-place 

concrete

Realization 
of finishes

Under
service

t0=3 days t1=72 days t2=86 days t3=200 days t4=214 days t5=300 days t6=665 days t7=4000 days

Fig. 8 Anchorage devices of tendons before post-tensioning
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axial stresses due to viscous effects increase in the prestressed beam, reducing the compressive

stresses both at mid-spans and at supports. This is due to the partial reduction of the stresses

produced by the realization of continuity restraints. Otherwise, as time TR decreases, compressive

stresses in the additional cast-in-place slab increase, as a consequence of creep. Finally it is worth

noting that discontinuities in the diagram of prestressing stresses along the beam are due to the

geometric distribution of tendons. 

Fig. 10 shows the evolution in time of the stress state at the top and bottom fibres of the precast

Fig. 9 (a) Final stress states [MPa] at time t = 4000 days at the top and bottom fibres of the precast beam
and of the slab in correspondence of (b) two hypotheses of construction stages
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beam according to the time steps summarized in Table 3 and with reference to the first two spans of

the viaduct, characterized by the highest load conditions. At each time taken into account, the stress

diagram is discontinuous along the beam axis as a consequence of the variation of both section

properties and prestressing force (Fig. 9). Moreover at each time step stresses are evaluated in terms

of increments with respect to the previous instant. It emerges that creep and shrinkage effects due to

both permanent loads and variation of static scheme, developing from time t3 to time t7,

significantly affect the values of stresses along the span lengths. In particular at the mid of the first

span the just mentioned effects lead to a reduction of stresses equal to about 38%. 

Fig. 11 also shows the final stresses at time t7 = 4000 days at the top and bottom fibres of both the

prestressed beam and the slab. It can be noted that all sections are compressed or slowly tense, in

accordance with the hypothesis of un-cracked condition.

In order to validate the proposed procedure, the just described results have been compared with

the values obtained by approximate estimations of creep and shrinkage effects. More precisely, for

Fig. 10 Evolution in time of the stress state at the top and bottom fibres of the precast beam
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creep and shrinkage due to permanent loads, an approximate evaluation has been obtained by

assuming that 30% of the corresponding effects develop before casting the slab (t1 or t3), 30%

before time t4 and the residual 40% before time t5. Similarly shrinkage effects due to the

replacement of provisional restraints with permanent restraints have been approximately taken into

account by assuming the final stresses equal to the sum of 1/3 of the stresses calculated referring to

the static scheme with provisional restraints and 2/3 of the stresses obtained referring to the static

scheme with permanent restraints (Petrangeli 1993, Neville et al. 1983, Gilbert 1988). The

approximate values of the stresses so obtained are bigger (+10-15%) than the ones accurately

calculated by the proposed procedure, but allow to asses the correctness of the method.

6. Conclusions

The study herein carried out shows that shrinkage and creep considerably affect the behaviour of

composite prestressed structures, regarding both stress and strain states.

Construction techniques, geometrical and mechanical characteristics of sections, applied loads,

rheological non-homogeneities, post-poned restraints and consequently variations of static schemes,

contribute to make structures widely sensitive to delayed strains. Therefore the prediction of the

behaviour with time of concrete structures should be carried out taking into account all the

significant parameters, in order to obtain values of unknown variables as close as possible to the

Fig. 11 Stresses at the extreme fibres of the slab and of the precast beam at time t7 = 4000 days
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real ones. 

In the present paper a procedure has been proposed in order to evaluate the long-term stress-strain

state of prestressed composite beams, taking into account structural effects due to shrinkage, creep

and static scheme modifications. The method is based on the introduction of equivalent moduli,

depending on the viscous and elastic features of materials. The results show that creep and

shrinkage effects due to both permanent loads and variation of static scheme significantly affect the

values of stresses along the span lengths, leading to a reduction/increasing of stresses up to 38%.

The compact formulation herein introduced is very suitable for design applications since it allows

to check the stress-strain state of the structure from the preliminary phase to the service one. 
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