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Abstract. The search for a design that meets both performance and safety, with minimal cost and lesser
environmental impact was always the goal of structural engineers. In general, the design of conventional
reinforced concrete structures is an iterative process based on rules of thumb established from the personal
experience and intuition of the designer. However, such procedure makes the design process exhaustive
and only occasionally leads to the best solution. In such context, this work presents the development and
implementation of a mathematical formulation for obtaining optimal sections of reinforced concrete
columns subjected to uniaxial flexural compression, based on the verification of strength proposed by the
Brazilian standard NBR 6118 (ABNT 2007). To minimize the cost of the reinforced concrete columns, the
Simulated Annealing optimization method was used, in which the amount and diameters of the reinforcement
bars and the dimensions of the columns cross sections were considered as discrete variables. The results
obtained were compared to those obtained from the conventional design procedure and other optimization
methods, in an attempt to verify the influence of resistance class, variations in the magnitudes of bending
moment and axial force, and material costs on the optimal design of reinforced concrete columns
subjected to uniaxial flexural compression.
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1. Introduction

The search for an optimal design of an engineering structure or element that meets both performance

and safety, with minimal cost and lesser environmental impact, was always the goal pursued by

most structural engineers. Currently, with the advances in computer technology, it became possible

to investigate a larger number of design variables and constraints, reducing the simplifications and

making the mathematical model more representative of the actual state.

Since there are many possible solutions, choosing the most appropriate one can be facilitated by

the implementation of mathematical optimization techniques. Nowadays, there are several tools for

the analysis and design of structures, but it is not common to incorporate mathematical optimization

modules for these tools to dimension optimally a structure.

In the field of structural engineering, the use of mathematical optimization techniques generally

aims to minimize the cost or weight of a concrete or steel structure, given the limits prescribed by

regulatory standards. Basically, the studies found in the literature are focused on geometry, topology,

optimization of the cross sectional dimensions (which represents the majority of studies), or the

combination of these cases. Amongst the articles that involve the optimization of reinforced
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concrete columns, stand out the studies by Zielinski et al. (1995), who presented a procedure for the

optimization of reinforced concrete columns, Argolo (2000), who developed an optimization study

of reinforced concrete sections subjected to uniaxial flexion using genetic algorithms, Rodrigues

Junior (2005), who proposed a formulation for the optimal design of reinforced concrete columns of

tall buildings, and Martínez (2007), who compared several optimization algorithms that allow to

obtain the design of reinforced concrete rectangular columns with hollow sections for road and

railway viaducts of different heights and spans.

In this context, the present paper proposes to incorporate a heuristic optimization method, the

Simulated Annealing method (Kirkpatrick et al. 1983), to the process of strength verification of

reinforced concrete rectangular columns subjected to uniaxial flexural compression, following the

Brazilian standard NBR 6118 - Procedures for the Design of Reinforced Concrete Structures (ABNT

2007). To minimize the cost of the reinforced concrete columns, the amount and diameters of the

reinforcement bars and the dimensions of the columns cross sections were considered as discrete

variables. The results obtained were compared to those obtained from the conventional design

procedure and other optimization methods, in an attempt to verify the influence of resistance class,

variations in the magnitudes of bending moment and axial force, and material costs on the optimal

design of reinforced concrete columns subjected to uniaxial flexural compression.

2. Background on mathematical optimization

The reduction in the design time and the possibility of simultaneous consideration of a larger

number of variables and constraints are some of the major advantages of using mathematical

optimization techniques (Vanderplaats 1984).

The mathematical optimization of a given problem can be achieved by finding the best possible

solution with the aid of an appropriate algorithm, taking into account the variables within a feasible

set of solutions and some imposed constraints.

The basic mathematical formulation of a multidimensional problem of optimization subject to

constraints can be described as (Vanderplaats 1984)

Minimize: f (xi) i = 1, n (1)

Subject to: gj (xi) ≤ 0 j = 1, m (2)

hk (xi) = 0 k = 1, l (3)

 ≤ xi ≤ (4)

where f is the objective function; x = (x1, x2, ... xn)
T is the vector of variables of size n and the other

functions are the constraints of the problem (respectively, inequality constraints g, equality

constraints h and side constraints of the possible values of x).

Depending on the characteristics of the formulated problem, several techniques can be employed

to solve it. Since the 1970s, it has increased the interest in algorithms inspired by the behavior of

nature, based on physics and biology, to solve complex optimization problems, especially in situations

where methods based on mathematical programming have shown to be inefficient.

xi

l
xi

u
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2.1 Simulated annealing method

The Simulated Annealing is a heuristic method inspired by natural processes and has its origins

on the simulation of the mechanical process of annealing metals.

When a metal is heated to high temperatures causing fusion, the atoms move freely. This process

is called annealing. The solidification occurs by slow and controlled cooling, in which the atoms are

reorganized in an orderly and stable configuration, forming a uniform structure with minimal

energy, also resulting in a defects reduction in the material. If the metal is cooled abruptly, the

microstructure tends to an unstable state.

Metropolis et al. (1953) presented an algorithm to model the annealing process of metals, simulating the

energy changes in a system of particles as the temperature decreases to a stable state. The

acceptance of this type of solution depends on the probability known as the “Metropolis criterion”,

calculated by the function

(5)

where T is the temperature of the body and K is the Boltzmann constant.

Similarly to the original method of annealing in thermodynamics, the optimization process starts

with a high value of T, for which a new solution is generated as T becomes a control parameter.

The Boltzmann constant has no analogy in an optimization problem, being eliminated. This new

solution will be automatically accepted if it results in a reduction in the function value. On the

contrary, if the new function value is greater than its predecessor, the acceptance will be given by a

probability criterion, being the acceptance function

(6)

A random number r is generated from a uniform probability distribution on the interval (0,1). If

this number is less than or equal to p, the solution is accepted, otherwise the solution is rejected.

3. Strength verification of columns subjected to uniaxial flexural compression

The iterative process for the verification of columns strength begins with the knowledge of the

external axial force (Nsd) and bending moment (Msd), as well as the prior definition of a cross

section along with the positions and diameters of the reinforcement bars. The final values of Nsd and

Msd are obtained by multiplying the respective force and moment by their characteristic partial

safety factors provided by the Brazilian standard NBR 8681 (ABNT 2004) for the different actions

and combinations involved in the design.

The internal resistant force Nrd and bending moment Mrd follow the same sign convention adopted

for their external counterparts, and are obtained by the following equilibrium equations, according

to the description of the deformed configuration

(7)

p E∆( ) exp
E.K∆–

T
----------------⎝ ⎠

⎛ ⎞=

p exp
f∆–

T
--------⎝ ⎠

⎛ ⎞=

Nrd σcd Ac Asi σsdi⋅
i 1=

n

∑+d⋅
Ac
∫=
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(8)

where:

Nrd is the resistant axial force;

Mrd is the resistant bending moment;

σcd is the stress acting on the concrete section Ac;

σsdi is the stress acting on the steel section Asi;

yc is the distance from the center of the compressed concrete area to the center of gravity of the section;

ysi is the distance from the steel bar i to the center of gravity of the section.

The calculated resistant axial force Nrd must be at least equal to the external axial force Nsd

applied to a known reinforced cross section. The value of Nsd is fixed, while Nrd varies depending

on the depth x0 of the neutral axis, which is the only unknown parameter in Eq. 9

(9)

Matching the axial internal and external stresses, Eq. 9 assumes the condition f(x0)=0, whose

solution lies in the interval (0, ∞ ), covering all the flexural compression domain, and in which case

it can be solved iteratively. In this work, the solution for the neutral axis position was obtained by

using the Golden Section method, a one-dimensional searching method that is characterized by

requiring only the calculation of function values at some points, so that the range of values is

reduced until a convergence towards a single value occurs at a given tolerance.

Once the depth x0 of the neutral axis is known, the equilibrium Eqs. (7) and (8) assume the

following forms

(10)

(11)

where:

Acc is the area of compressed concrete section;

Sc is the first moment of the compressed part of concrete section.

4. Problem formulation for minimizing the cost of columns

Considering a rectangular cross section, the objective of optimum design is to obtain a configuration that

is capable of producing internal forces and moments (Nrd and Mrd) equal or higher than the applied

external loadings (Nsd and Msd), with minimal cost.

The formulation of the optimization problem starts out from the knowledge of some input

parameters, previously defined and which basically represent the stresses acting on the element and

the materials characteristics and costs. These design parameters do not change during the optimization

process and are defined as

Mrd σcd yc dAc⋅ ⋅ Asi σsdi ysi⋅ ⋅
i 1=

n

∑+
Ac
∫=

f x0( ) Nsd Acc σcd Asi σsdi⋅
i 1=

n

∑–⋅–=

Nrd Acc σcd⋅ Asi σsdi⋅
i 1=

n

∑+=

Mrd Sc σcd⋅ Asi σsdi ysi⋅ ⋅
i 1=

n

∑+=
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Nsd – axial force;

Msd – bending moment in relation to the axis x;

c – cover depht;

fyk – characteristic strength of steel;

Es – elasticity modulus of steel;

fck – characteristic strength of concrete;

Cc – unit cost of concrete;

Cs – unit cost of steel;

Cf – unit cost of formwork.

The design variables (xi) are the values that represent the cross section dimensions and the steel

bar diameters as identified in Fig. 1.

Where x1 and x2 represent, respectively, the width (b) and the height (h) of the cross section; x3 is

the diameter of the four corner bars; x4 represents the number of bars in the two layers parallel to

x1; x5 is the diameter of the bars in the two layers parallel to x1; x6 represents the number of layers

with two bars parallel to x2 and x7 is the diameter of the bars in the layers parallel to x2.

In this study, all variables were considered as discrete, with the dimensions of the cross section

varying in steps of one centimeter and the diameters of the reinforcement bars limited to those

available in commercial stores. 

The cost function to be minimized in the optimization process considers the total cost of materials

(concrete and steel) and formwork, and can be expressed as follows

Minimize F(x) = (x1·x2)·Cc + (4·x3+2·x4·x5+2·x6·x7)·(π/4)·γs·Cs + 2·(x1+x2)·Cf  (12)

The first term of the function represents the cost of concrete per unit volume (Cc), while the

second represents the cost of the longitudinal reinforcement per unit mass (Cs), being γs the specific

weight of steel. The last term represents the cost of formwork per unit area (Cf). All costs provide a

relative value per unit length of the optimized element.

In the process of minimizing the cost function, all constraints imposed to the problem must be

respected. Basically, the constraints are related to the strength criteria and construction requirements,

as previously mentioned.

Fig. 1 Design variables
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All design variables must satisfy the prescriptions of the Brazilian standard NBR 6118 (ABNT

2007) with reference to the limitations of size, spacing and steel ratio. Therefore, x1 and x2 are

discrete variables represented by the intervals

x1 ∈ (19, 20, ..., 200)

x2 ∈ (19, 20, ..., 1000)

being the lower values indicated by standards and the higher values large enough so as to prevent

them to interfere in the optimal solution. For the same reason, the variables x4 and x6 (number of

steel bars in the two layers parallel to x1 and the number of layers with two bars parallel to x2,

respectively) can take only integer values between 0 and 10.

Also, x3, x5 and x7 are variables that represent the longitudinal steel bars, restricted to the

following diameters (mm)

x3, x5 and x7 ∈ (10.0, 12.5, 16.0, 20.0, 22.0, 25.0, 32.0, 40.0)

Therefore, the constraints can be rewritten in a normalized form as follows

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

In previous equations, e represents the spacing between longitudinal bars, and ρ the rate of

geometric reinforcement (ratio between the areas of steel and concrete sections). Regarding the

constraints, a penalty function technique was adopted, in which constrained problems are

transformed into unconstrained ones by adding to the function f(x) a penalty function P(x), which

considers a multiplying factor r applied to all the constraints that are not satisfied. Thus, the

penalized function F(x) can be written as

F(x) = f(x) + P(x) (24)

being

(25)

Overall, for the simulations performed in this work, several initial solutions were utilized,

resulting in the convergence to a single solution. Regarding the optimization method, it was adopted

g1 1 Nrd Nsd⁄ 0≤–=

g2 1 Mrd Msd 0≤⁄–=

g3 1 b bmin⁄ 1 x1 19 0≤⁄–=–=

g4 1 bmax b⁄– 1 200 x1 0≤⁄–= =

g5 1 h hmin⁄– 1 x2 19 0≤⁄–= =

g6 1 hmax h⁄– 1 1000 x2 0≤⁄–= =

g7 1 5b h⁄– 1 5x1 x2 0≤⁄–= =

g8 1 e emin⁄ 0≤–=

g9 1 emax e 0≤⁄–=

g10 1 ρ ρmin⁄ 0≤–=

g11 1 ρmax ρ 0≤⁄–=

P x( ) r g x( )∑=
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the following parameters, obtained from experiments and previous indication reported in the literature:

− initial temperature (T) = 1000

− temperature reducer (α) = 0.98

− penalty factor (r) = 1000

− stop criterion = Tk/T <0.001

5. Numerical simulations

The proposed approach, as described in previous paragraphs, was implemented from a base

program previously developed by Kripka (2003) to optimize general functions with the Simulated

Annealing method. The program was associated with a routine for checking the strength capacity

of columns subjected to uniaxial flexural compression, using the FORTRAN programming

language.

In the next paragraphs, some examples of the numerical simulations carried out in order to test the

efficiency of the proposed procedure are presented and briefly discussed. Further details can be

found in Bordignon (2010).

5.1 Example 1

Argolo (2000), whose analysis was based on the Brazilian standard NBR 6118 (ABNT 1980),

presented an example of uniaxial flexural compression and compared the costs for a 30 × 70 cm

rectangular cross section, initially dimensioned with the aid of practical iteration abacuses for three

different pairs Nsd and Msd, all on the same envelope, resulting in the same area of steel for the three

situations. These sections were then optimized for the longitudinal reinforcement, with fixed cross

section dimensions, by using the Genetic Algorithm (GA).

The composition of the unit costs of the materials and formwork used in this example refers to

March 2000 (in Brazilian Reais, R$), with the same values used by Argolo (2000), as shown in

Table 1. Likewise, the pair (Nsd; Msd) used in this example corresponds to the second model studied

by the author, since it represents a symmetrical distribution of the longitudinal reinforcement over

the cross section area, similarly to the condition adopted in the present study.

From this set of conditions, two sections were generated by using the Simulated Annealing

method, following the restrictions imposed by the Brazilian standard NBR 6118 (ABNT 2007): the

first one with fixed dimensions of 30 ×70 cm, in which only the longitudinal reinforcement was

optimized; and the second section, in which both the reinforcement and the cross section

dimensions were optimized.

The cross section with fixed dimensions of 30 ×70 cm, whose reinforcement was optimized by the

Simulated Annealing method, presented a cost 3.35% lower when compared to the same section

Table 1 Unit costs and acting loads for the example 1

Cc (R$/m³) Cs (R$/kg) Cf (R$/m2)
Nsd (kN) Msd (kN·cm)

25 Mpa 500 Mpa -

125.00 1.27 16.49 2142.86 37500
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optimized by the Genetic Algorithm method used by Argolo (2000). Also, when the optimal

section, freely generated by the Simulated Annealing, was compared to the method used by Argolo

(2000), the cost reduction increased to 6.85%.

When the sections generated by the optimal Simulated Annealing method were compared to the

results obtained by Argolo (2000) with the aid of practical iteration abacuses, the reduction in the

total cost was 29.10% for the section with the optimized reinforcement and fixed dimensions of 30

× 70 cm, and 31.82% for the optimal freely generated section.

It should be noticed, however, that the analysis performed by Argolo (2000), both by the practical

method and by the optimal one, did not take into account some construction requirements established by

the Brazilian standard NBR 6118 (ABNT 2007) for reinforced concrete columns. Thus, the solutions

provided by the author might not be feasible from the standpoint of the formulation used in the

present study. 

5.2 Example 2

In this example, Zielinski et al. (1995) studied a case of uniaxial flexural compression in order to

determine the cross-sectional areas of concrete and steel needed to resist the applied loads. The

analysis was performed according to the Canadian standard CSA CAN3-A23.3-M84.

The costs of the materials used in the example, along with the acting force and moment are

presented in Table 2.

The optimum design, based on mathematical programming (MP) and using the Powell method

suggested by the authors, corresponds to a rectangular cross section of 39.57 × 68.36 cm and a steel

section of 27.46 cm2.

This section has been simplified assuming the practical dimensions of 40 × 70 cm, with two

reinforcement layers, each one with three steel bars of 25 mm in diameter, resulting in a total steel

section of 30.00 cm2.

Argolo (2000) compared these results to those obtained from the implementation of the Genetic

Algorithm method, following the same Canadian standard. The section optimized by this method

assumed values of 25 × 95 cm in cross section, with three bars of 22 mm in diameter in each one of

two reinforcement layers, resulting in a steel area of 22.8 cm², meaning a reduction of 3.56% in the

final cost of the section when compared to the optimal result obtained by Zielinski et al. (1995),

and 7.34% in relation to the practical result suggested by the same authors.

The optimal section generated by the Simulated Annealing method in the present study, following

the criteria prescribed by the Brazilian standard NBR 6118 (ABNT 2007), showed a decrease in

cost of 20.67% when compared to the optimal section of Zielinski et al. (1995), 23.78% over the

practical result suggested by the same authors and 17.75% in comparison to the section optimized

by Argolo (2000).

Table 2 Costs and acting loads for the example 2

Cc ($/m³) Cs ($/kg) Cf ($/m2)
Nsd (kN) Msd (kN·cm)

25 MPa 400 MPa -

110.00 2.10 27.00 2460 44300
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5.3 Example 3

A problem similar to the previous one and presented by the same authors was also analyzed, but

with some changes in the acting loads and in the characteristic strength of the concrete, as shown in

Table 3.

Just as in the previous example, the design obtained by Zielinski et al. (1995) corresponds to a

rectangular cross section with dimensions of 31.96 × 59.36 cm and a total steel section of 25.80

cm2.

This section has been simplified for practical reasons, assuming dimensions of 35 × 60 cm, with

two reinforcement layers, each one with three bars of 25 mm in diameter, resulting in a total steel

section of 30.00 cm2, raising the final cost by 9.07%.

The cross section optimized by Argolo (2000) in this example assumed dimensions of 30 × 65 cm,

reinforced by five bars of 16 mm of diameter in each one of two layers, resulting in a steel section

of 20.11 cm2 and leading to a cost reduction of 6.01%. This reduction even reaches 13.83% when

compared to the practical results suggested by the authors.

For the optimal section generated by the present study, the reduction in cost is 24.12% when

compared to the optimal section, and reaches 30.43% when compared to the practical results suggested

by the authors. When compared to the section optimized by Argolo (2000) the cost reduction is 19.27%.

5.4 Influence of variation in the strength class of concrete

In this section, the influence of the strength class of concrete on optimized designs is evaluated. 

Table 4 shows the unit costs (in Brazilian Reais, R$) and the acting loads used in this analysis,

which were taken from the same source cited in example 1.

To compare the influence of concrete strength in columns subjected to flexural compression, the

optimization algorithm generated an optimal section for each class of concrete strength. The

different configurations generated are shown in Fig. 2. 

Table 3 Costs and acting loads for the example 3

Cc ($/m³) Cs ($/kg) Cf ($/m2)
Nsd (kN) Msd (kN·cm)

30 MPa 400 MPa -

110.00 2.10 27.00 1780 36200

Table 4 Unit costs and acting loads

Cc (R$/m³)
-

Cs (R$/kg) Cf (R$/m²)
-

Nsd (kN) Msd (kN·cm)
500 Mpa

C20 245.00

6.56 42.36 2480 32489

C25 260.00

C30 275.00

C35 290.00

C40 305.00
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Analyzing this figure, it becomes evident that the optimization algorithm seeks for a reduction in

the consumption of concrete as their resistance and cost increases.

The results obtained in this simulation are summarized in Table 5, in which it is possible to notice

that the section corresponding to the concrete class C40 resulted in a reduction in final cost of about

22%, when compared to the section generated for the concrete class C20, both subjected to the

same acting loads.

5.5 Influence of variation in the magnitude of acting loads 

In this example, one of the acting loads had a fixed value, while its pair varied. By adopting this

procedure, the section was analyzed under uniaxial flexural compression with small and large

eccentricities.

In the first analysis, the value of axial force was kept fixed at 2480 kN, while the bending

moment varied from 5000 to 35000 kN·cm. 

Fig. 3 shows the differences amongst the costs obtained for different pairs of acting loads and

strength classes, demonstrating the efficiency of the upper classes of concrete strength when

columns are subjected to flexural compression. This was due not only to the greater resistance, but

also because the algorithm optimized their use. Although the unit costs were higher for the upper

Fig. 2 Optimal sections for different classes of concrete resistance

Table 5 Results for different classes of concrete resistance

C20 C25 C30 C35 C40

Section (R$/m) Section (R$/m) Section (R$/m) Section (R$/m) Section (R$/m)

Concrete (cm²) 2542 62.28 2156 56.06 1872 51.48 1675 48.58 1495 45.60

Steel (cm²) 10.50 54.07 8.73 4.97 8.73 44.97 8.73 44.97 8.73 44.98

Formwork (cm) 226 95.73 210 88.96 196 83.03 184 77.94 176 74.55

ρ 0.0041 0.0041 0.0047 0.0052 0.0058

Total cost (R$/m) 212.09 189.99 179.48 171.49 165.13

Difference 0% -10% -15% -19% -22%
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classes, the optimization algorithm leads to a lower consumption of formwork, which represents a

significant portion of the cost composition.

In a second analysis, the value of the bending moment was kept fixed at 32489 kN·cm, while the

axial force varied from 500 kN to 3500 kN.

The results generated by the optimization algorithm lead to an increased cross-sectional area of

concrete as the value of axial force increased. This behavior was characteristic of sections using

concrete classes C20 and C25.

For the other classes of concrete strength, the cross-sectional area tended to decrease, reaching a

minimum when the pair was formed by a bending moment of 32489 kN·cm and an axial force of

1500 kN, since at this point there was also a reduction in steel consumption and formwork. The

consumption of materials increased again as the bending moment increased. 

In Fig. 4, it is clearly shown that there is an optimal combination of loads acting in the section

subjected to flexural compression, which does not involve the lower values of axial force and

bending moment. This behavior can be explained by the fact that at this optimal point all materials

are being used at their full capacity.

However, the achievement of an actual optimal combination of acting loads, or close to that,

depends on several factors that influence the structural analysis, the principal being the freedom in

structure conception. 

Fig. 3 Total cost of section per linear meter (constant axial force)

Fig. 4 Total cost of section per linear meter (constant bending moment)
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5.6 Analysis of variation in the unit costs of materials

In this section, the influence of the variation in the unit costs of materials on the final cost of the

optimal section is evaluated. As a reference, two optimal sections were generated, both capable of

resisting the acting loads and using the materials and respective unit costs presented in Table 1. In

one section, the concrete used is of strength class C20 and in the other, the concrete is class C40.

Based on the reference sections, the cost of each individual material was either increased or

decreased by 20% and 50%, generating four new optimal sections, with different final costs.

5.6.1 Analysis of variation in the unit cost of concrete

The simulation using concrete class C20, which had its unit cost either increased or decreased by

20%, resulted in an increase in the final cost of optimal section of 5.9% and a decrease of 5.7%,

respectively, while the 50% variation caused a 14.7% change in the cost of optimal section. 

When the same analysis was performed for optimal sections generated using concrete class C40,

the results demonstrated an increase in final cost of 5.2% and 12.9%, as the unit cost is increased

by 20% and 50%, respectively. When the unit cost is decreased in the same proportions, the final

cost of optimal section is reduced by 5.5% and 13.9%, respectively. 

In relation to the consumption of materials in optimal sections generated for both classes of

concrete, it was remarkable the capacity of the optimization algorithm in reducing the concrete area

as the unit cost of concrete increased.

The variation in the unit cost of concrete also caused a decrease in the steel section area for the

concrete class C20 and a 50% unit cost increase, since the amount of steel is forced to the

minimum rate stipulated by the standard. In the sections using concrete class C40, the area of steel

remained constant, leading to higher reinforcement rates as the concrete area decreased.

In both cases, the perimeter of the section tended to increase as the algorithm searched for

reducing the cross-sectional area. As a consequence, the relative cost of concrete increased. This

behavior was more evident when the unit cost of concrete was increased by 50%, as the algorithm

tried to maintain the resistant capacity of the section with a minimum area of concrete, leading to

sections of more rectangular shapes.

5.6.2 Analysis of variation in the unit cost of reinforcement

Just as in the previous analysis, the unit cost of reinforcement were either increased or decreased by 20%

and 50%, and compared to reference generated sections using concrete classes C20 and C40.

In optimal sections using concrete class C20, the final cost increased 5.1% due to a 20% increase in

the unit cost of reinforcement, and 12.7% for a unit cost increase of 50%. This last value is very close

to the 12.37% increase observed by Argolo (2000) in similar comparisons using the Genetic Algorithm.

When the analysis was performed using concrete class C40, the results demonstrated an increase

in final costs of 5.4% and 13.6%, as the unit cost of the reinforcement was increased by 20% and

50%, respectively. When the unit cost was reduced in the same proportions, final costs reduction

was found to be numerically the same as for the unit cost increase, i.e., 5.4% and 13.6%, respectively.

Regarding the consumption of materials, it should be noticed that an increase of 6.47% in the

steel section, as well as a reduction of 2.05% in the concrete area occurred for the reference section

using concrete class C20 and for a 50% reduction in the unit cost of reinforcement. For the other

reference sections, material consumption remained constant.

In sections with concrete class C40, the consumption of this material increased as the unit cost of
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reinforcement took higher values, reducing the formwork perimeter and keeping the area of steel

unchanged for all optimal sections. This occurred because there were no other possible combinations of

longitudinal reinforcement bars capable of reducing the final cost of the optimal section, compensating the

higher cost of reinforcement with a reduction in formwork perimeter.

5.6.3 Analysis of the variation in the unit cost of formwork

Sections that use concrete class C20 with either an increase or a decrease in formwork unit cost of

20%, presented final costs with a corresponding absolute variation of 9.0%. When the unit cost

variation was reduced by 50%, the reduction in final cost reached 24.2%, while an increase of 50%

caused an increase of 22.2% in the final cost of the optimal section.

In sections with concrete class C40, the variation in unit cost of formwork caused similar changes

in the final cost of the optimal section when compared to the concrete class C20. The results

showed increases of 9.0% and 22.7%, as the unit cost of the formwork is increased by 20% and

50%, respectively. When the unit cost is reduced in the same proportions, the final costs of the

optimal sections decreased 9.4% and 23.6%, respectively. 

As the unit cost of formwork increases, the optimization algorithm seeks to an optimal cross-

sectional shape that results in the smallest possible perimeter, even if this cross section presents a

greater area of concrete and, in some cases, forces a greater consumption of steel to satisfy the

minimum rate of reinforcement. This behavior was also observed for the sections using concrete

classes C20 and C40 and could be easily justified as the portion represented by formwork is the

biggest contributor to the final cost of the section.

In general, it was noticed that 20% of variation in the unit costs of materials changed just a little

the consumption of materials and the dimensions of the optimal cross section. This behavior is

modified when the variations in unit costs are of 50%, which is more evident for the sections using

concrete class C20.

It should be emphasized that the simulation results discussed herein are valid for the materials and

acting loads analyzed in the present work, being altered in the case of new combinations of acting

loads and materials characteristics.

6. Conclusions

This work dealt with the problem of optimization of rectangular reinforced concrete columns

subjected to uniaxial flexural compression, following the requirements of the Brazilian standard

NBR 6118 (ABNT 2007), and using the Simulated Annealing optimization method.

Based on the results obtained from the implemented formulation and comparisons performed, it

was possible to conclude that:
● the optimization process implemented showed the ability of assisting in decision making, also

eliminating some of the uncertainties in determining the parameters that lead to more efficient and

economic designs;
● the Simulated Annealing method was efficient, especially in the treatment of the constraints

imposed to the problem;
● when compared to the practical dimensioning performed with the aid of iteration abacuses and

other optimization techniques, the Simulated Annealing method showed superior efficiency in the

search for lower cost cross sections;
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● the possibility of using several diameters of reinforcement bars in the column cross section

contributed to the reduction of final costs;
● the optimum cross sections proposed by the Simulated Annealing method are feasible for possible

practical implementation;
● optimal sections subjected to uniaxial flexural compression were found to be those using the

higher concrete strength classes; sections using lower strength classes presented high costs due to

the increased demand for materials;
● the formwork appeared as the major contributor to the final cost of the optimized sections,

approaching 45.6% of the final cost, followed by concrete, with 28.7%, and steel, with 25.7%;
● due to the high cost of the reinforcement, the optimal sections tended to present low rates of

reinforcement; in most sections, these rates approached the minimum stipulated by the Brazilian

standard NBR 6118 (ABNT 2007);
● the topology of the optimal cross section was only slightly affected by the variation of 20% in the

unit costs of materials, but major changes were found for costs variation of 50%;
● there is an optimal combination of acting loads, which along with the optimal dimensions of the

cross section, leads to optimal global structures, although these optimal values depend on several

factors, including structural conception.
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