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 Technical Note

The origins and evolution of cement hydration models
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Abstract. Our ability to predict hydration behavior is becoming increasingly relevant to the concrete
community as modelers begin to link material performance to the dynamics of material properties and
chemistry. At early ages, the properties of concrete are changing rapidly due to chemical transformations
that affect mechanical, thermal and transport responses of the composite. At later ages, the resulting,
nano-, micro-, meso- and macroscopic structure generated by hydration will control the life-cycle
performance of the material in the field. Ultimately, creep, shrinkage, chemical and physical durability,
and all manner of mechanical response are linked to hydration. As a way to enable the modeling
community to better understand hydration, a review of hydration models is presented offering insights into
their mathematical origins and relationships one-to-the-other. The quest for a universal model begins in
the 1920’s and continues to the present, and is marked by a number of critical milestones. Unfortunately,
the origins and physical interpretation of many of the most commonly used models have been lost in their
overuse and the trail of citations that vaguely lead to the original manuscripts. To help restore some
organization, models were sorted into four categories based primarily on their mathematical and theoretical
basis: (1) mass continuity-based, (2) nucleation-based, (3) particle ensembles, and (4) complex multi-
physical and simulation environments. This review provides a concise catalogue of models and in most
cases enough detail to derive their mathematical form. Furthermore, classes of models are unified by
linking them to their theoretical origins, thereby making their derivations and physical interpretations more
transparent. Models are also used to fit experimental data so that their characteristics and ability to predict
hydration calorimetry curves can be compared. A sort of evolutionary tree showing the progression of
models is given along with some insights into the nature of future work yet needed to develop the next
generation of cement hydration models. 
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1. Introduction

A number of mathematical models have been developed to describe the hydration of alite and

C3S. These models encompass a wide range of assumptions and complexity; most are based on one

or more rate-controlling steps such as nucleation, diffusion and growth, and attempt to fit at least a

portion of the hydration curve by adjusting fundamental and added parameters. Some models also

include effects of particle size distribution. An attempt has been made here to include as many

unique models as possible, recognizing that others may exist and yet others are combinations of

those discussed here. Models have been sorted into four categories for convenience: (1) continuity-

based, (2) nucleation-based, (3) particle ensembles, and (4) complex multi-physical and simulation

environments. Each unique model is described along with key assumptions and steps in its derivation
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along with some commentary on their features. Models are not necessarily introduced in the

chronological order in which they first appeared in the literature since chronology is not always the

most logical progression. In addition to presenting the assumptions, theoretical basis and derivation,

select models are also compared to experimental data in the form of a calorimetry curve so that the

models’ predominant features can be illustrated.

Cement hydration is a complex process involving a large number of simultaneous chemical

reactions. Since alite (an impure form of tricalcium silicate) is the main constituent of ordinary

portland cement, and since its hydrates form the majority of the solid reaction products, it is

frequently used as a model material to study the hydration processes of cement pastes. But many

researchers also use pure tricalcium silicate (C3S
†) instead. There are, however, several differences

between alite and C3S. Alite is a modified form of tricalcium silicate (Ca3SiO5) commonly formed

in cement production processes-a solid solution of tricalcium silicate and small amounts of other

oxides besides CaO and SiO2 including Al2O3 (1%), Fe2O3 (0.7%) and MgO. Also, alite is a mixture of

monoclinic polytypes and C3S is a triclinic form. 

A brief description of the hydration process is necessary from which the models can be derived and

compared. C3S will be used as the basis for all discussions, neglecting the more complex phase structure

of alite. Many of the earliest models discussed here considered the hydration of C3S, alite and other

cement phases to be via a through-solution mechanism having the general form shown here for C3S:

(1)

where H2SiO4
−2 and Ca+2 are ionic intermediates, CaSHb is calcium silicate hydrate and CH is

calcium hydroxide, a hydration by-product.

Since the hydration of both alite and C3S is exothermic, calorimetry is frequently used to characterize

the kinetics. Alite or C3S hydration is typically described as occurring in four Stages as illustrated in

Fig. 1. Due to high solubility, both alite and C3S initially react rapidly with water when they are

C3S a 3 b–+( )H H2Si4

2*–
3Ca

+2*
40H 

 –
b a– 1–( )H CaSHb 3 a–( )CH+→+ + +→+

† Cement shorthand notation is used throughout where: C=CaO, S=SiO2, H=H2O, A=Al2O3, and F=Fe2O3.

Fig. 1 Typical calorimetric rate of heat evolution for neat alite, data from the authors’ laboratory: (1) dissolution,
(2) induction, (3) acceleration, and (4) deceleration
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combined, releasing a large amount of heat. This is referred to as Stage 1, dissolution. At the end of

Stage 1, the reaction begins to slow, this is called “the induction period” or Stage 2. The mechanism

of Stage 2 is not clear and is of great controversy, though, there are several predominant hypotheses.

One assumes that a thin meta-stable barrier with low diffusivity is formed during this time and later

dissolves prior to the onset of Stage 3. Another hypothesis assumes the slow reaction is due to

difficulty in nucleating the products. Stage 3 is called “the acceleratory period” wherein the reaction

rate increases and achieves a maximum. The end of Stage 3 usually occurs within 24 hours, though

the time is a function of many variables including particle size. Stage 3 is followed by a rapid

decrease in reaction rate until all of the alite or water is reacted, and may take many months or even

years to achieve complete hydration. Most researchers agree that a transition to diffusion control

eventually occurs, however, the point at which diffusion dominates is hotly debated.

The main product of both alite and C3S hydration, calcium silicate hydrate (C-S-H), is a non-

stoichiometric amorphous gel of composition (CaO)a-(SiO2)-(H2O)b where 1.5 < a < 2, though typically

a = 1.7 and b~1.07 (depends upon which citation you choose) are the generally agreed upon values

when no reactive silicate is present and when samples are P-dried (dried under vacuum in the

presence of magnesium perchlorate hydrate at 23oC), see Brouwers (2004). Microscopic analysis

suggests that the hydrated microstructure, at least at some point, is characterized by an unreacted

core surrounded by C-S-H among islands of CH, see Fig. 2. It is this sort of microstructural

imagery that has motivated some model developers to consider particle-based descriptions for

cement hydration. Micrographs and chemical microanalysis suggest that the structures of both inner

product (C-S-H that forms in the space once occupied by anhydrous cement grain) and outer

product (C-S-H that forms on the surface of the inner product, outside the radius of the original

cement grain) are different. The inner product has lower porosity with higher density and the outer

product is more porous with lower density, though even this is not well established. 

It is important to point out here that this very brief introduction has greatly simplified the

hydration process, what is known and what is yet debatable, see Bullard et al. (in preparation) for a

detailed discussion of cement hydration kinetics.

Fig. 2 (a) Micrograph of typical portland cement paste illustrating hydration ring around partially hydrated
particle, and (b) classic way of illustrating the hydration of cement particles representing a shrinking
anhydrous core with growing product layers, inner and outer product are not necessarily considered as
being different and some descriptions place the meta-stable layer at the shrinking core surface rather
than at the position of the original particle radius
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2. Model derivations

2.1 Mass continuity-based models

Both C3S and alite hydration are complex processes, involving many steps in the transition from

the anhydrous phase to the hydrate. Thus, simplifying assumptions are commonly made by modelers.

Most early modelers sought to discover one or several rate controlling mechanisms that simplified

the mathematics so that a “neat” closed-form solution could be obtained. The following models,

which are referred to here as “mass continuity-based approaches” have a common origin, though

that may not be obvious if one reads only the original papers by the models’ author. To illustrate the

relationship between these models, the classic derivations are not always used, but rather one that is

more fundamental and unifying. Such a process is governed by a total macroscopic mass balance on

the solid phases

(2)

and the microscopic equations of species mass continuity with chemical change for the mobile

dissolved and aqueous species

(3)

where ρs is the solid density, V is the solid volume, t is time, ωs is the molecular mass of the solid,

 is the advective velocity,  is the species velocity (advective and diffusive velocity operator), 

is a unit surface normal, A is area, the R’s are volumetric bulk reaction rates, C is concentration, D

is diffusivity and the subscripts, i, and s are for species “i”, and the solid respectively. Nothing has

yet been assumed regarding the nature of the product density, the diffusivity, the geometry or the

form of the reaction rate terms. Note that the operators  and  are the carriers of the geometry,

i.e.  in Cartesian coordinates and in spherical coordinates . Now, with

these definitions, the classical equations of Jander, Ginstling and Brounshtein, Pommersheim et al.

and others will be derived and thus unified.

Jander (1927) developed a model that was widely used and cited in the cements literature though

it was originally developed for solid state reactions. Jander’s model is based on one-dimensional

Cartesian coordinates with a diffusion controlled chemical change, constant transport properties, no

convective flow and a pseudo steady-state approximation for diffusion. Furthermore, the concentration

difference is assumed to be independent of the extent of hydration, e.g. a constant concentration value

is assumed at the outer boundary and equilibrium at the anhydrous core-inner product boundary. A

single diffusing species is assumed to be rate controlling, the choice of which is of no consequence.

This means that for the Jander model,   and , where

here “c” for the cement phase, replaces “s” in Eq. (2), thus, Eqs. (2) and (3) are reduced to the

following expressions after substitution, integration and differentiation

(4)
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(5)

Where x is the distance from the particle center, R is the initial particle radius, δc is the molar

density of the anhydrous cement core and p is the moles of core reacted per mole of diffusing

species “i”. Eq. (4) relates the time rate of change in core mass to the diffusive flux of species “i”

and Eq. (5) provides the concentration profile through the product layer form which the concentration

gradient in Eq. (4) can be computed. The solution of this pair of equations results in the classic

parabolic rate law, y = (kJt)
1/2, where y = R-xc (implying that the product layer grows inward only, an

assumption that is inconsistent with experimental observations for cement hydration) is the thickness of

the product layer and kJ = 2Dip∆Ci/δc (Di is diffusivity, and ∆C is concentration difference), for a one-

dimensional diffusion controlled transformation in a planar system. What Jander did next, was to

apply this rate law to the spherical geometry of a particle, where 

(6)

where  and α is defined as , the extent of reaction, e.g. the fraction of cement that

has reacted. 

Upon substitution of the parabolic rate law into Eq. (6), Jander’s familiar equation is obtained

(7)

Needless to say, there are a number of oversimplifications in Jander’s model. First, the parabolic

growth rule is only for one-dimensional reaction over a planar boundary and so will only be

applicable to spherically symmetric particles at low extents of reaction, e.g. when . Second,

it must be classified as an “inner product” model since it neglects the volume change due to the

difference in mass density between the product and reactant. Finally, the model is based on a diffusion

control only mechanism with constant concentration difference, neglecting nucleation, kinetically

controlled particle growth and any form of chemistry-related effects.

Ginstling and Brounshtein (1950) criticized Jander’s model since it would only be applicable at

low extents of reaction, and improved upon it by using spherically symmetric mass continuity equations.

For spherical symmetry, the following macroscopic balance on the core and microscopic balance for

water diffusion are obtained from Eqs. (2) and (3) respectively

(8)

(9)

Upon application of the pseudo-steady-state approximation to Eq. (9) and integrating, Ginstling and

Brounshtein found that

(10)
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where  and α = . Though Ginstling and Brounshtein corrected the geometric symmetry

problems of Jander’s model, it still assumes diffusion control only and has all of the other shortcomings of

Jander’s equation.

Brown (1985) developed a combined-control model for C3S hydration, dividing the hydration

process into two steps: acceleration and deceleration. He assumed that acceleration is controlled by

one-dimensional phase boundary processes, neglecting nucleation, and is followed by diffusion

controlled deceleration. Brown introduced the use of a reaction controlled model to predict the

earliest stages of acceleratory hydration and concatenated the Jander and Ginstling and Brounshtein

model with his reaction-controlled equation to form a sort of piecewise combined-control simulation. This

approach assumed that very early acceleratory hydration is reaction controlled, followed by a period

of one-dimensional planar diffusion control, for which Jander is appropriate as mentioned above,

then followed by one-dimensional spherically symmetric diffusion control, for which the Ginstling

and Brounshtein model is correct. The reaction controlled model of Brown is developed here to

complete the triad of approaches that he used.

Starting with Eq. (2) once again, for reaction control,  assuming, as Brown did, zero-

order reaction. Upon substitution and integration

(11)

Finally, integrating gives

(12)

Thus, expressed in terms of extent of hydration

(13)

where kB = k/ρcR.

Brown introduced surface controlled chemical kinetics, though his choice of zero-order assumes

that there are no concentration (chemical potential) related dependencies and thus his model, like

Jander and Ginstling and Brounshtein, is not linked to the system chemistry. And, while Brown

included a chemical reaction, the practice of conjoining models piece-wise is not necessary, though

others (Bezjak (1980) and Bezjak (1983)) have also used this approach. Conjoining models produces

discontinuous derivative curves unless carefully stitched together mathematically, and even so, Kondo and

Kodama (1968) illustrated a combined mechanism model that solves the problem continuously and

consistent with Eqs. (2) and (3), preceding Brown by some 20 years.

Kondo and Kodama’s model would introduce the concept of the combined mechanism using

classical continuum theory. Unfortunately, there is a known error in their derivation, identified by

Pommersheim et al. (1982), who also extended and improved upon the concept, Pommersheim

(1985). In addition, Taplin (1968) presented a similar, though more advanced model in the same

year which appears to be correctly formulated. Therefore, only Taplin’s and Pommersheim et al.’s

models will be discussed here.

Taplin (1968) and (1972) put forth the hypothesis that instead of the hydration rate being controlled by

inward diffusion of water (as implied by some prior diffusion-based approaches), it is more sensible

to replace it with the outward diffusion of hydrated chemical species or hydration intermediates or

co-diffusion of both water and intermediates, which he ultimately chose as the basis for his so-
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called “linear-diffusion kinetic model”. In this model, he assumes that an intermediate product “A”

formed by decomposition or reaction at the anhydrous core, diffuses through the product layer and

subsequently is deposited as outer product. He assumes that reaction at the anhydrous core surface

is governed by Langmuir adsorption wherein the intermediate poisons the reacting surface. The

fraction of covered surface θ is given by the Langmuir isotherm

(14)

where [A] is the concentration of A at the anhydrous core surface, and  is the Langmuir adsorption

coefficient for A on the cement. Once again applying Eq. (2) along with Eq. (1) gives

(15) 

where here, r is the time rate of change in extent of reaction α, k is the resistance to the chemical

reaction, Xi is the surface area fraction of anhydrous cement, and [W] is the concentration of water. 

Though the details are not shown in Taplin’s manuscript (see Taplin (1968)), it is necessary to

simultaneously solve Eq. (15), assuming pseudo-steady-state condition, for both water and transport

of A through the inner and outer products. The following pair of equations results after equating the

rate of reaction and the diffusive mass flux for water and A

(16) 

(17) 

where [W]o is the bulk concentration of water and, [A]o is the concentration of A in equilibrium with

the product and the η are transport factors that are functions of the extent of hydration and have

units of concentration multiplied by time, e.g. moles-s/cm3. The left hand side of Eqs. (15), (16) and

(17) are identical only when one applies the pseudo-stead-state approximation, wherein the rates of

counter flow of A and W must be in stoichiometric balance and thus identical in absolute magnitude

to the rate of disappearance of the core and so equal also to the rate of surface reaction given by the

right hand side of Eq. (15). Combining Eqs. (14), (15), (16) and (17), one can arrive at Taplin’s

“linear-diffusion kinetic equation”

(18) 

Derivation of the transport factors ηA and ηW were verified by the authors, but are not shown here

since it requires numerous steps.

There are many merits of this model and it is quite surprising that it has not been further

developed since. Taplin points out that the diffusion of water should not be considered as the controlling

mechanism for cement hydration and he introduces the concept of a diffusing intermediate, possibly

for the first time. Nonetheless, he admitted that there was no experimental evidence to support the

joint kinetics theory or the different resistances of the inner and outer products. The use of Langmuir

absorption theory to express the kinetics of dissolution and reaction at the core was progressive, but
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again, without experimental support. 

Based on Brown’s (1985) transient hydrated product theory and the combined mechanism model

of Kondo and Kodama (1967) Pommersheim et al. (1982) suggested a comprehensive and correctly

formulated approach that includes both diffusion through different layers (inner, middle and outer

product), and chemical reaction at the C3S grain surface. Surprisingly, however, Pommersheim et al.

does not cite Taplin’s earlier work (Taplin (1968)) which in ways is more advanced. In their model,

Pommersheim et al., first form a transient hydrate layer around the initial anhydrous grain. This

layer is referred to as the “middle layer” and was given a lower diffusivity and permitted to dissolve

soon after the end of the induction period. Meanwhile, the inner layer and outer layer are formed

due to the dissolution of C3S and chemical reaction of C-S-H. Using the previously described

pseudo-steady state assumption for liquid phase transport, this approach requires the solution of Eq.

(2) for each product layer and Eq. (3) for the diffusing species. Using spherical coordinates for the

inner and outer product and planar one-dimensional coordinates for the thin middle product layer,

Pommersheim et al. gives the following equation for the time rate of change of core radius

(19)

where the subscripts i, o and x are for the inner, outer and middle layer respectively, and “x” is the

thickness of the metastable layer, τ = R2δc/p∆CDi, and m = kPR/Di, where kP is the reaction rate constant.

The metastable layer was used as a means of mediating initial rate of hydration, by specifying that

the diffusivity of the layer be very low and then permitting the layer to decay according to an

empirical heuristic of the form: , where xo is the initial thickness of the metastable layer,

to is a time offset and β is a parameter that governs the rate at which the metastable layer decays. 

Although, in principle, this model has many elements that at the time were thought to be responsible for

induction behavior, acceleration and post peak deceleration, it was never demonstrated as a model

for fitting early age rate data, but rather for fitting cumulative (integral) conversion curves. It is

notable, however, that Pommersheim et al.’s model is truly a combined mechanism model, whereas

Brown’s approach combines mechanisms but utilizes a piecewise mathematical strategy that produces

discontinuities in the derivative curves. Furthermore, though Pommersheim et al.’s model emphasizes

diffusion, it is not a diffusion controlled model like Ginstling and Brounshtein’s, but rather seamlessly

transitions from reaction to diffusion control with changes in hydration conditions as one mechanism

becomes dominant over another. Nonetheless, although it includes both inner and outer products

with different physical properties such as density and diffusion coefficients, and an early attempt to

model a meta-stable layer, it neglects nucleation and densification of the product layers.

The solution of Eq. (19) also requires the simultaneous determination of ro which is a function of

time. This was handled empirically by enforcing a mass balance based on the rate at which the core

was shrinking

(20)

where . In addition, Pommersheim et al. suggested that the diffusivity of the outer product

should decrease with time due to the consumption of pore space, not densification of the product

layer. This approach implies that the apparent diffusivity is somehow a function of the remaining

dα

dt
------

3 τ⁄
1

1 α–( )2 3⁄
m

-------------------------
1

1 α–( )1 3⁄
--------------------- 1–

Dix

Dx

--------
Di

Do

------ 1
R

ro
----–⎝ ⎠

⎛ ⎞+ + +

-----------------------------------------------------------------------------------------------------=

x x
o
e

β t t
o

–( )–

=

ro
R
---- 1 φα+[ ]1 3⁄

=

φ
δ
CSH

δ
C
3
S

----------- 1–=



The origins and evolution of cement hydration models 655

pore volume not occupied by outer product and, thus, is logically flawed, nonetheless, it was a first

attempt to account for transport property variations as a function of the bulk density of the material.

Notably, however, their argument makes some sense in the context of more recent models that

account for product densification, see Bishnoi and Scrivener (2009a). One must note also that

Pommersheim’s diffusivity is a bulk apparent property, not the intrinsic diffusivity of the C-S-H and

so it depends upon the porosity of the bulk C-S-H phase. Thus, if the bulk C-S-H densifies as

suggested by Bishnoi and Scrivener, it stands to reason that the bulk apparent diffusivity would also

change. The equations that Pommersheim et al. used to account for diffusivity changes are based on

a volume balance and well known models for diffusivity in porous media and are listed in Table 2.

Finally, though the model explicitly includes a meta-stable layer, an attempt to deal with induction,

an empirical, and largely experimentally unsubstantiated, approach to control its stability and

transport properties was used, also see Table 2 for the expression.

2.2 Nucleation-based models

Avrami (see Arvrami (1939) and Avrami (1940)) published a series of papers discussing the nucleation

and transformation of solid phases at constant temperature. This theory has been wildly used in

many fields, including in cement hydration kinetics, due to its ability to simulate the shape of the

hydration derivative heat curve. It is notable to mention that Johnson and Mehl (1939) and

Kolmogorov (1937) also contributed to the development of phase transformation theories at about

the same time and so the relevant model is sometime referred to as the Kolmogorov Avrami

Johnson and Mehl (KAJM) model, (also see Livingston (2000) for a discussion).

It is quite important to note that Avrami was interested in understanding the kinetics of solid

phase transformation and not the conversion of an anhydrous solid to a hydrate via a dissolution

precipitation reaction wherein the anhydrous phase is sparingly soluble in the solvent phase. Thus,

while the solvent phase, pore solution in the case of cement hydration, may be equated with

Avrami’s initial solid phase, this comparison will limit the applicability of the Avrami theory for

cements. Nonetheless, not unlike Jander and other early models, the Avrami theory is a key step in

development of more recent theories and thinking on the subject of cement hydration kinetics.

Avrami assumed that nucleation happens randomly in the parent solid phase and that the growth

rate of nucleated domains is constant, isotropic and independent of the extent of transformation.

Assuming an initial solid phase volume V, phase γ ‡ transforms into solid phase β with a fixed

nucleation rate. The number of nuclei that are created between time τ and τ + dτ is

(21)

where n is the nucleation rate per unit volume, τ is some nucleation time, and dτ is the nucleation

time interval. Assuming that there is no interaction between particles as they grow, the radius of

each growing domain at time t is

(22)

where G is a constant, isotropic linear growth rate. So the volume of the growing spherical nuclei of

phase β at time t, ignoring the fact that some may overlap, is

N Vndτ=

r G t τ–( )=

‡ Avrami originally use α not γ as the initial transforming phase designation.
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(23)

This volume is referred to as the “extended volume fraction”, and is denoted as . It is notable

that the concept of the extended volume is a mathematical conception to make the analysis tractable

and that the extended volume is not a physical property of the system. Integration of Eq. (23) is

done for all nucleation times from  to , gives 

(24)

Since the real volume of phase β is proportional to the untransformed volume in the system

(25)

where  is the real volume fraction of the system. Again, for this relationship to be true, nuclei must

form randomly throughout the untransformed volume, thus making Eq. (25) a simple probabilistic

relation for independent events. Upon integration of Eq. (25), the final form of Avrami’s equation is

obtained

(26)

If one assumes that a finite number of nuclei appear instantaneously at time t = 0, then Eq. (26) has

a t3 rather than t4 dependence.

Although Avrami’s equation has been widely applied to portland cement hydration, the assumptions and

simplifications limit its physical interpretations and predictability. Among these, this model assumes

an initially homogeneous media and spatially random nucleation implying that nuclei form homogeneously

dV ex

β 4

3
---πG

3
t τ–( )3

Vndτ=

V ex

β

τ 0= τ t= V ex

β

V ex

β 1

3
---πG

3
Vnt

4
=

VdV
β

dV ex

β
V V

β
–( )=

V
β

V
β

1 e
V

ex

β
–

– 1 e

1

3
---πG

3
Vnt

4
–

–= =

Fig. 3 Various figures illustrating concepts that lead to Cahn’s boundary nucleation and growth model: (a)
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out of the solution phase, an inherently incorrect assertion for cement hydration.

Cahn (1956) developed a model that placed the nucleation sites on grain boundary surfaces, grain

edges or grain corners. Thus rather than permit nuclei to randomly form in the bulk, Cahn restricts

nuclei to form only on boundaries between particles. To derive Cahn’s equation for grain boundary

surfaces, consider two parallel planes A and B a distance y apart, where B is a grain boundary and A

is a fictitious plane. A nuclei formed on the boundary of B at time τ with a fixed growth rate G will

intersect with the arbitrarily placed fictitious plane A to form circular cross-sections of radius

. If growing unconstrained, that is, if they grew unaffected by overlapping, then in

two-dimensions (2-D) the nuclei would form overlapping regions as illustrated in Fig. 3.

Since the growth rate G is constant, the radius R = G(t−τt) and hence

(27)

(28) 

The 2-D extended differential area covered in time interval dτt is therefore

(29)

(30) 

where Ig is the specific grain boundary nucleation frequency per unit area. The total extended area

is obtained by integrating over all nucleation times between 0 and 

(31)

 (32) 

Noting that the plan view of plane A of the intersecting nuclei is identical to that for any cross-

section generated by random homogeneous nucleation, it can be shown that the actual area fraction

Y is related to the extended area fraction Yex by

(33)

which is identical to the relationship derived by Avrami for extended volume fractions, see Eq. (26).

To obtain the volume (specific volume per unit area of grain boundary) that is filled with product,

Eq. (33) must be integrated over the entire space

 (34)

where . Now then, since Vo is the volume of nuclei growing from a planar grain surface, those

nuclei will intersect others that originated on planes that have surface normal that project towards
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plane B. To accommodate such inter grain boundary interactions, Cahn applied Avrami’s interaction

term once again to arrive at his final equation for grain boundary nucleation and growth

(35)

where X is the total actual volume fraction of product formed, and S is the boundary area per unit

volume.

Cahn’s model is certainly an improvement over Avrami’s model in that it placed the nuclei on the

surface of the reactant. This improvement, however, would not be recognized by the cements

community for 52 year, until Thomas (2007), discussed later, applied Cahn’s boundary growth and

nucleation (BNG) model to C3S hydration data. Nonetheless, Cah’s approach lacks chemistry driven

kinetics, diffusion and inner product related terms which limits its applicability to early age hydration and

low extents of reaction. 

Finally, Thomas (2007) and (2009) discovered and applied Cahn’s “boundary nucleation and growth”

model to C3S hydration data. Although his notation is somewhat different, Thomas’ equations are

equivalent to those of Cahn, short of a single detail. Thomas found that Cahn’s BNG model could

not fit C3S hydration calorimetry curves without the introduction of a scaling parameter “A”. To fit

heat rate curves (derivative heat curves), Thomas differentiated Eq. (39) and multiplied by A

(36)

where A is a scaling parameter interpreted as the fraction of C3S hydration that occurs by nucleation

and growth in a “limited reaction volume”. Ultimately, Thomas demonstrated that Cahn’s BNG

model is an improvement over Avrami’s model since, after all, it places the nuclei in the proper

place, on the surface of the hydrating cement particles. Unfortunately, in most cases the model does

not fit hydration data beyond a limited extent of hydration.

Though “A” has a physical interpretation, there is little microstructural evidence in support of a

limited reaction volume. In fact, evidence shows that by 24 hours the majority of the inter-particle

volume is filled with a low bulk density C-S-H product and CH. In the final analysis, when applied

to neat C3S hydration, Cahn’s model appears to be limited to very early age hydration (< 24 h) and

low extents of reaction (< 40%). 

Bentz (2006) may have been the first to recognize that the rate of hydration should likely be a

function of the amount of space available for product to occupy. Though this seems logical, none of

the previously discussed models and none prior to Bentz’s publication had mentioned or considered

the notion directly from volume-based arguments alone. And, while Bentz’s model is not a

nucleation-based approach, it collapses to a form similar to a two-dimensional Avrami’s equation

and so is considered here. Bentz derived a simple model based on the water-filled porosity and the

anhydrous cement volume fraction. In this model, he assumes that the hydration rate is proportional

to the product of the water filled porosity and the total capillary porosity

(37)

where α is the hydration degree, kBz is a constant, ϕw(t) is the water-filled porosity (the capillary

porosity), and γ(t) is the fraction unreacted cement. Based on a simple volume balance, the water

filled porosity could be estimated
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(38)

where  is the dimensionless cement density defined as , where ρw is the density of water,

w/c is the water to cement ratio, fexp is the volumetric expansion coefficient for the solid hydration

products relative to the cement reacted, CS is the chemical shrinkage, Vw, Vp, Vs and Vc are the

volume of initial water, product at time t, chemical shrinkage and initial cement respectively. Similarly, the

total capillary porosity is

(39)

and the volume fraction of unreacted cement is expressed as

(40)

where Vac is the volume of unreacted cement at time t. This simple model suggests that the rate of

reaction is controlled by volume constraints only and does not directly reflect particle geometry, diffusion,

or surface reaction at the particle level. Nonetheless, it offers a totally alternative approach and

opportunity to explore volume effects that previously discussed models do not.

2.3 Particle size-based and related models

Taplin (1972) appears to be the first person to claim that the particle size distribution (psd) is

important in cement hydration, (also see Knudsen (1984)). He suggested a simple integral approach

for summing the influence of particle size by incorporating an initial size distribution. In his model,

the cumulative, observable, extent of reaction α(t) is given by

(41)

Where w(r) is the particle size distribution density function and α(r, t) is the extent of reaction at

time t for a particle of initial size r. Subsequently, this approach has been utilized by numerous

other investigators including Brown (1989) and Pommersheim (1987).

Citing Taplin’s work, Knudsen (1984) furthered the concept by introducing the particle size

distribution into his analytical model for hydration rates, thus, developing the so-called “dispersion

equation”, where the term “dispersion” refers here to the dispersion in particle sizes. Starting with

Taplin’s Eq. (41), Knudsen assumed simple mathematical forms for w(r) and α(r, t), though they are

largely without substantiation

(42)
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(43)

where i = 1 for linear and i = 0.5 for parabolic kinetics. Integrating Eq. (41) using Eqs. (42) and

(43), Knudsen found the following pair of expressions

linear kinetics (44)

parabolic kinetics (45)

where , and .

Although Knudsen found that his model provided a good fit to hydration data measured in terms

of chemical shrinkage, and likewise others have used the model to fit various other measures of

hydration, there are several serious limitations. Notably, the derivations of Eqs. (42) and (43) are

based on arbitrary curve forms that tend to fit the shape of hydration data without substantial

physical interpretation. Like other single mechanism models, Knudsen’s model assumes that the

hydration mechanism is independent of the degree of hydration. In summary, this model ignores the

rapid dissolution period, nucleation, induction and early acceleration periods of cement hydration

and offers an either or rate controlling mechanism, linear or parabolic. Not shown here, Knudsen

also suggests a method to stitch the linear and parabolic forms together to form a combined model

of the piece-wise sort proposed by Brown. And, although Knudsen likens his choice of linear and

parabolic rate laws to the linear time dependence found for zero order chemical reaction control, see

Brown’s model, and parabolic for 1-D planar diffusion, see Jander’s model, his rate laws are in fact

totally empirical and without theoretical foundation in reaction mechanics or transport phenomena.

Finally, Knudsen claimed that some cements exhibit linear behavior, some parabolic and yet others

more complex combinations of the two, this seems to make such a model questionable from a

mechanistic perspective.

2.4 Complex, multi-physical models and simulation environments

In 1986 Jennings and Johnson, see Jennings and Johnson (1986), introduced what is widely considered

to be the first multi-physical strategy for computational cement hydration, a milestone that effectively

inspired a new paradigm which has given way to more advanced multi-physical models and simulation

environments. As a point of reference, it is useful to distinguish between multi-physical modeling

and simulation. Multi-physical modeling is an almost self explanatory term that encompasses models

that incorporate details such as dissolution, nucleation, diffusion, reaction, particle size distributions and

irregular shapes, microstructure development, multiple parallel-series reaction phenomena, etc. And,

while it is tempting to categorize models such as Pommersheim’s and Taplan’s in this category, it is

notable to point out that a distinguishing feature of such models is that they typically cannot be

expressed by closed form solutions. Simulations, on the other-hand, are environments into which a

digital microstructure is encoded upon which some form of mechanical, chemical or physical

transformation is imposed and numerically or digitally approximated, see Garboczi and Bentz

(1991). The following contributions to some extent have features that embody both multi-physical

modeling and simulation and thus it is difficult to label them as anything other than complex, multi-
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physical simulation environments. The underlying goals of such are to correctly describe phenomena

that have been omitted from the more simplified models and to ultimately predict the microstructure

of hydrated cement paste and concrete. Furthermore, it is important to recognize that while the

simpler models described in Sections 2.1, 2.2 and 2.3 use calorimetry data as their primary vehicle

for parameter estimation, complex multi-physical models can and do generate microstructural

aspects that can be compared to other measures of hydration such as pore fraction, size and size

distribution, degree of percolation of various phases, surface area, phase fraction for various

anhydrous and hydrous phases, water content, etc. In fact, such must be used in an effort to

constrain parameter estimation conflict and obtain solutions. Since these more complex models and

simulations are not the key focus of this work, relevant contribution will be mentioned only briefly;

a more detailed review is provided elsewhere, see Thomas et al. (2010).

Notably, the Jennings and Johnson simulation is not a unique kinetic model, but an environment

into which various models can be placed. Jennings and Johnson (J-J) includes relevant microstructural

details such as recognizing that while the C3S core is shrinking due to the dissolution and reaction,

the outer product is expanding since the product molar density is greater than that of the anhydrous

parent material. Possibly the most important contribution of the J-J approach was the introduction of

the digital microstructure. Starting with a digital representation of anhydrous cement particles in

water at a given water-to-cement ratio, Jennings and Johnson implemented a time-stepping strategy

to evolve the microstructure. They called each time step a “hydration decrement”. For each decrement

various parameters would be computed: Vc, the volume of C3S that is consumed in the hydration

decrement, V1 the volume of C-S-H product due to hydration, rc and ro the radii of C3S and C-S-H

before the decrement, and rq and ro' are the radii of C3S and C-S-H after the decrement. Applying a

volume balance, the volume of Vc and V1 were computed

(46)

(47)

By combining Eqs. (46) and (47) with  the radius of outer product ro' is found

(48)

Whereas Avrami and subsequently Cahn utilized statistical considerations to deal with particle

interactions (overlapping growth) in the virtual environment of the Jennings-Johnson simulation,

such were tracked on a particle-by-particle basis with no need for averaging or mean-field

approximations at all. This was a significant conceptual breakthrough that would be utilized in all

cement hydration simulation environments to follow. 

While the J-J simulation used geometry and volume balance to provide corrections for particle-to-

particle interactions, there are several problems. For example, although the overlap volumes are

carefully computed, the model assumes that the volume of the overlapping product is redistributed

on available surface of the particle; however, this assumption has no kinetic basis or experimental

microstructural evidence to support it. Finally, as mentioned in their paper, the aqueous phase is

excluded in the model, which is very important in the C3S hydration process.

Bentz (1997) later developed a three-dimensional digital-image-based computer simulation called

CEMHYD3D. In this virtual environment, the initial state is rendered from scanning electron
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microscope (SEM) images which in early versions of the code were used to reconstruct the particles

as spherical domains in virtual 3-D with “equivalent” particle size distribution, phase volume and

surface fractions. Cellular automaton rules were then applied to simulate the dissolution, diffusion,

and reaction events of the hydration process using random-walks of voxels. This technique mimics

the hydration process well and is easy to implement; however, it requires millions of pixels to

simulate a small volume of paste. Furthermore, like the J-J simulation, it utilizes other models as its

kinetic engine. In this case, a form of maturity approach using Knudsen’s model is implemented,

thus, from a kinetics point of view, it has many of the limitations of Knudsen’s equation.

Based on the J-J simulation van Breugel (1995 and 1995a) extended the work to develop a similar

simulation environment called HYMOSTRUC. In HYMOSTRUC, instead of using the J-J geometry

method to calculate overlapping volumes, van Breugel assumed that the outer product of one particle may

contain overlaps from many other particles, especially small ones. Even when embedded into another

particle’s product layer, HYMOSTRUC permits the particle to continue to hydrate and grow. Van

Breugel used what he called a “shell density factor” to calculate the overlap volumes

(59)

For the hydration kinetics, van Breugel used Jander’s theory to calculate the volume of inner

product and discusses three situations for the outer product volume: (1) no overlap with other

particles, (2) includes some particles that are embedded into the shell without hydration, and (3)

includes some particles that are embedded into the shell with hydration and growth. Although van

Breugel’s model includes the embed particle phenomena, a situation that closely matches reality for

cement hydration, there are limitations in the approach. In early versions, the fundament kinetic

basis of van Breugel’s model is given by Jander’s equation, which itself has many disadvantages,

whereas later versions utilized an empirical pseudo-kinetic approach that provides correlative

responses to factors such as changing pore volume and system temperature. The model only focuses

on growth without considering nucleation and surface area effects. Also the model assumes that

particles with same size have same hydration rate, and does not consider the effect of transport and

pore solution chemistry.

Pignat and Navi (1999 and 2005) developed yet another simulation environment for microstructure

development in cementitious systems. They refer to their simulation as the “Integrated Particle

Kinetics Model” (IPKM). In this model, Pignat and Navi permit two kinds of C-S-H to form: inner

and outer product, based on Pommersheim’s work. But instead of forming a temporary middle layer

of C-S-H as in Pommersheim’s model, they assume that calcium hydroxide is nucleated and grows

on the surface of the original particle.

Pignat also assumes three mechanisms to control the hydration kinetics. During the accelerating

stage, they use a nucleation and growth model as the controlling mechanism. Avrami’s equation is

used. After that, the kinetics of phase-boundary reaction using Brown’s surface area model was

applied. Finally, they used Jander’s model to simulate diffusion control. 

Similar to Brown’s overall strategy, Pignat and Navi concatenate three approaches in a piece-wise

method to simulate a curve that is similar to that for cement hydration. Having utilized various

models, all of which are faulty, and a concatenation approach, it is clear that this model is nothing

more than fitting the hydration curve with models that might or might not have some mechanistic

connection to what is actually happening. Uniquely, however, this simulation makes the obviously

incorrect assumption that places the CH at the surface of the original cement grain, where, in fact, it
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should be placed among the anhydrate islands.

Bullard (2008) published his description of HydratiCA an automaton-based approach that combines

kinetics based on transition-state theory, rigorous mass transfer, nucleation and solution phase

chemistry. The simulation describes the formation of C-S-H products, having different physical

properties, and both forward and backward reaction rates, also see Bullard (2007). He assumes

elementary chemical reactions of the form

(50)

where Eq. (20) is for the formation of C-S-H, i.e. for Reaction (1) running forward. Bullard’s model is

placed in a well developed simulation environment that includes a comprehensive description of the

hydration process including a nucleation mechanism, compliance with mass balance and volume constraints,

and real particle geometries and size distribution. At this point the only obvious limitations are the

large computer intensive nature of the automaton and knowledge of the reaction mechanism which

are mostly unknown at this time. 

Bishnoi and Scrivener (2009a and 2009b) introduced µic, a simulation environment based on the

“vector” approach, a strategy that identifies particles based on some measure of their location, i.e.

their center of mass. Thus far they have tested various kinetic and transport models largely in

response to the introduction of Cahn’s BNG model by Thomas. In their 2009 work, nuclei are

permitted to grow at a fixed rate on the surface of the particle following a 2-D Avrami model

(51)

where f is the covered fraction of the particle surface at time t,  is the rate constant in the

direction parallel to the surface, wherein G is the growth rate, I is the nucleation rate, and n is equal

to 3. Meanwhile, the outward growth rate of the product is assumed to be constant at G2, so the age

of the product tr at a distance r from the particle center is expressed as

(52)

where ro is the original radius. Replace t in Eq. (47) with tr in Eq. (48), integrate and the actual

amount of product around the grain at time t is obtained

(53)

where the w are molecular weights, ffree is the fraction of outer surface of the product that is available for

growth due to impingement of growing adjacent particles and ρ(r) is a density function

(54)

where ρmax is the maximum density of the product, ρmin is the minimum density and kden is a rate

constant. Notably, ffree is computed on a particle-by-particle basis by the µic simulation environment. 

Experimental observations show that heat evolution after the deceleration period is significantly

higher than can be predicted by the BNG model and so Bishnoi and Scrivener (2009a) proposed

that C-S-H grows by a two-step mechanism wherein the inter particle volume is rapidly filled with
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a low density product that subsequently densified slowly. In their simulation strategy, the 2-D

Avrami approach accommodates the rapid volume filling whereas their density function models the

slower densification. 

Though Eq. (53) gives a good fit to derivative hydration curves, there are several concerns: First,

initial nucleation and growth is heterogeneous (on the surface of the anhydrous grains) but later

since new nuclei form and fill subsequent 2-D planar surfaces in accordance with Avrami’s

equation, such nucleation events are actually homogeneous in nature as they may form randomly,

rather than on top of existing nuclei that are percolated to the parent core. While subtle, this appears

to be a mechanistic flaw. Finally, the two-dimensional Avrami’s equation is used with a density of

ρmin instead of ρmax, so as to terminate the nucleation quickly before densification. This implies

microstructural characteristics for the C-S-H that are yet unclear, i.e. instead of forming grains, the

structure of the early stage of C-S-H is more like needles which grow quickly in the axial direction

and are blocked by inter particle interactions.

3. Discussion

Given the above derivations and origins, we can now clearly see the relationships between these

models, some deriving from the equations of total and species mass continuity, some from nucleation

considerations, some including particle size distributions and yet others that assemble various

elementary models into piecewise forms. Table 1 summarizes each model and its relevant parameters. A

brief comparison of some of these models is forthcoming at this point.

For comparison, each model was fit to a “benchmark” calorimetry dataset for alite hydration at a

water-to-cement ratio of 0.4. Fig. 4(a) illustrates Jander, Ginstling and Brounshtein and the Brown

models, since they are all of the same origin, derivable directly from the microscopic and/or macroscopic

equations of mass continuity. Notably, the Jander, Ginstling and Brounshtein and Brown model all

require a fictitious initial time (to), which is used to produce a linear offset in the model curve so as

to coincide with the “end” of the dormant period. The use of to is illustrated here for Jander’s

model, but is applied likewise to the others

(55)

It is clear that the Jander and Ginstling and Brounshtein model can provide a fit to the entire

integral curve, while Brown’s model is only a match for the initial acceleratory period, as originally

stated by Brown and as anticipated. It is notable, though, that fitting a portion of the integral curve

does not necessarily imply that the mechanism put forth in these models, by any means, is

representative of the actual processes that are controlling hydration, as will be illustrated below.

Furthermore, when differentiated, these models show that they are fundamentally unable to model

early age cement hydration and cannot capture the shape of the early acceleratory stage or the onset

of deceleration (the peak) let alone dormancy, see Fig. 4(b). 

Diffusivities, reaction rates and other model parameters were approximated by optimization using

the different models discussed above. These parameters are summarized and listed in Table 2 and

some interpretation is offered here. Unfortunately, estimating the diffusivity from the diffusion

controlled model forms requires knowledge of the concentration difference, i.e. the difference in the

concentration of H2SiO4
−2 ions in the bulk solution and at the interface where the reaction takes
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Table 1 Summary of various models used for cement hydration showing the mathematical form, parameters
and mechanisms represented along with a primary citation for each

Associated 
name

Equation*
Parameter

details

Parameters
 typically 
estimated

Mechanisms 
included

Citation

Jander Di Diffusion 1

Ginstling and 
Brounshtein

Di Diffusion 2

Brown k
Surface
reaction

3

Pommersheim, 
Clifton and 
Frohnsdorff

DilP, DiOP, 
Dix, kP

Diffusion 
and surface 

reaction
12

Bentz kBZ kBZ
Growth and 
space filling
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Avrami& AA, nG1/3

Nucleation, 
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space filling
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place. When using a model that includes diffusion, it is also important to know which diffusing

species is the basis. As written above the models were generalized and, thus, can be used for any

ion or water diffusion. In order to apply physical meaning to the diffusivity, one must specify which

ion is rate-controlling. It seems logical to choose H2SiO4
−2 since it is the heaviest and most likely

the slowest diffuser. In this case the stoichiometric parameter p = 1/(1-δCSH/δc), where δCSH is the

molar density of the C-S-H product. Nonetheless, we do not know what the concentration difference

is, but fortunately we can use some limiting conditions to find a range of values. Garrault and

Nonat (2001) report that the silicate ion concentration in the bulk solution is nominally 25 µ-molar

(µM), Brown (1984) similarly reports values between about 10 and 100 µM depending upon the

age of the sample. Furthermore, if we assume that the solution phase at the anhydrous core-product

interface is at equilibrium with C3S, then the concentration at that point can be no higher than about

0.2 M, using for C3S a Ksp = 0.03, see Bullard (2008). In this case, the concentration difference is

on the order of 0.0002 moles/cm3 (about 0.2 M) and, based on a best fit to either the Jander or

Table 1 Continued

Associ-
ated
name

Equation*
Parameter 

details

Parameters 
typically 
estimated

Mechanisms 
included

Citation

Knudsen kK1, kK2

Particle size 
distribution of

the form  
and

 Empirical 
reaction rate of 

the form

25

Cahn&/
Thomas

Gc, Ig Gc, Ig, AC

Nucleation, 
growth and 
space filling

21

Bishnoi-
Scrivener

kden, IG
3, 

G2, ρmin

Nucleation, 
growth, space 

filling and 
densification

35

*For simplicity and the present publication, the symbols used are not always those used in the original cita-
tions. Where parameters having same names are used, i.e. k, subscripts are added here to identify the param-
eter with a particular equation, i.e. kB for Browns kinetic parameters and kP for Pommersheim et al.’s kinetic
parameter. Note also that α is the extent of reaction of the cement unless otherwise noted as αc.

#Note that the Ginstling and Brounshtein equation is not easily solved for α in terms of t and is always shown
as t in terms of α.

&Avrami’s and Canh’s equations are shown here for nuclei of 3-D spherical symmetry.
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Ginstling and Brounshtein models, the resulting diffusivity is about 3×10−17 m2/s. This value is

between five and seven orders of magnitude lower than that suggested by Bullard who reports the

diffusivity to be 7×10−12 ≤DH2SiO4 ≤ 2.52 × 10−10 m2/s. How is this outcome to be interpreted? Diffusivities

as low as 10−17 m2/s are found for transport of large molecules through dense solids at low temperatures,

see Evans (1991) and intuitively is inconsistent with the structure of C-S-H at least as it is presently

understood - C-S-H is a nano-porous hydrate made up of discrete somewhat ordered domains with a

characteristic dimension of nominally 5 nm, see Gartner (1997). It follows then that either the concentration

of H2SiO4
−2 ions at the anhydrous core-product interface is not as high as the unconstrained

equilibrium value of 0.2 M or diffusion is not a plausible rate controlling mechanism. It is notable

also that since the diffusivity DH2SiO4 cannot be greater than that for free migration in water, thus, a

maximum value of 0.7 × 10−9 m2/s provides an upper bound, as reported by Bullard (2008). 

Nonat (2005) suggests that in fact, the observed equilibrium concentration for C3S is much lower

than that which would be predicted from free energy data. His explanation is that a hydroxylated

surface layer forms immediately upon wetting of the C3S resulting in an apparent Ksp on the order

of 10−17. Using this hypothesis instead of a Ksp of 0.03 from thermochemical calculations, it is

found that diffusivities on the order of 10−15 m2/s are extracted using the above mentioned diffusion

controlled models. Even then, these diffusivities are between three and five orders of magnitude

lower than those suggest by Bullard. It appears then that diffusion only models would predict a

diffusivity 3 × 10−17 ≤ DH2SiO4 ≤ 3 × 10−15 m2/s which are at least three orders of magnitude lower

than values being used in more recent models, thus it appears that diffusion is not an appropriate

rate controlling mechanism.

Though the Pommersheim et al. model is part of the diffusion-family of equations, it is discussed

separately for clarity. Pommersheim et al.’s model provides a remarkable fit to both the integral and

derivative heat flow curves, see Fig. 5. As a simple test of mechanistic realism, diffusion coefficients were

computed for the inner, middle and outer products. In this case, however, the absolute value of the

concentration of H2SiO4
−2 ions in the pore solution is required rather than the equilibrium value at

the anhydrous core-product interface. This makes estimation of the transport properties from

Pommersheim’s model more reliable since there are numerous citations providing what are likely

accurate values for the silicate ion concentration in pore solution, here Nonat’s value of 25 µM was

used, see Nonat (2001) and Brown et al. (1984). Fitting Pommersheim’s model to the benchmark

Fig. 4 Heat curves for the models of Jander, Ginstling and Brounshtein, and Brown compared with experimental
data for C3S hydration at a w/c = 0.4 and 20oC: (a) derivative heat curve and (b) integral heat curve
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C3S dataset produced a set of diffusivities, see Table 2. In this case it was found that DH2SiO4,x~

3.3 × 10−14, 1 × 10−10 > DH2SiO4,OP > 2 × 10−12 and DH2SiO4, IP~1 × 10−10, where the subscripts, “x” “OP” and

“IP” are for the meta-stable layer, outer product and inner product respectively. Notably, the range

of diffusivities for the inner and outer product forms is somewhat consistent with those suggested

by Bullard 7 × 10−12 ≤ DH2SiO4 ≤ 2.52 × 10−10 m2/s, while that for the meta-stable layer is about two

orders of magnitude smaller than that reported by Bullard. When applying Pomersheim’s model it is

not enough to compute the diffusivities alone, since they are dependent only on the concentration of

the diffusing species in the bulk pore solution. To check for physical consistency, it is also necessary to

Fig. 5 Heat curves for the model of Pommersheim et al. compared with experimental data for C3S hydration
at a w/c = 0.4 and 20oC, illustrating both derivative heat and integral heat curves

Table 2 Diffusivities and zero-order growth rates derived from various models using optimization

Associate model name
Diffusivity

DH2SiO4 (×10−9 m2/s)
Zero-order

growth rate k (×10−10 m/s)

Jander 0.00000003 to 0.000003* NA

Ginstling and Brounshtein 0.00000003 to 0.000003* NA

Brown NA 0.1

Pommersheim$
0.1 inner product

0.00002 to 0.002 outer product 
0.000033 meta-stable layer

0.12 to 10#

Knudsen 0.000000097† 0.15&

NA=Not Applicable.
*Diffusivities were computed assuming a range of concentrations between 2.5 and 200 µM for H2SiO4

−2, see
Bullard (in preparation).

$Diffusivities were computed assuming the pore solution has a concentration of 25 µM for H2SiO4
−2, see

Nonat (2001).
#Pommersheim assumed a 1st order reaction model.
†Knudsen’s diffusion parameter is not to be confused with a diffusivity, e.g. Knudsen’s parameter is not a
transport property, thought a parabolic-like rate law is assumed.

&Knudsen assumes an integrated form of rate law that does not produce to a zero-order differential form when
differentiated, e.g. Knudsen’s rate parameter is not a zero-order kinetic rate constant.
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compute the concentration of the H2SiO4
−2 ion at the anhydrous core-product interface. In this case

that concentration was found to be ~10−4 moles/cm3, again, in surprisingly good agreement with

expected equilibrium values for a Ksp = 0.03. So, are we to conclude that Pommersheim’s model

provided evidence for diffusion controlled reaction? Pommersheim et al.’s full model includes a

correlation for changing outer product diffusivity, as discussed in Section (2.1). In fact, while the

initial outer product diffusivity was found to be ~10−12, the diffusivity quickly falls to ~10−14 m2/s as

the extent of hydration increases from zero to about 0.40 (40%). The effect of this is illustrated on

Fig. 5 wherein the outer product diffusivity is held constant for one run, in which case while a

derivative peak is formed, the rate of reaction remains high post peak. If the actual diffusivities are as

Bullard suggests, between ~10−12 and 10−10 m2/s, then Pommersheim’s model requires physically inconsistent

transport properties to generate calorimetry curves that fit typical experimental observations. On the

other hand, this model provides qualitatively consistent results with the much more mechanistically

sound model of Bullard.

The linear reaction rate constant for the reaction between C3S and water could also be calculated

from Pommersheim et al.’s model though unfortunately again, the concentration of H2SiO4
−2 ions

must be known at the anhydrous core-product interface. Again, one might use a 10−17 ≤ Ksp ≤ 0.03

and arrive at a range of values, 1.2 × 10−11 m/s ≤ kP’ ≤ 1 × 10−9 m/s. Since Pommersheim et al. assumed a

first-order reaction, the parameter kP’ is not actually a zero-order reaction rate constant, but rather is

a zero-order equivalent rate constant defined by kP’ = kPCi
o/δC3S, where kP is Pommersheim et al.’s

first-order rate constant,  is the concentration of H2SiO4
−2 ions at the anhydrous core-product

interface and δC3S is the molar density of C3S as defined above. Comparing to more recent values

from Bishnoi and Scrivener (2009a), it was found that Pommersheim et al.’s rate constant kP’

estimated in this way brackets Bishnoi’s value of 3 × 10−10 m/s.

In the final analysis, while Pommersheim et al.’s model provides a remarkable fit, the transport

and reaction scaling necessary to achieve a good match with experimental data appears to be

inconsistent in an absolute sense with the best estimates we presently have for the solubility product

ratio for C3S and transport properties for C-S-H.

Brown’s model provides an estimate of the linear, zero-order growth rate. Surprisingly, an order of

magnitude estimate of the linear growth rate produces a value of 0.1×10−10 m/s, a number in

reasonable agreement with values reported by Bishnoi and Scrivener (2009a) which are on the order

of 1 × 10−10 m/s, likely suggesting some relationship at least for very early age hydration, which is

consistent with Brown’s original hypothesis. The lower values suggested by Brown’s model are

likely due to the fact that Bishnoi and Scrivener assume that at early ages, the bulk density of C-S-

H is nominally 10% that of the ultimate density, thereby explaining the one order of magnitude

difference.

Unlike most simple diffusion-reaction models, nucleation-based equations tend to have the characteristics

of both the integral and derivative heat curves, see Figs. 6(a) and 6(b). Nonetheless, these models

still have limitations. As explained in detail by Thomas (2007), Avrami’s model makes the

unphysical assumption that nuclei are randomly formed everywhere throughout the pore space,

rather like a homogeneous process, whereas in reality, they form only on cement particle surfaces.

Thus, Avrami’s model is mechanistically inappropriate and, hence, parameters derived from such are

without physical interpretation, despite the quality of fit. The inference made by Thomas that

Cahn’s model should improve the fit is recognized. Unfortunately, to fit experimental hydration

curves, Thomas was forced to introduce a scaling parameter “A” as discussed earlier. Such must

also be used, by the way, to force Avrami’s equation to fit hydration curves as well. Thomas (2007)

C
i

o
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originally suggested that only a fraction of the C3S hydration is governed by a boundary nucleation

and growth process and thus there is a limited reaction volume indicated by the magnitude of “A”.

However, in a more recent paper, Thomas (2009), he proposes an alternative explanation, consistent

with Bishnoi’s suggestion that a value of “A” less than unity indicates a bulk density for initial C-S-

H growth that is lower than that of the fully densified product, a hypothesis that is supported by

some microstructural evidence.

In general, nucleation-based models produce an induction-like period that is controlled by a nucleation

rate parameter. Furthermore, their integral curves have an inflection, causing a peak in their respective

derivatives, thus, nicely modeling the onset of the deceleration period. Such models capture this

feature of cement hydration without the introduction of transport (diffusion) effects and suggest that

the early deceleration period is not controlled by diffusion. This inflection and deceleration is the result of

interfering growth fronts and reduction in the volume available to accommodate growth. As

mentioned above, however, the initial volume available must be fictitiously reduced using some

form of scaling parameter, for both the Avrami and Cahn models, a condition that is yet debatable

from an experimental point of view. 

Bentz took a somewhat different approach by scaling the rate of reaction to be directly proportional to

the amount of pore space available. This produces a result that has the correct characteristic for

integral curves but does not produce derivative curves that are physical, see Fig. 7. For the

benchmark C3S hydration data used here, Bentz’s model closely tracks the integral curve for some

time, then deviates at later ages. The Bentz model also had to be time corrected as were the Jander,

Fig. 6 Heat curves for the models of Avrami, Cahn and Bishnoi and Scrivener compared with experimental
data for C3S hydration at a w/c = 0.4 and 20oC: (a) derivative heat curve and (b) integral heat curve

Table 3 Recently reported diffusivities and reaction rates

Associated citation name
Diffusivity DH2SiO4

(×10−9 m2/s)
Zero-order growth rate

k (×10−10 m/s)

Bullard

0.007CSH(I)
0.525 CSH(II)

0.007 meta-stable CSH
0.7 H

NA

Bishnoi and Scrivener NA ~3

NA=Not Applicable.
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Ginstling and Brounshtein, and Brown models. Since the basis of the model is neither diffusion, nor

kinetic control, the rate constant has a somewhat different interpretation and unit basis. Since each

of the individual porosity terms in Bentz’s equation are dimensionless, it follows then that the rate

constant has units of s−1 (inverse time). Therefore, the kinetic basis for Bentz’s model is volumetric

rather than surface, that is, if the rate constant is multiplied by density, the units mass/volume-time

are obtained rather than mass/area-time. Thus, Bentz’s kinetic parameter cannot be directly compared to

those produced by any of the diffusion, or surface kinetic controlled models or models that included

linear growth rates such as those of Avrami or Cahn. Nonetheless, for the benchmark dataset used

here, Bentz’s rate constant turns out to be 0.25/s. Note that this value was obtained by visual

optimization of both the rate constant and the time correction so that the model would provide a

good fit to early hydration rather than a poor fit to the entire curve, e.g. the fit is not a least squares

best fit to the entire dataset.

Bishnoi and Scrivener (2009a) recognized the limitations of these approaches and questioned the

physical interpretation of concepts such as the “reaction volume”. Since µic was not readily

available to the authors, a single particle simulation based on Bishnoi’s model is illustrated here

rather than the complete simulation-environment-based computations that were used in Bishnoi’s

original paper. Rather than simulate the ensemble, a dense-walled box was used to contain the

particle, see Biernacki and Xie (2010) for details. It can be seen that Bishnoi’s model is able to

simulate the main stages of C3S hydration including the transition from the deceleration period to

slow hydration via secondary densification of C-S-H. And, while Pommersheim et al.’s model can

produce similar results, Bishnoi’s model does not depend on artificially adjusted diffusion parameters or

meta-stable layers with unknown properties. Albeit, this model does not reflect solution phase

chemistry and the potential that transport processes may actually play since they are totally

neglected in this formalism as they are in all other Avrami- and Cahn-based formalisms as well. It

should be duly noted that Bishnoi and Scrivener emphasize the importance of having a multi-

particle model with realistic size distributions and that the single particle approach here was

implemented only to illustrate the behavior of the particle model imbedded within their particle

ensemble and simulation environment.

The nucleation models presented and as developed, are too coarse-grained to incorporate the

Fig. 7 Heat curves for the model of Pommersheim et al. compared with experimental data for C3S hydration
at a w/c = 0.4 and 20oC, illustrating both derivative heat and integral heat curves
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effects of particle size distribution and the continuity equation-based models, do not include

nucleation events, hence, illustrating particle dispersion using them, as has been done in the literature by a

number of authors, Brown (1984), Pommersheim (1982), is of little benefit. Thus, only Knudsen’s

model will be considered, despite its obvious and already discussed limitations. Both Knudsen’s

linear and parabolic forms were used to fit the benchmark experimental dataset. Knudsen’s model

can provide a reasonable fit to the integral heat curve, however, must be done in parts, using the

linear model at earlier ages and the parabolic at later, see Fig. 8. Both the linear and parabolic

optimized parameters of Knudsen’s model were calculated and included in Table 2. It is notable,

however, that one should not confuse these parameters with actual diffusivities or zero order rate

constants (linear growth rates) since they are unrelated mathematically and theoretically.

At the present time, Bullard’s model has not been applied to generate hydration calorimetry

curves, though it can be. Furthermore, it is generally unavailable for public use and so was not

tested by the authors, (see Thomas et al. (in preparation)) for a review of the present state of

HydratiCA. Similarly, other complex, mutli-physical models and simulations could not easily be

compared and are beyond the scope of this review. 

4. Conclusions

This review suggests a mapping that should help future model developers understand the relationship

between existing models, see Fig. 9. While imperfect in ways, the mapping suggests two primary

modeling strategies, those derived from the equations of mass continuity and those from nucleation

theory. It is notable that most models used for cement hydration were originally crafted for other

applications, i.e. Jander’s equation was developed for solid state reactions and Avrami’s equation for

solid phase transformations. These models, to some extent, have been adapted and adopted by

simulation environment developers who have, in many cases, fused prior models together and added

others of their own making. What is clear at this point in time is that nucleation is a critical feature

that must be incorporated correctly to, at least in part, account for dormancy and the acceleratory

period. And, while there is a lack of physical microstructural evidence for the exact details

Fig. 8 Integral heat curve of Knudsen’s linear and parabolic model compared with the experimental data
(C3S with 0.4 w/c at 20oC)



The origins and evolution of cement hydration models 673

regarding the interaction between growing nuclei and volume filling, it appears that volume-filling

effects must also be incorporated. Finally, particle size distribution and likely particle morphology

(not discussed), must ultimately be included to correctly predict ensemble behavior. Moreover, one

might ask, “Are classical, continuum models useful at all for cement hydration?” The models

presented here represent a historical progression. Clearly, the historical model forms that are based

on the equations of mass continuity, i.e. Jander’s equation, are gross simplifications that offer few

insights into the actual mechanisms. This, however, is primarily because of the assumptions that

have been made and not because the theory is incapable of supporting the descriptive detail

necessary for modeling cement hydration. Thus, continuum approaches are an underutilized strategy

for modeling hydration kinetics.

While not reviewed here in detail, it appears that we now have a number of powerful simulation

platforms for incorporating models and testing various hypotheses. Unfortunately, we still lack much

of the detail needed from experiments that would better define very early age hydration mechanisms.

Finally, we have not addressed how modeling at even finer length-scales might contribute, though

there is a growing body of literature on molecular dynamic simulations that are beginning to

contribute to our understanding of how cement hydrates, see Thomas et al. (2010).
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