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Abstract. The capacity design rule for beam-column joints, as adopted by the EC8, forces the formation of
the plastic hinges to be developed in beams rather than in columns. This is achieved by deriving the
design moments of the columns of a joint from equilibrium conditions, assuming that plastic hinges with
their possible overstrengths have been developed in the adjacent beams of the joint. In this equilibrium
the parameters (dimensions, material properties, axial forces etc) are, in general, random variables. Hence,
the capacity design is associated with a probability of non-compliance (probability of failure). In the
present study the probability of non-compliance of the capacity design rule of joints is being calculated by
assuming the basic variables as random variables. Parameters affecting this probability are examined and a
modification of the capacity design rule for beam-column joints is proposed, in order to achieve
uniformity of the safety level.

Keywords: reliability; capacity design; partial safety factors; concrete structures.

1. Introduction

EC8 2004, as most of the modern seismic codes for the design of earthquake resistant structures,

focuses on the ability of structures to dissipate energy through large inelastic cyclic deformation

without substantial reduction of their resistance. In order for this to be achieved the whole structure

needs to exhibit a ductile behavior. Brittle failures must be avoided while the structure must

maintain its ability to transfer the vertical loads to the ground. These two demands are satisfied with

the shear capacity design rules and the beam-column joints capacity design rules, respectively. The

shear capacity design rules intend to prevent the brittle shear failure of the building elements

(beams, columns and walls) and the beam-column joints capacity design rule intends to prevent the

formation of storey mechanism (beam failure before column failure). 

Results for the efficiency of the beam-column joints capacity design rule derive from various

experimental investigations (e.g. Chalioris et al. 2008, Benavent 2005, Calvi et al. 2002). In the

present study the beam-column joints capacity design rule is examined from a probabilistic point of

view. For the beam-column joints of structures, the formation of the plastic hinges is forced to

develop in beams rather than in columns. This is achieved by designing the columns in bending by

using the resisting moments of the beams framing to the joint. For the satisfaction of this criterion,

partial safety factors are used which give the desired overstrength to columns. The parameters in the
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above calculations (dimensions, material properties, axial forces etc) are, in general, random variables. In

that sense, the capacity design is associated with a probability of non-compliance (probability of

failure). Failure of the capacity design rule for beam-column joints is considered as the event in

which “the sum of beam resisting moments is greater than the sum of column resisting moments in

the joint under consideration”. 

The aim of this study is to investigate the safety level of the capacity design rule for beam-

column joints. The safety level is quantified with the probability of non-compliance (probability of

failure). Parameters affecting this probability are determined and a modification of the partial safety

factor of the capacity design is proposed, in order to achieve uniformity of the safety level.

2. Methodology

2.1 Capacity design of the beam-column joints

According to EC8, the following condition should be satisfied at all joints of primary or

secondary seismic beams with primary seismic columns (Relation (4.29), EC8 2004)

 (1)

where,  is the sum of the design values of the resisting moments of the columns framing to

the joint,  is the sum of the design values of the resisting moments of the beams framing the

joint and γRd is the partial safety factor accounting for possible overstrength of the resisting

moments of the beams. In EC8 2004 the γRd value is taken equal to 1.3.

The resisting moments of the relationship (1) are affected from parameters such as concrete

strength, steel strength, dimensions etc. which are random variables. There is, therefore, a probability for

the sum of the beam resisting moments to be greater than the sum of the column resisting moments

although relationship (1) has been used for designing the members of the joint. This probability can

be expressed as

 (2)

where, Mrc,1, Mrc,2 are random variables that represent the resisting moments of the columns of the

joint and Mrb,1, Mrb,2 are random variables that represent the resisting moments of the beams of the

joint. Relationship 2 can be used for calculating the probability of failure of a joint the columns of

which have been designed according to the capacity design. In this case the resultant probability is

the probability of failure of the capacity design. 

For calculating the probability of failure from the relationship (2), the Monte Carlo simulation can

be used. Assuming that the probability distribution of the resisting moments may be approximated

by the normal distribution (Trezos 1998), the probability of failure can be directly related to the

safety index β

 (3)

Where, PHI( ) is the cumulative distribution function of the standard normal distribution. 

In the following, the safety index β is used instead of the probability of failure pf, for presentation

purposes. 

In order to examine the influence of basic variables to the probability of failure of beam-column

MRc∑ γRd≥ MRb∑⋅

MRc∑
MRb∑

pf P Mrc 1, Mrc 2, Mrb 1, Mrb 2,+<+( )=

pf P Mrc 1,
Mrc 2,

+ Mrb 1,
Mrb 2,

+<( ) PHI β–( )= =



Reliability based calibration of the capacity design rule of reinforced concrete beam-column joints 633

joints criterion, a set of fictitious individual joints was examined covering a large range of the basic

variable potentially affecting the safety. More precisely the parameters used were:
● column dimensions 0.30 m×0.30 m, 0.40 m×0.40 m and 0.50 m×0.50 m
● geometric ratio of total reinforcement of the columns (ρc,tot  = As,tot/Ac) varied from 0.01 to 0.04
● geometric ratio of tensile reinforcement of beams (ρb,tens = As,t/Abeam) varied from 0.004 to 0.015
● beam dimensions 0.25 m×0.40 m, 0.30 m×0.45 m, 0.25 m×0.50 m, 0.25 m×0.55 m, 0.20 m×0.60 m,

0.30 m×0.60 m, 0.30 m×0.65 m and 0.35 m×0.65 m

● reduced axial force  from 0.00 to 0.40 (positive for compression) for the upperν
N

bcol hcol fcd⋅ ⋅
---------------------------=

Table 1 Probabilistic models of the random variables

Variable Distribution
Mean
value

Coefficient of
variation

Unconfined Concrete:
Compressive strength: fc = fco ⋅Y1

fco: normal 1.33fco,k 0.15

Y1: lognormal 1 0.06

Modulus of elasticity: Ec = 10.5· fc
1/3·Y2 Y2: lognormal 1 0.15

Ultimate strain: εcu = 6·10−3· fc
−1/6·Y3 Y3: lognormal 1 0.15

Confined Concrete:
Compressive strength:

Yconf,2: lognormal 1 0.15

Strain at strength: εco
*= Yconf,2⋅0.002⋅(fc

*/fc)
2 Yconf,2: lognormal 1 0.10

Ultimate strain: εcu
* = Yconf,3⋅(εcu+0.1⋅α⋅ωw) Yconf,3: lognormal 1 0.50

Steel properties: 
Yield stress: fsy Normal 1.09fsy,k 0.05

Ultimate strain: εsu Normal 0.05 0.10

Dimensions:
Cross-sectional dimensions: X Normal Nominal (4 mm+6‰

X,nom)/X,nom

Area of re-bars: As Normal Nominal 0.02

f c
*

Yconf 1, fc
1 2.5 α ωw  for…ωw 0.1 α⁄≤,⋅ ⋅+

1.125 1.25 α ωw  for…ωw 0.1 α⁄>,⋅ ⋅+⎩
⎨
⎧

⋅ ⋅=

Fig. 1 Interior joint. Moments under seismic action
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columns of the joints and from 0.00 to 0.60 for the lower columns of the joints.

● confinement ratio αωw varied from 0.0 to 0.3
● flange width of T-beams beff 2.00 m and flange thickness hf 0.15 m (for the beams subjected to

positive moment: flange in compression)
● Concrete with 5% characteristic value of the compressive strength fck = 20 MPa and fck = 30

MPa. Steel grade S500

The joint configurations under consideration are summarized in Table 2. 

γRd factor is calculated directly from the data of Table 2, using the design values of the resisting

moments of the columns and the beams of each joint

 (4)

When relation (4) is applied to the joints of Table 2, γRd factor gets values between 0.3 and 4,0.

Fig. 2 shows the calculation steps for calculating the index β for the examined joints. The

resisting moments are calculated according to EC2 using the material properties shown in Fig. 3.

For normal design, EC2 permits the assumption, for the reinforcing steel, of a horizontal top branch

without the need to check the limit strain. In the present study the limit strain was limited to 20‰

as it was a current European practice. Nevertheless the resisting moment is not affected by this stain

γrd MRc MRb∑⁄∑=

Table 2 Examined joint configurations

Columns Beams Materials

Number 
of jointsDimensions

(m)

Axial force 
(ν) Confinement

αωw

Total reinf. 
ρc,tot (%)

Dimensions
(m)

Tensile 
reinf. ρb,tens 

(%)

beff 

(m)
Steel Concrete

Up Down

0.30/0.30

0.00 
0.14 
0.28 
0.40

0.00
0.28
0.56
0.60

0.0 
0.1
0.2 
0.3 

(four 
values)

 1.0… 4.0

0.25/0.40
0.8
1.4

2.00 S500
fck=20MPa
fck=30MPa

7680.25/0.50
0.6
1.2

0.25/0.55
0.4
0.7

0.40/0.40

0.00
0.08 
0.16 
0.23 

0.00
0.16
0.31
0.34

0.0 
0.1
0.2 
0.3

(four 
values)

 1.0… 4.0

0.20/0.60
0.9
1.3

2.00 S500
fck=20 MPa
fck=30 MPa

7680.30/0.60
0.4
0.7

0.30/0.45 
0.8
1.5

0.50/0.50

0.00 
0.05 
0.10 
0.15 

0.00
0.10
0.20
0.22

0.0
0.1
0.2 
0.3

(four
values)

 1.0… 4.0

0.30/0.45
0.8
1.5

2.00 S500
fck=20 MPa
fck=30 MPa

7680.30/0.65 
0.4
0.6

0.35/0.65
0.3
0.5

2304
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limitation, and thus the results would be the same.

The random variable simulation is implemented using the Latin Hypercube Sampling technique (LHS)

(Ayyub and Lai 1989, Iman and Conover 1980, McKay et al. 1979, Nowak and Collins 2000). The

LHS is a selective sample technique by which, for a desirable accuracy level, the sample size is

significantly smaller than that of the direct Monte Carlo simulation. LHS provides a constrained

sampling scheme instead of random sampling. In LHS, the region between 0 and 1 (which is used

for generating random numbers and then used for generating random variables according to the

prescribed distribution function) is uniformly divided into non-overlapping intervals.

The random numbers used for generating After testing the simulation with various sampling sizes,

it was found that a sample size of 500 analyses offers an adequate accuracy level, as the results for

the index β did not change from simulation to simulation.

3. Random variables

Many probabilistic models for the random variables are given in the international literature

(Ditlevsen and Madsen 1996, Melcher 1999, Joint Committee on Structural Safety 2001, Gardoni et

al. 2002, Epaarachchi and Stewart 2004, Lu et al. 2005). In the present study the considerations of

random variables are based on probabilistic models that have been thoroughly investigated at

Thomos and Trezos (2006). In the following, details of the assumed distributions are presented. The

distributions are presented synoptically in Table 1.

3.1 Materials

The stress-strain diagrams of the materials are shown in Fig. 3. For the conventional design, the left

column σ-ε diagrams of Fig. 3 were used, while, as for the simulation the right column diagrams of Fig. 3.

3.1.1 Unconfined concrete

The models of concrete properties for a particular element are (see Fig. 3)

Compressive strength: fc = fco·Y1  (5)

Modulus of elasticity: Ec = 10.5·fc
1/3·Y2 (6)

Ultimate strain: εcu = 6·10−3·fc
−1/6·Y3 (7)

Where, fco a normal random variable with mean value related to the 5% characteristic value of the

compressive strength fco,k: E[fco] = fco,k/(1 − 1.64·Cov[fco]) and coefficient of variation: Cov[fco] = 0.15 

Y1: log-normal variables reflecting floor to floor variation of casting conditions with mean value 1

Fig. 2 Methodology for calculating the capacity design probability of failure of beam-column joints
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and coefficient of variation 0.06.

Y2, Y3: lognormal variables reflecting factors not well accounted for by concrete compressive

strength (e.g. gravel type and size, chemical composition of cement and other ingredients, climatic

conditions) with mean value 1 and coefficient of variation 0.15.

3.1.2 Confined concrete

The deterministic model for the confinement, proposed by Tassios and Lefas (1986) adopted in

CEB-FIP Model Code 1990 (1993), has been used for simulating the confined concrete. This model

has been converted to a probabilistic model by introducing random variables Yconf,1, Yconf,2, Yconf,3,

taking into account the uncertainties of the model (Eqs. (8)-(10)).

 (8)

 (9)

 (10)

Where:

εco : 0.002, deterministic value corresponding to the maximum stress (strength) of the unconfined concrete

α : confinement effectiveness factor (Tassios and Lefas 1986)

ωw : mechanical volumetric ratio of the transverse reinforcement

Yconf,1, Yconf,2, Yconf,3: lognormal random variables representing model uncertainties with a mean

value of 1 and coefficients of variation 0.15, 0.10 and 0.50 respectively.

f c
*

Yconf 1, fc
1 2.5 α ωw  for…ωw 0.1 α⁄≤,⋅ ⋅+

1.125 1.25 α ωw   for…ωw 0.1 α⁄>,⋅ ⋅+⎩
⎨
⎧

⋅ ⋅=

εco

*
Yconf 2, 0.002 f c

*
fc⁄( )

2

⋅ ⋅=

ε co

*
Yconf 3, εcu 0.1 α ωw⋅ ⋅+( )⋅=

Fig. 3 Stress-strain diagrams of concrete and steel
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3.1.3 Steel properties 

Yield stress fsy (see Fig. 3) : normal variable with mean value related to the 5% characteristic

value of the yield stress: E[fsy] = fsy,k/(1 − 1.64 · Cov[fsy]) and Cov[fsy] = 0.05

Ultimate stress fsu : perfectly correlated to the yield stress, fsu = 1.15·fsy,i

Ultimate strain: normal variable with mean value E[εsu] = 0.05 and a coefficient of variation of

Cov[εsu] = 0.1

3.2 Dimensions

The cross-sectional dimensions are modeled as random variables that follow a normal distribution

with mean values equal to the nominal values E[X] = Xnom and standard deviations σX = 4 mm +

0.006·Xnom. 

Areas of re-bars are assumed to be independent normal random variables with mean values equal

to the nominal values E[As] = As,nom and coefficient of variation Cov[As] = 0.02. 

For an interior joint with four framing elements, the four resting moments are not independent

random variables, since they have some variables in common. Thus, assuming the two beams and

the lower column are cast simultaneously, the concrete strengths of these elements are correlated:

variables Y1, Y2, Y3, have the same value for calculating the concrete properties of these three members. 

4. Results

In Fig. 4 the safety indices β for the 2304 joints of Table 2 are shown as a function of the partial

safety factor γRd used in the relationship (1). The results have been derived by applying the

methodology of Fig. 2 to the joints of Table 2.

For increasing values of γRd, an increasing scatter of β is observed. For the code value of γRd = 1.3

the variation of the safety index β is significant as the minimum calculated value of the safety index

β was βmin = 5 and the maximum was βmax = 9.

Fig. 4 Safety index β as a function of γRd (for the 2304 individual joints)
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In order to achieve a uniform safety level or a constant value of the safety index β, equal to a

βtarget, it is necessary to modify the partial safety factor γRd. So, a relationship that gives the safety

index β as a function of the partial safety factor γRd and the other parameters of the beam-column

joints is needed. A simplified relationship between β and γRd, considering that resisting moments

follow the normal distribution and ignoring for the moment the correlations between the four

resisting moments can be derived from Eq. (3) as follows

(11)

Where (Mrc,1)m, (Mrc,2)m, (Mrb,1)m, (Mrb,2)m are the mean values of the resisting moments of the

framing elements and σrc,1, σrc,2, σrb,1, σrb,2 are the corresponding standard deviations.

From the relationships (1) and (11) can be concluded that

 (12)

Where,

The factors a, b, c and d depend on the joint parameters (axial force, dimensions, reinforcement

ratio etc). Furthermore, the factors are also influenced by the correlations between the four elements,

which have been ignored in the equations above.

Inspired from Eq. (12), an equation that gives the expected value of the safety index β as a

function of the partial safety factor γRd and the joint parameters is proposed. Relationship (13) has

been derived by applying regression analysis to the data of Table 2 and the results of the simulations

, [R2 = 0.98, Standard error = 1.12]  (13)

with a = 26.05 − 8.87·νm
2+8.53·νm+6.08·α·ωw−0.04·ρc,tot,m/ρb,tens,m  (13.1)

where:

νm : the average axial force of the two columns of the joint [νm = 0.5(νupper+νlower)]

ρc,tot,m : the average geometric reinforcement ratio of the columns [ρc,tot,m = 0.5(ρcolumn,up,tot+ ρcolumn,lower,tot)]

ρb,tens,m : the average geometric tensile reinforcement ratio of the beams [ρb,tens,m = 0.5(ρbeam,left,t + ρ beam,right,t)]

α : confinement effectiveness factor

ωw : mechanical volumetric ratio of confining reinforcement 

From the above relations (13) and (13.1) it can be seen that β increases proportionally (through

factor “a”) to the confinement, (αωw), as it is expected since increased values of (αωw) result to

increased concrete strength and thus increased resisting moments of columns. Furthermore, the

influence of axial force, ν, is more complicated, increasing the β values for ν up to ν = 0.48, and

then decreasing. This is due to the fact that the “distance” of the mean resisting moment, MRm, from

the design moment, MRd, measured in terms of standard deviation, σR,: (MRm−MRd)/σR it is not

pf P Mrc 1, Mrc 2, Mrb 1,< Mrb 2,+ +( ) Erf β–( )  ⇒= =

β
Mrc 1,( )m Mrc 2,( )m Mrb 1,( )m– Mrb 2,( )m–+

σrc 1,

2
σrc 2,

2
σrb 1,

2
σrb 2,

2
+ + +

------------------------------------------------------------------------------------------=

β
a γRd b–⋅

c γRd
2⋅ d+

------------------------=

a
Mrc 1,( )m Mrc 2,( )m+

MRd c 1, ,
MRd c 2, ,

+
-------------------------------------------  b,

Mrb 1,( )m Mrb 2,( )m+

MRd b 1, ,
MRd b 2, ,

+
-------------------------------------------  c,

σr c 1, ,
σr c 2, ,

+( )2

2 MRd c 1, ,
MRd c 2, ,

+( )2⋅
-------------------------------------------------  d

σr b 1, ,
σr b 2, ,

+( )2

2 MRd b 1, ,
MRd b 2, ,

+( )2⋅
-------------------------------------------------≈,≈= =

R
a γRd⋅ 25.00–

γRd
2

0.96+

------------------------------=
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constant depending on the axial force, ν. 

In the diagram of Fig. 5, the values of β calculated from the simulation are compared to the

values of β derived from relationship (13). 

The results showed that concrete grade does not influence the safety index β significantly (see Fig. 6).

Therefore, concrete grade is not included in relationship 13. It was also found that the dimensions of

beams and columns have no effect on the safety index β, so they also are excluded from relationship 13. 

In the design practice, the reinforcement of the columns is usually calculated using relationship

(1) after the calculation of the beams’ reinforcement. Relationship (13) gives the safety index as a

Fig. 5 Values of β calculated from Eq. (13) and simulation

Fig. 6 Comparison of the safety index β of joints designed with concrete with fck = 20 MPa and with fck = 30.
The results refer to the joints of Table 2 that have been designed with safety factor γRd = 1.30
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function of the columns’ reinforcement. Therefore, although it provides the means for predicting the

safety level of the capacity design of joints, it is not easy to be implemented in the design practice

as it contains the reinforcement of the columns, which is usually the result of the capacity design.

To bypass this difficulty, in relationship (14) the parameter ρc,tot,m/ρb,tens,m has been neglected. This

relationship is less accurate than relationship (13), as the safety index β is actually influenced by the

reinforcement of members, but it is more useful as it does not include the reinforcement of the

members

, [R2 = 0.97, Standard error = 1.14]  (14)

with a = 25.84 − 10.51·νm
2 + 9.10·νm+6.08·α·ωw.

Using Eq. (14) is possible to calculate the required γRd for a given (desirable) safety index β. For

example, from the parameters of the joint that are shown in Table 3, the factor “a” of the Eq. (14)

is calculated

a = 25.84 − 10.51·0.152 + 9.10·0.15 + 6.08·0.10 = 27.57 and thus 

If the code value of γRd = 1.30 is used in the capacity design, then the resulting safety index is β

= 6.67. If a higher safety index value is desired (for example β = 9.78) then the required value for

the partial safety factor γRd is 1.56. The resulting difference in the column reinforcement is significant: with

γRd = 1.30 the columns must be reinforced with 12 bars of 14 mm diameter, while when γRd = 1.56 is

used the columns must be reinforced with 12 bars of 16 mm diameter (30% increase). 

Relationship (14) seems to be suitable to be used for modifying the capacity design of joints. The

modified design would lead all joints to result to a safety index β equal to the safety index of a

“standard joint”. For example the standard joint could be the case of the joint of Table 3 which

results to a safety index equal to 6.67 (when designed with γRd = 1.30).

The safety index β of the joints of Table 2 that have been designed using γRd = 1.30 is presented in

Fig. 7 related with the average axial force of the columns and the confinement factors, αωw. In the

same figure, relationship (14) is used for presenting the safety index β as a function of the average

axial force, ν, for three different values of αωw.

As shown in Fig. 7, index β is a function of the axial force and the confinement of the columns.

If the value of γRd which derives from relationship (14) with β equal to 6.67 was used, instead of

using γRd = 1.30 for each joint of the Table 2, then more uniform values of β could be achieved. In

β
a γRd 25.00–⋅

γ Rd

2
0.96+

------------------------------=

β
27.57 γRd 25.00–⋅

γ Rd

2
0.96+

-----------------------------------------=

Table 3 Example of joint-capacity design with desirable β

Given parameters of the joint

COLUMNS

Dimensions νup νdown ρc,tot,m αωw

0.30/0.30 0.1 0.2 0.021 (12Φ14) 0.10

BEAMS

Dimensions ρb,tens,m

0.25/0.45(beff = 2.00 m) 0.0041 (4Φ12)
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Fig. 8 the safety index β of the re-designed joints of Table 2 [with individual values of γRd for each

joint so as: 6.67 = (a γRd − 25.00)/(γRd
2 + 0.96)0.5] is shown. The values of β have been calculated by

using the methodology of Fig. 2. The safety index varies from 6.0 to 7.2 and a relationship between

β and νm can not be found, contrary to the results of the standard case of capacity design (see Fig.

7) where the variance of β is larger and β is correlated with the average axial force ν.

Table 4 presents an alternative use of relationship (14). It contains the values of the safety factor

γRd that should be used in any case of joint, in order for the safety level to be common. These

values of γRd have been calculated using relationship 14 and considering as “standard” case of joint,

the joint of Table 3. Any joint that is designed using the values of Table 4 for the safety factor γRd,

results to safety index β equal to the safety index β of the joint of Table 3.

The value of each region of Table 4 is the value of γRd that corresponds to the worst case of this

region. For example the value 1.27 is the value of γRd that must be used for a case of joint for

 Fig. 7 Safety index β for the joints of Table 2 with γRd = 1.30. Relationship 12 as a function of v

Fig. 8 Safety index β for the joints of Table 2 using for γRd safety factor the values derived from relationship
(12) for β = 6.67
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which the columns have an average value of aωw equal to 0.1 and ν equal to 0.2. If the value 1.27

is used for a different joint that belong σ to this region, larger values of β would result.

The resulting difference in the capacity design caused by the use of Table 4, can be shown in the

example that follows: For the joint of the Table 3, if the code value of γRd = 1.3 is used in the

capacity design, the required reinforcement ratio of columns is 0.021 (As = 18.46 cm2) for νm = 0.15

(νupper = 0.10, νlower = 0.20) and 0.020 (As = 17.68 cm2) for νm = 0.40 (νupper = 0.35, νlower = 0.45) (regardless

of the confinement parameters). If Table 4 is used for choosing the value of γRd, then with νm = 0.15

(νupper = 0.10, νlower = 0.20) and aωw = 0.10 (γRd = 1.43) the required reinforcement ratio of columns is

0.024 (As = 21.20 cm2) [14.3% increase compared to the code requirement (0.021)] while with νm =

0.40 (νupper = 0.35, νlower = 0.45) and aωw = 0.35 (γRd = 1.17) the required reinforcement ratio of

columns is 0.017 (As = 14.96 cm2) [15.0% decrease compared to the code requirement (0.020)]. 

In the above, the value β = 6.67, has been used as an example. In the case of Code Makers, the

value of β will be selected depending on general criteria (social, economic etc). A different value of

β will result in different γRd values. But, regardless the β-value that has been chosen, it can be

shown that the ratios γRd,αωw,ν /γRd, ref are almost independent on the β-value (see Table 5). γRd, ref, is

the value that corresponds to: 0.10 ≤ αωw ≤ 0.20 and 0.20 ≤ v ≤ 0.40. Even in the case where an

explicit β-value is not chosen, nevertheless more rational γRd values can be applied using Table 5 to

modify the γRd value given in the code (γRd = 1.3) taking into account the axial force, ν, and the

confinement, αωw. The modified values are given in Table 6.

Table 4 γRd values for achieving uniformity of the safety level. βtarget = 6.67

v
αωw 

v ≤ 0.20 0.20 ≤ v ≤ 0.40 0.40 ≤ v ≤ 0.65

αωw ≤ 0.10 1.43 1.33 1.32

0.10 ≤ αωw ≤ 0.20 1.36 1.27 1.26

0.20 ≤ αωw ≤ 0.30 1.32 1.24 1.23

0.30 ≤ αωw ≤ 0.40 1.28 1.21 1.17

Table 5 Ratios of γRd values γRd, αωw,ν /γRd, ref

v
αωw 

v ≤ 0.20 0.20 ≤ v ≤ 0.40 0.40 ≤ v ≤ 0.65

αωw ≤ 0.10 1.13 1.05 1.04

0.10 ≤ αωw ≤ 0.20 1.07 1.00 0.99

0.20 ≤ αωw ≤ 0.30 1.04 0.98 0.97

0.30 ≤ αωw ≤ 0.40 1.01 0.95 0.92

Table 6 Modified γRd values for achieving more uniform safety level (code value γRd = 1.3)

v
αωw 

v ≤ 0.20 0.20 ≤ v ≤ 0.40 0.40 ≤ v ≤ 0.65

αωw ≤ 0.10 1.46 1.36 1.35

0.10 ≤ αωw ≤ 0.20 1.39 1.30 1.29

0.20 ≤ αωw ≤ 0.30 1.35 1.27 1.26

0.30 ≤ αωw ≤ 0.40 1.31 1.24 1.20
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5. Conclusions

In the present study, the safety level of the capacity design of the beam-column joints has been

examined. The basic variables have been considered as random and the probability of failure has

been calculated for various combinations of basic variables. 

The safety index β of the capacity design of joints that are designed according to EC8 varies from

5 to 10. This variation mainly depends on the axial force since the axial force affects the probabilistic

characteristics of the resistant moment (see paragraph 4) and the confinement of the columns, since

the confinement is not taken into account in the design. On the other hand, the concrete grade, the

structural dimensions and the reinforcement ratio of the columns and beams do not have a

significant influence (since their role is taken into account in the design).

In order for the safety level to be uniform for all cases of joints, a modification of the partial safety factor

γRd is needed. The proposed relationships (or the proposed values of Table 4) could be used effectively for

calibrating of the capacity design of the beam - column joints. The implementation of this

“modified” capacity design needs the use of a specific value of γRd for each case of joint, instead of

the standard value of 1.3, and leads to different reinforcement requirements for columns compared

to EC8 (e.g. from +14.3% to -15% change of reinforcement for the example that presented at the

end of paragraph 4).

This modification of the capacity design of joints leads to a more uniform safety level. Nevertheless, this

uniformity may be altered in unsystematic way because of the implementation of other code demands

such as minimum reinforcement ratio, maximum rebars spacing. 
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CC

Notations

The following symbols are used in this paper:

As = random variable representing the area of re-bar

As,nom = nominal value for the area of re-bar

beff = flange width of T-beams

Ec = random variable representing the modulus of elasticity of unconfined concrete 

PHI( ) = cumulative distribution function of the standard normal distribution

fc = random variable representing the compressive strength of unconfined concrete

fc
* = random variable representing the compressive strength of confined concrete

fcd = design value of the compressive strength

fck = 5% characteristic value of the compressive strength

fco = random variable with mean value E[fco] = fco,k/(1 − 1.64⋅Cov[fco]) and coefficient of variation:

Cov[fco]=0.15

fsu = random variable representing the ultimate stress of steel

fsy = random variable representing the yield stress of steel

fsy,k = 5% characteristic value of the yield stress of steel

hf = flange thickness of beam

MEb,1, MEb,2 = moments of beams under seismic action

MEc,1, MEc,2 = moments of columns under seismic action

Mrb,1, Mrb,2 = random variables that represent the resisting moments of the beams of the joint

Mrc,1, Mrc,2 = random variables that represent the resisting moments of the columns of the joint 

v = reduced axial force

X = random variable representing the dimension of an element

X,nom = nominal value of dimension of an element

Y1 = log-normal variables with mean value 1 and coefficient of variation 0.06

Y2, Y3  = lognormal variables with mean value 1 and coefficient of variation 0.15

Yconf,1, Yconf,2, Yconf,3= lognormal random with a mean value of 1 and coefficients of variation 0.15,

0.10 and 0.50 respectively

α = confinement effectiveness factor

β = safety index

γRd = partial safety factor accounting for possible overstrength of the resisting moments of the
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beams

εco = random variable representing the strain corresponding to the maximum stress of the

unconfined concrete

εco
* = random variable representing the strain corresponding to the maximum stress (strength)

of the confined concrete

εcu = random variable representing the ultimate strain of unconfined concrete

εcu
* = random variable representing the ultimate strain of confined concrete

εsu = random variable representing the ultimate strain of steel

νm = the average axial force of the two columns of the joint

ρb,tens = geometric ratio of tensile reinforcement of beams

ρb,tens,m = the average geometric tensile reinforcement ratio of the beams

ρc,tot = geometric ratio of total reinforcement of the columns

ρc,tot,m = the average geometric reinforcement ratio of the column

= of the design values of the resisting moments of the beams framing the joint

= sum of the design values of the resisting moments of the columns framing to the joint

ωw = mechanical volumetric ratio of the transverse reinforcement

MRb∑
MRc∑




