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 Technical Note

Fiber reinforced concrete properties
 - a multiscale approach

Erez Gal* and Roman Kryvoruk

Department of Structural Engineering, Ben-Gurion University, Beer-Sheva, Israel

(Received October 6, 2009, Revised August 22, 2010, Accepted October 20, 2010)

Abstract. This paper describes the development of a fiber reinforced concrete (FRC) unit cell for analyzing
concrete structures by executing a multiscale analysis procedure using the theory of homogenization. This
was achieved through solving a periodic unit cell problem of the material in order to evaluate its
macroscopic properties. Our research describes the creation of an FRC unit cell through the use of
concrete paste generic information e.g. the percentage of aggregates, their distribution, and the percentage
of fibers in the concrete. The algorithm presented manipulates the percentage and distribution of these
aggregates along with fiber weight to create a finite element unit cell model of the FRC which can be
used in a multiscale analysis of concrete structures. 

Keywords: FRC-fibered reinforced concrete; multiscale analysis; concrete unit cell; elastic properties;
mesoscale concrete finite element model.

1. Introduction

Modeling the behavior of concrete structures is a challenging complicated task. Usually the

mechanical behavior of concrete and FRC is macroscopically modeled via plastic constitutive

relations (e.g. Drucker and Prager 1952, Riedel et al. 1999, Thomee et al. 2006). These macroscopic

models are characterized by the large number of parameters needing calibration in order to analyze

the complex behavior of the concrete at different stages of loading and at different damage modes.

Using these macroscopic models becomes even more complicated due to the fact that concrete has

no single distinctive microstructure, rather a variety of microstructures. This variety includes

examples such as: the addition of fibers composed of different materials; variations in aggregate

sizes, shapes, and types; and the water-to-cement ratio. The use of multiscale analysis evidently is

an appropriate way to model the behavior of concrete structures by coupling between the concrete

microstructures and the macroscopic properties needed to analyze concrete structure (e.g. Markovic

and Ibrahimbegovic 2004, Ibrahimbegovic and Markovic 2003, Gitman et al. 2006, 2007, 2008,

Kouznetsova et al. 2001, 2002, Feyel 2003, Gutierrez 2004, Ghosh et al. 2001, Nadeau 2003, Lee

et al. 2009, Pichler et al. 2007, Mang et al. 2003, 2009 de Borst et al. 1999, Füssl et al. 2008,

Asferg et al. 2007, Oliver 1996, Jirasek 2000, Wells and Sluys 2001, Moes and Belytschko 2002, de

Borst 2002, Meschke and Dumstorff 2007, Simone and Sluys 2004, Wriggers and Moftah 2006,

Haffner et al. 2006, Wang et al. 1999, Cusatis and Cedolin 2007, Shin et al. 2008).

The method for obtaining the macroscopic behavior of concrete based on its microstructure is
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referred to as the theory of homogenization, by which heterogeneous material is replaced by an

equivalent homogeneous continuum. The method is performed on a statistically representative

sample of material, referred to as a representative volume element or a material unit cell. Numerous

theories have been developed to predict the behavior of composite materials starting with the

various effective medium properties obtained by the models of Eshelby 1957, Hashin 1962, Mori

and Tanaka 1973, self-consistent approaches of Hill 1965, and various mathematical homogenization

methods (e.g. Christensen 1979) pioneered by Bensoussan 1978 and Sanchez-Palencia 1980.

Unfortunately, most of these analytical models can only give estimates or boundaries for the

macroscopic properties, and the simplifying assumptions used bring about the major differences in

the results obtained. Computational procedures for executing homogenization have been an active

area of research starting with the contribution by Guedes and Kikuchi 1990 for linear elasticity

problems. Over the past decade, major contributions have been made to extend the theory of

computational homogenization to non-linear regimes (e.g. Terada and Kikuchi 1995, Fish et al.

1997, Fish and Shek 1999, Fish and Yu 2001) and to improve the fidelity and computational

efficiency of numerical simulations (Terada and Kikuchi 2001, Matsui et al. 2004, Aboudi 1991,

Aboudi et al. 2003, Aboudi 2003, Smit et al. 1998, Miehe and Koch 2002, Kouznetsova et al.

2001, Feyel and Chaboche 2000, Ghosh et al. 1995, 1996, Michel et al. 1999, Geers et al. 2001,

McVeigh et al. 2006). This research has established the Finite Element Method (FEM) as one of the

most efficient numerical methods, whereby macroscopic responses can be obtained by

volumetrically averaging numerical solutions of unit cells (Zohdi and Wriggers 2001,2005).

Aggregate size distribution plays an essential role in concrete mix design and optimization. Proper

selection of aggregate size distribution affects the main properties of concrete such as workability of

the concrete mix, mechanical strength, permeability, and durability. The size distribution of

aggregate particles can be described either by means of grading curves such as the Fuller curve or

obtained from sieve analysis (e.g. Wriggers and Moftah 2006, Haffner et al. 2006, Wang et al.

1999, Cusatis and Cedolin 2007, Gal et al. 2008). 

FRC is a concrete made of cement, aggregates, and uniformly scattered fibers. Experimental

studies estimate the most efficient fiber materials are steel, glass, and organic fibers. In structural

engineering, steel fiber reinforced concrete (SFRC) is manufactured by adding steel fibers in the

mixing process. SFRC has proved its efficiency with respect to a reduction in shrinkage and

cracking, in addition to increases in strength and life cycle (see Romualdi and Batson 1963, Shah

and Rangan 1971, Johnston 1974, Swamy 1975, Ramadoss and Nagamani 2008). The analysis and

design of FRC structures requires the evaluation of the FRC material properties. Usually empirical

approaches based on experimental studies are used to evaluate these properties, whereas purely

computational methods are used on a very limited basis. Empirical formulations to evaluate the

elastic properties of concrete have been suggested by (Tan et al. 1994, Ashour et al. 2000, Ezeldin

and Balagaru 1992, Mansur et al. 1999, Ahmad and Lagoudas 1991, and Teng et al. 2004).

In this paper, we suggest a multiscale approach based on the homogenization method to evaluate

the elastic properties of FRC. The generation of the random geometrical configurations of the

aggregate particles and fibers must satisfy the basic statistical characteristics of the real material. In

addition, the spatial distribution of the aggregate particles and the fibers must be as macroscopically

homogeneous in space and as macroscopically isotropic as possible. In order to produce the

geometrical configuration which meets these requirements, the random sampling principle of Monte

Carlo’s simulation method is used. This principle is applied by taking samples of aggregate particles

and fibers from a source whose size distribution follows a certain given grading curve and placing
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the aggregate particles one by one into the unit cell in such a way that there is no overlapping with

particles or fibers already in place. The developed algorithm presented creates a FRC unit cell using

concrete paste generic information e.g. the percentage of aggregates, the aggregate distribution, and

the percentage of fibers. The algorithm manipulates the percentage of aggregates, fiber weight, and

distribution in order to create a finite element unit cell model to be used in a multiscale analysis.

Generally, this algorithm adjusts the finite element meshing with respect to the physical unit cell

size, creates virtual sieves according to adjusted probability density functions, and transforms the

aggregate volumes into a digitized discrete model of spheres. It further transforms the fiber volumes

into a digitized discrete model of cylinders, places the spheres and cylinders by using the random

sampling principle of Monte Carlo’s simulation method in a periodic manner, and creates a finite

element model of the FRC unit cell. Finally, the algorithm evaluates the FRC macroscopic material

properties using the theory of homogenization.

As this research is focused on the mesoscale of the concrete, it assumes that the cement paste is a

homogenized material, since its overreaching goal is toward scaling up to the structural level rather

than scaling down to the cement paste level. However, it is important to note that scaling down to

the cement paste scale exposes hydration processes which depend on the water-to-cement ratio

affecting the mechanical properties of the mortar as the microscopic phases are Clinker, Water,

Hydrates, and Air (e.g. see Ulm and Jennings 2008, DeJong and Ulm 2007, Ulm et al. 2010a, Ulm

et al. 2003, Sanahuja et al. 2007, Hung et al. 2008, Garboczi and Berryman 2000, 2001, Garboczi

and Bullard 2000, Bullard and Garboczi 2006, Garboczi et al. 2004, 2006, Garboczi and Day 1995,

Bentz et al. 1998, Constantinides and Ulm 2004, Haecker et al. 2005, Sun et al. 2007, Smilauer and

Bazant 2010, Smilauer and Krejci 2009, Smilauer and Bittnar 2006). 

The variation of aggregate shape will not be addressed in this paper as it has been found to have a

negligible effect as far as elastic properties are concerned (e.g. see Ulm et al. 2010a, Ulm and

Jennings 2008, He et al. 2009).

The outline of this paper is as follows: Section 2 describes the homogenization method, Section 3

the unit cell generation, Section 4 contains validation and verification of the suggested formulation,

and the final section summarizes and concludes our research.

2. Macroscopic material properties of FRC

Past research has tended to focus on the experimental performance of fiber reinforced concrete.

However, the calculation of effective elastic modulus of fiber reinforced concrete using an analytical

method and an empirical formula has rarely been investigated (Teng et al. 2004). As mentioned by

He et al. 2009, the elastic properties of concrete play a crucial role in structural design and strength

analysis. Many studies have shown that mesoscale models are suitable for studying the global

elastic properties of concrete; Young’s modulus and Poisson’s ratio are two crucial ones. Thus,

prediction of these elastic modulus has practical significance. To approach this problem, analytical

models as well as numerical ones have been developed. Spherically-shaped aggregates are normally

considered in modeling approaches because of reduced complications. It is also known that for

accurate prediction, all components of concrete should be taken into consideration, i.e. aggregate,

matrix, Interfacial Transition Zone (ITZ), and fibers. As this research deals only with the elastic

macroscopic properties of FRC, the effect of the ITZ has not been included, since its influence on

these properties is minor (see He et al. 2009). We do intend to include it in future work. 
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 In our study, macroscopic material properties of the concrete were evaluated using the theory of

homogenization. This theory couples the microscopic (unit cell) problem which describes the

microscopic material structure and the macroscopic finite element model of the structure by

transferring the macroscopic material properties obtained by the solution of the microscale problem

to the macroscopic one. In the next section of this paper, a short description of the theory of

homogenization is included. 

 

2.1 Asymptotic theory of homogenization 

The macroscopic problem was formulated using the following boundary volume problem

(1)

where x is the macro scale position vector, Ω is the macroscopic domain, and u is the macro scale

displacement;  is the average unit cell body force,  is the macroscopic effective material

properties,  on  are the essential boundary conditions,  on  are the natural boundary

conditions with normal  represents the macro scale stress components and the macro scale

strain components are

(2)

Summation convention was employed for repeated indices.

The microscopic problem with periodic boundary conditions was formulated using the following

boundary volume problem

(3)

where y = x/ζ are the micro scale position vectors as 0 < ζ <<1; χ are the micro scale influence

functions; Θ is the unit cell domain of size Y,  represents the unit cell boundaries, 

represents the unit cell vertices, and Iklmn is

(4)

where  is the Kronecker delta.

The homogenized constitutive tensor components which represent the macroscopic material

properties is given by

(5)

where  are stress influenced functions induced by applying an overall unit strain  defined as
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(6)

Solution of the unit cell problem using the finite element method was obtained by resolving the

unit cell problem to multiple RHS vectors (six in a 3-D case due to symmetry of indices mn). In the

matrix implementation,  is a 6×6 matrix where ij represents six rows and mn six columns. Each

column in  can be extracted by multiplying  with a unit overall strain, . For

implementation in a commercial package, it is convenient to select  in the form of a unit

thermal strain. However, due to the idealization of the homogenized behavior of concrete as being

statistically isotropic, (Wrigges and Moftah 2006), one loading state is sufficient for describing its

overall linear elastic behavior. Thus, the effective bulk and shear modulus are given by

(7)

where κ is the effective bulk modulus, µ is the effective shear modulus and

(8)

are the deviatory parts of σ and ε, respectively.

3. Unit cell generation

The suggested framework executing the multiscale analysis of FRC structures by incorporating an

original FRC unit cell generator into a commercial software package (e.g. ABAQUS). 

3.1 Aggregate distribution

Essential information needed for creating a FRC unit cell is the aggregate distribution. This

information is used to monitor the size and amount of the different aggregates within the concrete.

In the suggested framework, there are three different ways to supply this information: 1. the Fuller

Curve; 2. Sieve analysis; 3. direct access. The following section describes the developed algorithm

which manipulates the generic given information in order to create a finite element model of the

concrete unit cell. 

3.1.1 Fuller curve 

In this study, the Fuller curve was used to provide the aggregate distribution such that the

distribution was optimal in terms of concrete strength. The curve provided an aggregate distribution

function which corresponded to the German standard between the curves A32 to B32 as shown in

Fig. 1. This curve enabled the performance of virtual sieve analysis using the following eq.

(9)

Where d is the virtual sieve diameter, Dmax is the maximum aggregate size, P(d) is the percentage of

aggregates which passed through the virtual sieve d, and n is a constant (0.5 in our case). Using this

method, we calculated the percentage of aggregates which passed through the virtual sieve of diameter d. 

σij
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3.1.2 Sieve analysis 

The aggregate distribution analysis was performed in the laboratory using sieves of different

diameters. The bunch of aggregates was passed through a set of sieves which filtered them

according to the size of the holes in the sieve. By the end of the process, the aggregates that

remained on each sieve were larger or equal in diameter to the size of the holes in that sieve. From

the amount of aggregates measured on each sieve, it was possible to evaluate the percentage of

aggregates which passed through the sieve of diameter d. 

Usually the information resulting from this process is not detailed enough to create a well defined

unit cell due to the need to transfer these volumes into a set of spheres. Therefore, the differences

between the sieves have to be small enough to obtain the required detailed information. For that

purpose, we added virtual sieves in order to get the appropriate refinement. The aggregates that

remained on sieve n had varieties of diameters between n to n+1. The higher the refinement

achieved, the higher the packing factor we obtained. The starting point was the creation of a

volumetric density function describing the percentage of aggregates remaining on the virtual sieve

within a specific range. The lower limit of the range (of aggregate diameter) was the size of the

sieve while the upper limit was the size of the next sieve. Each range had its own distribution

function. The assumption was that the distribution function, with the symbolic Ps, is a linear

function. Therefore, a probability function was constructed by dividing this function by its integral

over the whole range [DA÷DB] as follows

(10)

The next step was the conversion of the computed volumes into discrete spheres. For that purpose

the number of spheres for a certain diameter Ns was computed as follows

(11)

Ns represents the number of spheres on the specific sieve, Vs the volume of the aggregates on that

P̂s d( )
Ps d( )

Psdd
DA

DB

∫

-----------------=

Ns

Vs Vr+

VB

---------------=

Fig. 1 The fuller curve
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sieve, VB the volume of a single aggregate, and Vr is the volume of aggregates left out in the

previous sieve (which was insufficient to create a single sphere in the upper level). The volume Vs

was calculated as: , where Ps is the percentage of aggregates left on the sieve, P is

the percentage of aggregate in the concrete, and V is the actual volume of the unit cell.

 as R is the radius of the aggregate.

After obtaining the detailed information on the number of spheres for each diameter, it was

necessary to place them in the unit cell. This step involved the creation of a three-dimensional

image of digitized spheres representing the actual aggregate distribution. For this study, a

computational volume of 100×100×100, 70×70×70 or 50×50×50 pixels was typically employed.

The spherical aggregates obtained from the measured aggregate distribution were placed into the

computational volume from largest to smallest in diameter, so that none of the aggregate spheres

overlapped. Periodic boundaries were used to eliminate edge effects. If a portion of a particle

extended beyond one or more faces of the 3-D box, the remainder of its volume protruded into

the opposite face. 

3.2 Fiber distribution

The fiber distribution was performed using cylinders of different diameters and lengths. Each

cylinder was located according to the following algorithm. First, the cylinder axis was represented

as shown in Fig. 2 (Line AB) where its direction was derived arbitrarily using random point B (i.e.

point A defined the location of the cylinder while point B defined its orientation). The length, L, and

diameter, 2R, of each cylinder was given as an input where point A was located (as shown in Fig.

2) at the left hand side of the cylinder. We could check whether each cell within the unit cell was

located in the cylinder volume by plotting the cylinder's axis direction, length, and diameter. Our

distribution algorithm randomly picked up point C and checked if it belonged to this cylinder. For

that purpose, we executed the following algorithm:

1. Compute the length of line AB:

Vs Ps P V××=

VB

4π R
3×

3
----------------=

Fig. 2 The fiber orientation
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2. Compute the projection of line AC on line AB using the following scalar product

3. If 

and 

then the checked point C is placed within the cylinder representing fiber domain where R and L are

the radius and the length of the cylinder.

4. Verification and validation

The FRC-developed macroscopic properties were determined for the unit cells generated according to

the presented algorithm. Two types of FRC formulation were tested: in the first the aggregate

distribution was obtained using sieve analysis, while in the second one the concrete was formulated

as homogenized material. The following uniform strains 

were applied to all the unit cell elements together with periodic boundary conditions and according

to the theory of homogenization presented in Section 2, the macroscopic properties were calculated.

The results obtained from the presented finite element model were compared with experimental

results found in the literature. A comparison with experimental studies for the case of plain concrete

can be found in (Gal et al. 2008).

In the next section, we compare the results obtained by the developed algorithm to the

experimental results by (Williamson 1974) and the empirical results by (Teng et al. 2004) which

correspond well with the same experimental results. 

For the first case, we used the material properties given by (Williamson 1974) as presented in

Table 1.

Table 2 clearly shows that the proposed numerical simulation is in excellent agreement with the

experimental results obtained by (Williamson 1974) for elastic properties of FRC.

For the second case, we used the material properties and experimental data given by (Stock et

al. 1979) for plain concrete, as presented in Table 3, and added different percentages of steel

fibers.

As shown in (Gal et al. 2008), the finite element analyses of unit cells based on the Fuller

Curve generally give good results in comparison with experimental ones in the case of plain

AB x1 x0–( )2 y1 y0–( )2 z1 z0–( )2+ +=

AC′ x2 x0–( )
x1 x0–

AB
-------------⋅ y2 y0–( )

y1 y0–

AB
-------------⋅ z2 z0–( )

z1 z0–

AB
-------------⋅+ +=

0 AC′ L≤<

x2 AC′
x1 x0–

AB
------------- x0–⋅–⎝ ⎠

⎛ ⎞
2

y2 AC′
y1 y0–

AB
------------- y0–⋅–⎝ ⎠

⎛ ⎞
2

z2 AC′
z1 z0–

AB
------------- z0–⋅–⎝ ⎠

⎛ ⎞
2

R
2≤+ +

ε0 1 0 0 0 0 0{ }T
=

Table 1 Material properties (Williamson) 

Material property Concrete Steel fibers

E (GPa) 20.802 200

ν 0.2801 0.30
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concrete.

Added were different volumes of steel fibers having the material properties given in Table 3. The

finite element generated using the presented algorithm for the case of 20% aggregate volume is

Table 2 Elastic modulus of FRC

Volume fraction
of steel fibers (%)

Current research,
E (GPa)

Experimental results
E (GPa)

% Discrepancy

1 21.22355 21.5 1.2

1.5 21.47353 21.75 1.27

2.5 22.15326 22.5 1.54

Table 3 Material data of constituents–Fuller Curve

Material property Mortar material Aggregate material fiber material

E (GPa) 11.6 74.5 200

ν 0.20 0.20 0.30

Fig. 3 The unit cell finite element model and the aggregate and fiber distribution

Fig. 4 The stress influence function
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shown in Fig. 3, while the von-Misses stress influence function used to obtain the macroscopic properties

is given in Fig. 4. In Fig. 4, the red color represents high values of stress which developed in the fibers,

the blue color represents low values of stress which developed in the mortar, while the green color

represents moderate stress values which developed in the aggregates. 

We performed another set of analyses by presenting the FRC using two phases only: plain

concrete and fibers. This was done for the plain concrete having a modulus of elasticity of 25, 30,

and 35 MPa as shown in Fig. 5 for the case of 2% volume of fibers.

Table 4 clearly shows that the numerical simulation is in excellent agreement with the results

obtained by (Teng et al. 2004). In addition, the finite element analysis results compare well with the

classical boundaries of (Reuss 1929) and (Voigt 1889) which give theoretical ranges for the

effective elastic modulus with respect to a certain volume fraction of the constituents.

Fig. 5 The unit cell finite element model and the fiber distribution 

Table 4 Elastic modulus of FRC

Plain concrete 
elastic modulus

Fiber volume 
fraction (%)

Current research 
Efc (GPa) 

Tang et al. 
Efc (GPa)

25

2 26.161729 26.18243

1.824 26.043681 26.0771

1 25.578454 25.58725

0.8912 25.350193 25.52297

0.3752 25.245406 25.21942

30

2 31.252063 31.31443

1.824 31.126376 31.19744

1 30.619859 30.65313

0.8912 30.3957 30.58167

0.3752 30.262196 30.24411

35

2 36.32671 36.42241

1.824 36.19499 36.29592

0.956 35.853306 35.67582

0.8912 35.435532 35.62977

0.3752 35.275739 35.26435
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5. Conclusions

This paper has outlined the development of a FRC unit cell used in the multiscale analysis of

FRC structures based on the theory of homogenization. 

The main advantages of the suggested finite element unit cell with comparison to other

homogenization methods are: 1. it is adaptable to all types of microscopic gradient; 2. it is not

mandatory to assume that concrete is statistically isotropic in the presented methodology; 3. its

extension to more geometrical shape inclusions is straightforward; and 4. its extension to

macroscopic anisotropic damage analysis is also straightforward. 

The creation of the FRC unit cell finite element model needs only the following input data of the

concrete paste: the percentage of aggregates in the concrete, the aggregate distribution, and the

percentage of fibers. The suggested algorithm adjusts the finite element meshing with respect to the

physical unit cell size, creates virtual sieves according to adjusted probability density functions, and

transforms the aggregate and fiber volumes into a digitized discrete model of spheres and cylinders.

It then places the spheres and the cylinders using the random sampling principle of Monte Carlo’s

simulation method in a periodic manner, and evaluates the macroscopic material properties using the

theory of homogenization.

The results, obtained using the presented algorithm, are in very good agreement with experimental

results. This outcome leads to the conclusion that fully elastic unit cell analysis is appropriate to

evaluate the elastic properties of FRC. 

It is important to note that scaling down to the cement paste scale explored the hydration

processes which affect the mechanical properties of the mortar. The presented research focused just

on the mesoscale of the concrete (i.e. aggregates, fibers, and mortar) since its overreaching goal was

toward scaling up to the structural level rather than scaling down to the cement paste level, and

therefore, it assumes here that the cement paste is a homogenized material.

In future works, a non-linear reduced order multiscale analysis will be developed based on the

generated unit cell to enable damage analysis of concrete and FRC structures and through

microscopy, to explore the post-peak behavior of concrete and FRC. 
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