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Abstract. This paper presents the physical formulation of a 1D material model suitable for seismic
applications. It is written within the framework of thermodynamics with internal variables that is,
especially, very efficient for the phenomenological representation of material behaviors at macroscale:
those of the representative elementary volume. The model can reproduce the main characteristics observed
for concrete, that is nonsymetric loading rate-dependent (viscoelasticity) behavior with appearance of
permanent deformations and local hysteresis (continuum plasticity), stiffness degradation (continuum
damage), cracking due to displacement localization (discrete plasticity or damage). The parameters have a
clear physical meaning and can thus be easily identified. Although this point is not detailed in the paper,
this material model is developed to be implemented in a finite element computer program. Therefore, for
the benefit of the robustness of the numerical implementation, (i) linear state equations (no local iteration
required) are defined whenever possible and (ii) the conditions in which the presented model can enter the
generalized standard materials class − whose elements benefit from good global and local stability
properties − are clearly established. To illustrate the capabilities of this model − among them for
Earthquake Engineering applications − results of some numerical applications are presented.

Keywords: thermodynamics with internal variables; phenomenological approach; continuum-discrete
plasticity and damage models; generalized standard material; earthquake engineering.

1. Introduction

The development of numerical computing facilities within the last decades has made it possible to

carry out numerical large scale dynamic nonlinear analyses that take into account the nonlinear behavior

of the materials, such as steel and concrete in reinforced concrete structures (Bhattacharjee,  and Léger

1993, Davenne et al. 2003, Martinelli and Filippou 2009, Mousseau et al. 2008). Multi-scale-like

stategies for defining frame section behavior laws from information collected at the material level also

emerged e.g. for static ultimate load design (Pham et al. 2010). The implementation of robust refined

material models in computer programs has thus become a key issue in structural engineering. Indeed,
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the prediction of the time-history of some material properties provides useful information to predict the

global structural seismic response: strength and stiffness degradations as well as residual deformation in

the materials help for drawing conclusions about the residual capacity of the structure in post-earthquake

conditions. In Earthquake Engineering, the physical modeling of damping is not an easy task because

many dissipative phenomena occur at several levels. Refined material models are required for a reliable

computation of the amount of material energy dissiped in seismic loading. Other dissipation sources at

the level of the bounding between steel and concrete in RC structural elements have already been

introduced in numerical static analyses (Domínguez and Fernández 2010, Ibrahimbegovic et al. 2010)

and one can hope that they will be adapted to seismic analyses within the next few years. Since many

computations are required for complete seismic analyses (need to consider several input motions) or in

automatic parameters identification procedures (Kucerova et al. 2009), the robustness of the material

models should be considered with care.

This paper deals with modeling the behavior of concrete until collapse in dynamic loading applications

so that it is robust once implemented in a computer program. The authors already presented a robust

elasto-plastic-damage model and its implementation in finite element procedures (Ibrahimbegovic et al.

2008). In addition here, in the physical formulation: (i) viscosity is added by appealing to the so-called

Kelvin-Voigt viscoelastic model; (ii) the modeling of the softening part, which is introduced in the

formulation by a discrete plastic or damage model that requires the definition of an enhanced strain field, is

presented in detail and (iii) a clear distinction between tensile and compressive constitutive models is

made. On the numerical side, the conditions under which the model can enter the generalized standard

materials class (Halphen and Nguyen 1975), whose elements benefit from good robustness properties, are

identified. This latter point, along with the model formulation that allows solving the local problem (the

integration point level) without any iteration, except in tension, in a numerical nonlinear structural analysis

(Ibrahimbegovic et al. 2008) justifies the use of the words “towards robust” in this paper title.

This material model is formulated in the framework provided by thermodynamics with internal

variables (TIV), which is very suitable for developing phenomenological material constitutive

models with good numerical properties (Maugin 1999). A set of internal variables is chosen to

describe nonlinear phenomena that occur in the material. Our approach is phenomenological because the

nonlinear phenomena we aim at modeling for concrete are those observed on the strain-stress experimental

macroscopic response of a concrete representative elementary volume (REV). However, internal variables

often are connected to microscopic phenomena that have macroscopic effects such as in steel

materials where microscopic dislocations motion lead to a macroscopic strain hardening behavior.

More accurate representations of concrete could be provided for numerical simulations by, for instance,

taking into account the heterogeneous nature of concrete (Hautefeuille et al. 2009). The macroscopic

phenomenological approach is however an efficient way to carry out large-scale structural numerical

simulations with a rather refined material description.

The introduction of viscosity in a material model can be motivated by several purposes. (i)

Viscosity in concrete can be associated to its loading rate-dependent macroscopic behavior that

results from several nano- and microscopic phenomena such as complex interaction between

moisture and micro-structural solid skeleton, micro-cracking process, Stefan effect, micro-inertia of

the material surronding the crack tip (Pedersen et al. 2008). (ii) Viscosity can also be associated to

creep phenomena in highly dissipative materials such as asphalt concrete (Panoskaltsis et al. 2007).

(iii) The introduction of viscosity leads to the explicit appearance of a time-step in the governing

equations of the discretized problem. The possibility to determine a critical time-step then provides

a tool to reguralize numerical problems that can be ill-posed in the presence of materials that exhibit
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strain softening behaviors (Oliver and Huespe 2004). (iv) Viscosity can also be used to introduce a

source of energy dissipation at the material level: it can lump the energy dissipation that physically

comes from unknown or not (accurately) modeled physical nonlinear phenomena in the materials;

this is what the authors have in mind when developing this concrete constitutive model.

The aim of this paper is to present the theoretical formulation of a refined 1D cyclic constitutive

concrete model that has been developed in a framework leading to a robust implementation into

finite element numerical procedures. We first present in section 2 the theoretical formulation of the

constitutive concrete model; in section 3, the conditions in which the model can enter the

generalized standard material class are examined for the benefit of robustness; in section 4, the

mechanical problem of a concrete 1D structure in dynamic loading is formulated in a

complementary variational form and the Euler-Lagrange equations are derived; before to conclude,

section 5 is dedicated to the presentation of some numerical examples that illustrate some

capabilities of the constitutive concrete model implemented in a finite element program.

2. Constitutive concrete model

2.1 Thermodynamics with internal variables

To represent the salient phenomena observed in the experimental cyclic response of a concrete

REV (Fig. 1), a set α of internal variables is chosen. The phenomena we aim at modeling are: (i)

loading-rate dependent behavior, (ii) strain hardening, (iii) strain softening, (iv) appearance of

residual deformation, (v) stiffness and strength degradations, (vi) hysteresis loops. We consider that

the phenomena (ii), (iv) and (vi) only occur in compression, that strain softening in compression is

due to the localization of permanent deformation whereas strain softening in tension is due to the

localization of deformation that completely disappear after unloading. Internal variables are

associated to each of these phenomenologically identified mechanisms.

The set of internal variables we choose is defined in Table 1.  and  refer to continuum and discrete

quantities. Concerning the continuum internal variables:  and  are the viscous and plastic

deformations,  and  are the strain-like variables that represent isotropic and kinematic plastic strain

hardenings,  represents stiffness degradation and  isotropic damage strain hardening. Then,

concerning the discrete internal variables, that is in the section where displacement localizes,  represents
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Fig. 1 (a) Experimental (adapted from Ramtani 1990) and (b) numerical (by using the proposed constitutive
concrete model) cyclic behavior of concrete in quasi-static loading.
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plastic deformation,  plastic strain softening in compression,  the stiffness degradation and 

damage strain softening in tension.

A noteworthy advantage of this material model is that all its parameters have a clear meaning and can

therefore be easily identified according to experimental curves. The complete procedure to identify a

concrete law is presented in Section 5.1: the viscous parameter η can be seen as a material property and

identified from free vibration tests; the tensile softening curve coefficient a is related to the fracture energy

GF, a fracture mechanics concept (Hillerborg et al. 1976) that quantifies the total amount of energy that has

to be furnished in tension to a concrete section between the time when displacement begins to localize and

the time when the section is completely broken; all the other parameters can be identified from stress-strain

curves of concrete specimen in quasi-static cyclic loading.

2.2 Governing equations of the constitutive model

2.2.1 Basic ingredients

We first define the three basic ingredients for developing a constitutive model in the framework of the TIV:

1. Split of the total strain into a viscoelastic, a plastic, a damage and another discrete part due to

the likely localization of the displacement. A-space is devided into two parts: the terms involved in

tension  are mentioned by the sign  and those involved in compression σ<0 by the sign

 (note that for a 1D case, tension and compression have a clear meaning)

(1)

where  is the continuum part of the strain and − with  in tension and

  in compression − its discrete part introduced by the Dirac's function  that is the derivative of

the Heaviside's function  that introduces the displacement jump  in the description of the

displacement.  corresponds to the deformation in a Kelvin-Voigt rheological model: a spring −

elastic in tension ( ) and damaging in compression ( ) − and a dashpot in parallel. For

simplicity, we assume here that the displacement jumps only take place in one section; extension to

several localization sections is straightforward.

2. Helmholtz free energy functional
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3. The nonlinear plasticity and damage mechanisms are activated for a positive value of the

corresponding plasticity and damage criteria
● For  (tension), the dissipative mechanisms that can be involved in the evolution process

are activated according to the following criteria

(3)

where t is the stress at the discontinuity and  is the ultimate stress in tension.
● For  (compression), the criteria functions are

(4)

where σy , σf and  are yield, fracture and ultimate stresses in compression.

2.2.2 State equations of the system
We can now give the expression of the energy dissipated by this viscoelastic-plastic-damage

model with different hardenings/softenings within a time unit. This can be computed as the difference

between the total amount of energy imparted to the system and the amount of energy stored by the

system during this time unit
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We also have  with  and . Thus

(6)

Note that  are not internal variables. Moreover, when there is no evolution of any

internal variable, the dissipation is null. Therefore, according to Eqs. (5) and (6), we have the

following state equations

(7)

To recover, for the thermodynamic forces, expressions that will then lead to an accurate reproduction of

the experimentally observed behavior of a concrete REV, we define the different terms in the

expression of the Helmholtz free energy as follows

(8)

We define the state equations of the internal variables from the Helmholtz free energy functional

that plays the role of a thermodynamic potential

(9)
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(10)

To characterize the evolution of the system, except the viscous one, we extend the principle of

maximum dissipation − which was first formulated for plasticity problems (Hill 1950, Lubliner

1990) − to our model and thus compute the flow of the internal variables by assuming that

they maximize the dissipation. Remembering that the criteria functions in Eqs. (3) and (4)

must be satisfied, we thus have to solve a problem of constrained maximization that

involves inequalities. Denoting , we have the following problem P
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Strang 1986). We define the Lagrangian as

(12)

where  is the set of Lagrange's multipliers associated to each constraint. According to

the Kuhn-Tucker conditions, if the set  is a solution of P, then there exists a unique set of

Lagrange multipliers  such that the following relations are verified for all i and for all j

D
· σ

ν
ε
· ν

D
· ν

σε
· p

q
p
ξ
· p

κ
p
λ
· p

+ +

D
· p

1

2
---σD

·
σ q

p
ξ
· d

+

D
· d

tu
· p

q
p
ξ
·
p

+⎝ ⎠
⎛ ⎞δ

x

D
· p

1

2
---tD

·
t qdξ

·
d

+⎝ ⎠
⎛ ⎞δ

x

D
· d

+ + + +
= ⎧ ⎨ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

f σ t qp κp qd q
p
qd, , , , , ,( )=

maxf  D
·

φ
p
f( ) 0≤  φ

d
f( ) 0≤   φ

p

f( ) 0≤   φ
d

f( ) 0≤, , ,

L f  γ·,( ) D
·

γ·
p
φ

p
γ·
d
φ

p
γ
· p
φ
p

γ
· d
φ
d

+ + +⎝ ⎠
⎛ ⎞–=

γ· γ·
p
γ·
d
γ
·p

γ
·d

, , ,( )=

f
*

 f i
*{ }=

γ· * γ 
·
j
*

{ }=

Table 2 State equations of the system

Tension  Compression

σ
e

Eε
e

= σ
d

Dε
d

=

t D
1–

u
d

= t Eu
e

=

q
d ∂Ξ

d

∂ξ
d

---------– σu

t
σ∞–( ) 1 e

a– ξ
d

–( )= = q
p ∂Ξ

p

∂ξ
p

---------– K
p
ξ
p

–= =

1

2
---t

2 ∂ψ
d

∂D
---------–= κ

p ∂Λ
p

∂λ
p

---------– H
p
λ
p

–= =

q
d ∂Ξ

d

∂ξ
d

---------– K
d
ξ
d

–= =

1

2
---σ

2 ∂ψ
d

∂D
---------–=

q
p ∂Ξ

p

∂ξ
p

---------– K
p

ξ
p

–= =



372 Pierre Jehel et al. 

(13)

where the last three conditions are referred to as the loading/unloading conditions. Finally, the

equations of evolution of the internal variables are given in Table 3.

For the viscous internal variable , the evolution is expressed, in an associative form too, à la

Perzyna (1966)

(14)

where η is the viscous parameter assumed here to be rate-insensitive although this might not be the

case (Pedersen et al. 2008). Note that Eq. (14) is in accordance with the rheological relation in a

dashpot .

Note also that concrete is in general not an associative material. However, in the 1D

context of this paper, we nevertheless assume that it is the case. All the equations of

evolution of the internal variables thus are expressed in an associative form. The normality

of the flow rule to the loading surface is in particular implied by the appeal to the maximum

dissipation principle.
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3. Generalized standard materials

Materials that belong to the generalized standard materials class benefit from good local and

global stability properties required for robust implementation in, for instance, finite element

procedures. For other materials, some attention must be paid on the local or global stability

properties. There are five conditions, in an isothermal context, to be fulfilled for a material to enter

the generalized standard materials class (Maugin 1999):

1. Its Helmholtz free energy ψ(α) is convex in α = {αi}.

2. The laws of state for the internal variables are derived from the Helmholtz free energy that

plays the role of a thermodynamic potential: .

3. The intrinsic dissipation verifies: .

4. There exists a closed convex set K in the space of the associated variables A and .

5. The flux of the internal variables αi is normal to the boundary of K (normality law).

As shown in section 2.2, the material model presented in this paper satisfies the conditions 2) and

5). The sets K mentioned in the condition 4) are characterized according to the criteria functions

φ(A) introduced in Eqs. (3) and (4) and their boundary is defined by the equations φ(A)=0. In our

1D context, these criteria functions clearly define closed and convex sets in A-space. About

condition 1), we recall that a function of the form f(x)=cx2 is convex only if c>0. The convexity of

the Helmholtz free energy is therefore not verified for a negative phenomenological coefficient ,

which is required to represent softening.

Let prove that our model satisfies the condition 3). First, since η > 0, . For

the other dissipative mechanisms

(15)

According to the loading/unloading conditions Eq. (13),  and . Moreover, the

material parameters verifies σy, f, u>0 and thus, finally, . Fulfillment of the condition 3) ensures

local stability properties (hysteretic loops builded clockwise).

To conclude this section, (i) because condition 1) is not satisfied with , the global stability of

the numerical model has to be investigated: the tangent stiffness matrix could become non-invertible

during nonlinear resolution procedure; moreover, (ii) the constitutive model presented here is rate-

sensitive and the existence of a critical time-step must thus also be investigated; finally, (iii) A-

space is divided into two parts, one for tension and the other for compression, which shall be

considered in the numerical resolution phase. In this paper, we only focus on the physical

formulation of the model, but it can be shown that these three points can be treated in an efficient

way that makes the numerical implementation in finite element procedures robust at local and

global levels.
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4. Euler-Lagrange equations of a concrete 1D structure in dynamic loading

In this section, we move up from the formulation of the local constitutive model to the

formulation of the structural mechanical problem. This latter, illustrated here in the 1D case, has to

be adapted to the local constitutive model and requires the definition of an enhanced displacement

field.

4.1 Enhanced displacement field kinematics

As shown in Fig. 2, the displacement field is written as the sum of a smooth linear part 

enhanced by an additional part  to take into account the possible appearance of a

displacement jump  in the 1D structure (Garikipati and Hughes 1998, Ibrahimbegovic and

Brancherie 2003)

(16)

which can also be written, in the form adapted for identification with Eq. (1), as

(17)

Then  with 

(18)

In this 1D context, only the failure mode I is considered; we refer to (Dujc et al. 2010) for a

presentation of the kinematics with embedded crack of quadrilateral 2D finite elements where

several failure modes are considered.
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Fig. 2 Enhanced displacement field in a 1D structure. The solid, dashed and dotted lines represent the
enriched displacement field , the smooth displacement field  and the continuum
displacement field .

u x t,( ) ũ x t,( )
u x t,( )
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4.2 Complementary Lagrangian variational formulation

The kinetic energy, assumed to depend only on the smooth part of the displacement, is

(19)

where the volumic mass ρ in the volume Ω is considered as constant.
The total potential energy can be written

(20)

To introduce the stress fields σ and t as other independent variables of the problem and thus give

a more general setting that can be helpful to derive the governing equations of the problem

(Markovic and Ibrahimbegovic 2006, Simo et al. 1989), we appeal to the partial Legendre transformation

of the Helmholtz free energy

(21)

Recalling that  in tension,  in compression,  and according to Eqs. (1)

and (18), we rewrite these equations with respect to  and α

(22)

We denote L the Lagrangian of the mechanical system. It is defined as L=T − U and Lagrange's

variational principle can be written as

(23)

with  null when t=t1 and t=t2.

After some calculus (integration by parts, 
…

), we obtain the following set of governing equations

of the system available for tension and compression

(24)
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which leads, with Γ denoting the section in which the displacement is likely to occur and by

remembering that neither  nor t depends on the position x (they are only defined at the position xΓ of

the section Γ), to the set of Euler-Lagrange equations of a concrete 1D structure written in Table 4.

Either for tension or compresssion, the first equation in Table 4 enforces satisfying global force

equilibrium, the second equation gives the condition of compatibility between the continuum σ and

discrete t stresses, the third and fourth equations correspond to the weak form of the local

continuum and discrete constitutive models.

To give another − also simplified in our viewpoint − expression of the set of the governing

equations of the problem, one can take advantage of the dependancy between the continuum and the

discrete stresses that appears in Table 4: . Then, the expression of the

Lagrangian is modified according to

(25)
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Table 4 Euler-Lagrange equations of a concrete 1D structure
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Moreover, the response of the localization section is supposed to be infinitely rigid before the

stress reaches an ultimate value and therefore . Finally, denoting AΓ the area of the section Γ

where displacement localization can take place, the simplified form of these equations is written in

Table 5. Only two unknown fields remain: the smooth displacement  and the continuum

stress σ(x, t).

5. Numerical applications

The numerical implementation has been done in the general purpose finite element computer

program FEAP (Taylor 2005). Because any external distributed loading is involved (self-weight is

in particular neglected) in these applications, the concrete structure is always modeled with

constant-stress bar elements. The 1D structure tested is presented in Fig. 3.

Neglecting the concrete mass m=ρAL as compared to the added mass M, we compute the stiffness

k, the fundamental pulsation ω and period T of this structure as

(26)

5.1 Identification of a concrete law

All the parameters of the 1D cyclic concrete model presented in this paper have a clear physical

meaning. It is shown in this section that (i) the viscous parameter η is related to the material critical

damping ratio ξ, (ii) the tensile softening law parameter a is related to the fracture energy GF and

(iii) all the other parameters can be directly identified from the experimental stress-strain response

of a concrete specimen in quasi-static cyclic loading.

5.1.1 Identification of the viscous parameter η

We show here that the viscous parameter η can be interpreted as a material property that can be

identified according to, among others, the experimental results of free low-amplitude − so that the

structure remains elastic − vibration tests (Fig. 4):

1. First, denoting ξ the critical damping ratio and c the structural viscous parameter, if one

assumes that ξ << 1, one can write (Chopra 2001)

(27)

2. Then we link the material viscous parameter η to the structural one c starting from the 1D local

form of the equilibrium and the Kelvin-Voigt model constitutive equations

E
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ũ x t,( )

k
ES

L
------ 1.4= GPa;  ω

k

M
----- 44.7s

1–
 T;

2π

ω
------ 0.14s= = = = =

c 2ξmω=

Fig. 3 1D concrete structure model used for the numerical applications. The cross-section area S = 0.04 m2,
the length L = 1 m, the added mass M = 7.0 e5 kg, the volumic mass ρ = 2400 kg·m−3 and the
concrete elastic modulus E = 35 GPa.
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(28)

For a tested structure with constant cross-section area S and strain field ( ), the introduction

of Eq. (28)2 into Eq. (28)1 and then the integration of the resulting local equation over the whole

structure gives

(29)

3. The Kelvin-Voigt viscoelastic model exhibits a hysteretic − energy dissipative − behavior in

cyclic loading as illustrated in Fig. 5 for an excitation of the form  with, except for

other indicated values, A = 0.3mm, Ω = 157.08 s−1 and τ = 0.001 s. The amount of energy dissipated per

cycle Dcyc − the area of the elliptical loop − can be analytically written as (Wang 2009)

(30)

The main drawback of the Kelvin-Voigt model is that Dcyc is dependent on the loading frequency

Ω.. It is indeed not realistic in particular for seismic excitations (Wang 2009). This dependency is

only negligeable in the cases where the response is primarily represented by the resonant pulsation,

that is .

4. Now, suppose that a concrete structure is excited by an impulsion that is weak enough not to

active the nonlinear phenomena that are represented by our concrete model presented in the

previous sections, and that, assuming that the response is primarily represented by the fundamental

pulsation ω, a critical damping ratio ξ = 1% is measured (for instance thanks to the logarithmic

decrement), we can then see η as a material property and identify it according to the following

relation

(31)
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Fig. 4 Free-vibrations viscoelastic response of the tested structure for various critical damping ratios
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In the case of a tested structure identical to those in Fig. 3, we compute

(32)

5.1.2 Identification of the tensile softening parameter a

The tensile softening parameter a can be computed according to the fracture energy GF. GF is one

of the parameters that characterize the softening stress-separation (crack opening) curve of the

cohesive crack model (Hillerborg et al. 1976, Bazant et al. 2002) and represents the total amount of

energy that has to be furnished in tension to a section between the time tloc when displacement

begins to localize and the time tcri that we define as the time when the local softening problem

becomes (numerically) ill-posed, because ; physically, tcri has to coincide with the time when

the section is completely broken: when all the energy GF is consumed. In the case of our concrete

model, one can demonstrate that tcri is always defined and that

(33)

In addition, there exists an empirical relation (Bazant and Becq-Giraudon 2002) that allows

computing GF according to material characteristics

(34)
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Fig. 5 Hysteretic response of the viscoelastic model in quasi-static sine loading for several (a) viscous
parameters, (b) loading amplitudes and (c) forcing pulsations.
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with  in MPa and where α0 = 1 for rounded aggregates, α0 = 1.44 for crushed or angular aggregates, da is

the maximum aggregate size in mm and  is the water-cement ratio. Finally, for a concrete with α0 = 1.44,

da = 25 mm and = 0.5, we compute GF = 136 N·m
−1 that leads, from Eq. (33) with = 3 MPa, to

(35)

5.1.3 Identification of the other parameters

Here is the procedure to identify the remaining parameters of the model from the stress-strain

experimental response in Fig. 1(a)

1. Identify the Young's modulus for tensile and compressive parts. We consider here that they

have the same value: E = = 35 GPa.

2. Identify the set of stresses  so as to characterize the changes of the slope of the

backbone curve. We choose: σy = 3 MPa, σf = 37 MPa, = 49 MPa and = 0.6 · = 3 MPa.

3. Identify simultaneously  and  so as they describe both the strain hardening phase of the

backbone curve in the range σy < σ < σf and the shape of the local hysteresis loops.

4. Identify  so as to describe the remaining strain hardening phase of the backbone curve in the

range  < σ < .

5. Identify  so as to describe the softening part of the backbone curve.

Fig. 1(b) is plotted with the parameters indicated above. Note that although all the parameters have a

clear physical meaning, they also are all connected and the results of a first identification process thus

often need to be refined. Indeed, the slope of the hardening part of the backbone curve in the range

σy < σ <  is , in the range σf<σ<  is C2=  and the slope of the softening

part of the backbone curve is C3= . However, in the absence of an automatic identification

process (Kucerova et al. 2009), following the procedure indicated above gives satisfying results within a

few iterations. Note also that, although we observed that activating plasticity before damage leads to a

better identification, it is possible to invert the roles of σy and σf.

5.2 Mesh objectivity

In finite element procedures, when displacement localizes, the solution of the mechanical problem can

depend on the size of the mesh. In the formulation of our model, we introduced a strong discontinuity −

a displacement jump − (Ibrahimbegovic and Brancherie 2003, Simo et al. 1993) and thus concentrated

the localization in a zero-length zone. This method leads to a formulation that does not need any

characteristic length and thus satisfies the mesh objectivity requirement, that is unicity of the solution, in

a bar as illustrated in Fig. 6.

Concerning the modeling of the tensile softening phase, the fracture energy is so small with

respect to the elastic energy that it is numerically difficult to grasp the post peak tensile response of

concrete bar. The curve in Fig. 6 has been plotted with 4,000 points, which cannot be achieved for

instance in seismic applications. Note that the presence of viscosity helps the numerical

representation of this tensile softening part.

5.3 Loading rate-sensitive response

The four main effects of the loading strain-rate on the response of concrete are: the increases of

(i) the compressive strength (Bischoff and Perry 1995, Lu and Xu 2004), (ii) the tensile strength
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(Weerheijm and Van Doormaal 2006), (iii) the Young's modulus (Weerheijm and Van Doormaal

2006) and (iv) the brittle behavior (Dilger et al. 1984). For seismic excitations, the strain rates are

comprised between 10−5 s−1 and 10−2 s−1, which respectively corresponds to an increase of (i) the

compression strength between 0 and 30% (Bischoff and Perry 1995, Lu and Xu 2004), (ii) the

tensile strength between 0 and 60% (Weerheijm and Van Doormaal 2006) and (iii) the Young's

modulus between 0 and 10% (Weerheijm and Van Doormaal 2006).

The numerical applications presented in Fig. 7(a) show that the Young's modulus computed for a

loading strain rate of 10−2 s−1 is about 5.7% larger than the one computed for a loading strain rate of

10−5 s−1. The increase of Young's modulus is thus represented by the model but a little underestimated

here. However, this increase is related to the viscous parameter τ computed in these numerical

applications from the damping ratio ξ=1% whose value has been arbitrarily chosen: one can thus hope

that, in reality, the right value for the damping ratio would lead to a correct modeling of the increase

of elastic stiffness. The compressive response is presented in Fig. 7(b). The proposed concrete model

has not been developed yet to represent by itself the rate-dependent tensile and compressive strengths,

what can be done a priori by hand, as it is common practice in engineering where the parameters that

define the strengths for concrete in quasi-static loading are majorated for seismis analyses.

Fig. 6 Quasi-static response of the section where the discontinuity appears in the bar of Fig. 3 submitted to
an imposed displacement. nel is the number of elements of the regular mesh of the bar

Fig. 7 Tensile (a) and (b) compressive concrete response for several loading rates
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5.4 Seismic application

5.4.1 Global seismic response

We focus on the compressive part only of the concrete law in Fig. 1. Thus a static compressive

normal force in imposed to the bar before the seimic excitation. In the absence of steel, once the

strength degradation process has begun, the structure is no more capable of resisting the seismic

force demand and global equilibrium can no more be satisfied; we therefore couple to the concrete

bar an elastic steel bar with cross section area Ss = 0.02·Sc = 8e−4 m2 and Young's modulus Es = 210

GPa. The behavior law for concrete is those presented in Fig. 1(b). The loading pattern is shown in

Fig. 8 and the global structural response in Fig. 9.

5.4.2 Local response and intrinsic dissipated energies

TIV provides a useful framework to quantify the material intrinsic dissipation. Indeed, the amount

of continuum viscous, plastic and damage energies dissipated in all the structure wide and the

discrete plastic and damage energies dissipated in the section where displacement localizes can be

computed according to Eq. (10)

(36)

Note that the total intrinsic dissipation is composed by a volumic and a surfacic − in the section Γ

where displacement localizes − part.

E
ν

D
· ν

Ωd td
Ω
∫

0

T

∫ σ
ν
ε
· ν

Ωd td
Ω
∫

0

T

∫= =

E
p

D
· p

Ωd td
Ω
∫

0

T

∫ σε
· p

q
p
ξ
· p

κ
p
λ
· p

+ +( ) Ωd td
Ω
∫

0

T

∫= =

E
d

D
· d

Ωd td
Ω
∫

0

T

∫
1

2
---σD

·
σ q

p
ξ
· p

+⎝ ⎠
⎛ ⎞ Ωd td

Ω
∫

0

T

∫= =

E
p

D

· p

Ωd td
Ω
∫

0

T

∫ tu
· p

q
· p
ξ
· p

+⎝ ⎠
⎛ ⎞ Γd td

Γ
∫

0

T

∫= =

E
d

D

· d

Ωd td
Ω
∫

0

T

∫
1

2
---tD

·
t q

d

ξ
· d

+⎝ ⎠
⎛ ⎞ Γd td

Γ
∫

0

T

∫= =

Fig. 8 Loading pattern: static loading + seismic loading time histories
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The local response of material points located outside and inside Γ is ploted in Fig 10: the

localization of the displacement in Γ leads to a larger amount of dissipated energy in this section.

The amount and sources of intrinsic energy dissipation within the seimic excitation are detailed in

Fig. 11. Around t = 11 s, a big amount of seimic energy is imparted to the structure; so as this latter

do not collapse, it has to dissipate this input energy. The input energy is converted both into stored

energy in the material and dissipated energy (irreversible mechanisms).

6. Conclusions

In this paper, the theoretical formulation of a 1D cyclic constitutive concrete model is presented.

The model is capable of representing most of the salient phenomena that can be experimentally

observed in the stress-strain response of a concrete representative elementary volume (REV) − at

macroscale − in cyclic 1D loading: brittle loading-rate dependent behavior in tension, quasi-brittle

loading-rate dependent behavior in compression with strain hardening, appearance of residual

deformation, stiffness and strength degradations, local hysteretis. Although the details of the

Fig. 10 Local response of a material point (a) located and (b) not located in section Γ where displacement
localizes

Fig. 9 (a) Right-node displacement and (b) reaction-displacement time-histories
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numerical implementation are not given in this paper, the model has been developed to be

implemented in finite element numerical procedures and thus special attention is paid on its

robustness: (i) the conditions under which the model enters the generalized standard materials class

are determined and (ii) linear hardening/softening laws that make the resolution processes

noniterative at the local − or numerical integration point − level are prefered to nonlinear ones. The

Euler-Lagrange equations of a 1D structure, made of this concrete material, in dynamic loading are

derived and finally some numerical applications are presented. They illustrate that: the viscous

parameter can be considered as a material property, the objectivity of the mesh of the tested bar is

satisfied when displacement localizes and the material REV thus exhibits a softening behavior, the

model can represent the salient phenomena that occur in concrete in cyclic loading.

The model is developed in the framework of thermodynamics with internal variables, that is that

a set of internal variables is chosen to represent the experimentally observed response of a concrete

REV in 1D cyclic loading. All the material parameters introduced have a clear physical meaning,

what makes their identification simple. The model is developed in a purely phenomenological way

at macroscale: for instance “strain hardening” means here “observed increase of the yield stress

while strain increases” and has no explicit relation with physical effects that occur at lower scales

such as dislocations motion well known for steel materials. One could give a more refined

description of the micro- or even nanoscopic behavior of concrete and one could hope that relating

physical micro- or nanoscopic effects to the macroscopic response of a concrete REV would still

improve the accuracy of the material models. However, our approach, albeit phenomenological and

thus somehow arbitrary, can be efficiently used in common computer programs for large-scale

structural numerical dynamic analyses. To that purpose, the implementation of the model in a fiber

beam element is currently being achieved.
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