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Abstract We present the shape determination method of 3-D reinforcement corrosion based on observed
temperature on concrete surface. The non-destructive testing for reinforcement corrosion in concrete using a
heat image on concrete surface have been proposed by Oshita. The position of the reinforcement of
corrosion or the cavity can be found using that method. However, the size of those defects can not be
precisely measured based on the heat image. We therefore proposed the numerical determination system of
the shape for the reinforcement corrosion using the observed temperature on the concrete surface. The
adjoint variable method is introduced to formulate the shape determination problem, and the finite element
method is employed to simulate the heat transfer problem. Some numerical experiments and the examination
for the number of the observation points are shown in this paper.

Keywords: reinforcement corrosion; observed temperature on concrete surface; shape determination prob-
lem; adjoint variable method; finite element method.

1. Introduction

In recent years, the importance for the maintenance of the concrete structure increases, and several

non-destructive testing are applied to the concrete structure to evaluate whether the safety standard

is satisfied. As one of the testing, a method of the non-destructive testing using the heat image on

the concrete surface has been developed by the research grope of Oshita (Taniguchi and Oshita

2008). Appling this method to the concrete structure, the position of the reinforcement of the

corrosion or the cavity can be confirmed by the heat image (See section 2). However, there is a

disadvantage that the magnitude of those defects can not be numerically evaluated.

The inverse scattering method (Bostock 2002, Khalaj-Amirhosseini et al. 2007) is enumerated as

one of the method that is used to obtain the unknown shape of the defect. If this method is applied
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to evaluate the unknown shape of the defect, the unknown shape can be approximately expressed

by the difference of the physical constants. In addition, the adjoint variable and the sensitivity

equation methods can be also applied to evaluate the state of the defect. The sensitivity equation

and the adjoint variable methods are the deterministic approach, and these methods are frequently

used to solve the inverse problems, i.e., the boundary control problems (He et al. 1998,

Gunzbuger et al. 1998), the parameter identification problems (Kreibig et al. 2007), the initial

value determination problems (Dimet et al. 2002). In these problems, a performance function

expressed by the square sum of the residual between the computed and the target state values is

defined, and the unknown parameter is obtained by solving the minimization problem of the

performance function. In case that the sensitivity equation method is applied to the inverse

problem, the sensitivity equations expressed by the derivative of the state equation with respect to

the unknown parameters should be solved to obtain the unknown parameters. If there are a lot of

the unknown parameters in the inverse problem, it takes much computational time to compute the

unknown parameters, because a lot of sensitivity equations should be solved. On the other hand,

if the adjoint variable method is applied to solve the inverse problem, the adjoint equation is

solved to obtain the unknown adjoint variables. In case of the adjoint variable method, the

number of the adjoint equation does not depend on the number of the unknown parameters.

Therefore, it does not take much computational time comparing with the case of the sensitivity

equation method, and it appears that the adjoint variable method is suitable for the inverse

problem included a lot of unknown parameters. In this study, the unknown parameters are the

coordinate values on the surface of the reinforcement corrosion in the concrete, and a lot of

unknown parameters should be employed to evaluate the unknown corrosion shape. Therefore,

the adjoint variable method is applied to evaluate the shape of the unknown corrosion shape in

this study. The researches for the numerical shape determination system based on the adjoint

variable method have been carried out. In the flow problem, Pironneau found out the optimal

shape that minimizes the drag force (Pironneau 1973, 1974). The research groupe of Kawahara

investigates the shape optimization problem using the finite element method using the stabilized

bubble function element (Ogawa et al. 2003, Yagi et al. 2007). In addition, if it is seen that there

is oscillation on the surface of the computed shape, it is said that the oscillation can be controlled

by the traction method (Azegami et al. 2006) or the method suggested by Jameson (Jameson

2003).

In addition, there are two types methods to solve the shape determination problem. One method is

refer to as the topology optimization procedure (Luo et al. 2008, Challis et al. 2009), the other

method is refer to as the shape optimization procedure (Pironneau 1973, 1974, Jameson 2003,

Ogawa et al. 2003, Azegami et al. 2006, Yagi et al. 2007). In the topology optimization procedure,

the shape of the structure is expressed by the level set function, and this procedure is applied to the

structural design problem (Luo et al. 2008) and the topology optimization problem in the flow field

(Challis et al. 2009). If this procedure is applied to the shape determination problem, the shape of

the target body is not specifically determined but is approximately determined. Because the shape is

expressed by the level set function, and the boundary of the shape is expressed as the gray zone. On

the other hand, if the shape optimization procedure is applied to the problem that the unknown

shape is determined, the shape is specifically expressed by the information of the nodal coordinates.

Therefore we focused on the shape optimization technique to obtain the unknown corrosion shape in

this study.

For the 2D corrosion shape determination problem based on the temperature on the concrete
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surface, the evaluation system using the adjoint variable and the finite element methods has been

examined, and a problem in the present method was clarified. The problem is that if this system is

applied to the concrete with the partially reinforcement corrosion, the thickness of the reinforcement

corrosion can not be precisely evaluated. If this system is applied to the problem of the partial

reinforcement corrosion, it is necessary to extended this system to the 3-D problem. Therefore, we

examine this system extended to the 3-D problem in this study. The state equation and the

formulation based on the adjoint variable method are shown in the sections 3 and 4. The finite

element method is applied to compute the heat transfer field. In the computation of 3D problem, it

takes a lot of storage requirement and computational time to obtain the solution. In this study, the

element-by-element conjugate gradient method is applied to solve the finite element equation. For

the computation of the shape optimization, an iterative procedure is introduced in section 4, and

results obtained by numerical experiments are shown in section 5. Finally, the conclusions of this

study are described in the section 6.

2. Observation system of temperature on concrete surface

A method of the non-destructive testing for the reinforcement corrosion in concrete have been

proposed by Oshita et al. (Taniguchi and Oshita 2008) (Fig. 1). This method is that position of

reinforcement corrosion or cavity can be investigated by using the heat image on the concrete

surface (Figs. 2 and 3). The flow of this testing is shown as follows.

1. Heat a coil on concrete surface. Heat reinforcement bars by electromagnetic induction.

2. After the heating, except the coil and observe heat image by infrared sensor.

The advantage of this testing is to find the position of reinforcement corrosion or cavity easily.

However, the depth and the magnitude for those defects can not be numerically evaluated. Therefore

we develop the numerical shape determination system for the reinforcement of the corrosion in

concrete using the observed temperature on concrete surface.

Fig. 1 System of non-destructive testing
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3. State equation, initial and boundary conditions

To simulate of the heat transfer field, the heat transfer equation is employed. The heat transfer

equation is defined in the three dimensional space Ω∈R
3 with the boundary Γ shown in Fig. 4, and

is written as

(1)

where ρ, c, κ and φ indicate the density, the specific heat, the thermal conductivity and the

temperature. Initial and boundary conditions are defined as

ρcφ
·

κφ,
ii

– 0=

Fig. 2 Heat image (1) : Cavity Fig. 3 Heat image (2) : Reinforement corrosion

Fig. 4 Diagram of computational domain and boundaries
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where Ω, Γ1 and Γ2 indicate the computational domain, the Dirichlet boundary and the Neumann

boundary, and q denotes the heat flux. In addition, Γcont. indicates the surface boundary for the

reinforcement corrosion. Appling the finite element method to the Eq. (1), the finite element

equation for each element is obtained as

(3)

where the matrices [Me], [He] and the vectors {φe}, {Te} indicate the mass and the heat transfer

matrices and the temperature at the each nodes for the tetrahedron element and the heat flux vector.

Assembling the finite element equations for each element, the superposed finite element equation is

written as

(4)

where the matrices [A], [B] and the vector {C} indicate ,  and ,

and mx is the total number of elements.

4. Formulation for shape determination problem 

The shape of the reinforcement corrosion is determined by solving the minimization problem of a

functional. In this study, the functional is defined by the square sum of the residual between the

computed and observed temperature on the concrete surface. The functional is written as

(5)

where [R], φ and φobs. denote the weighting diagonal matrix, the computed temperature and the

observed temperature. The functional is called the performance function and minimizing the

performance function mean that the computed temperature on the concrete surface is close to the

observed temperature. The temperature φ is obtained by computing the heat transfer equation, and

that equation is introduced as the constraint condition for the performance function. In addition, the

computational conditions, i.e., the initial and boundary condition for the state equation, are also

employed as the constraint conditions. By introducing the Lagrange multiplier for minimization of

the performance function with the constraint conditions, Eqs. (2) and (4), the Lagrange function is

defined as

(6)

where λ indicates the Lagrange multiplier. In addition, the design variables are the nodal coordinates

xi on the surface of the corrosion, and those variables are included in the coefficient matrices [A],

[B] and [C] of the finite element equation. To obtain the stationary condition of the Lagrange

function, the first variation of the Lagrange function is calculated. Consequently, the following

equation is obtained:

φ t0( ) φ̂0= in Ω

φ φ̂= on Γ1

q κφ n
i i
, q̂= = on Γ2

ρece Me[ ] φ
·
e{ } κe He[ ] φe{ }+ Te{ }  ,= in Ωe

A[ ] φ
·

{ } B[ ] φ{ }+ C{ }  ,= in Ω

Σe 1=

mx
ρece Me[ ] Σe 1=

mx
κe He[ ] Σe 1=

mx
Te{ }

J
1

2
--- φ φobs.–{ }

T
R[ ] φ φobs.–{ } td

t
0

 tf

∫=

J
*

J λ{ }
T
A[ ] φ

·
{ } B[ ] φ{ } C{ }–+( ) td

t
0

 tf

∫–=
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(7)

As the gradient vectors, the following equations are obtained. The gradient of the Lagrange

function with respect to the Lagrange multiplier means the state equation, and is written as

(8)

In addition, the gradient of the Lagrange function with respect to the state variable means the

equation of the Lagrange multiplier, and is derived as

(9)

Considering the initial and boundary conditions for state variable Eq. (2), the ρ
e
c
e
 terminal and the

boundary conditions for the Lagrange multiplier are obtained as 

(10)

The full implicit scheme is employed as the temporal discretization technique for the heat transfer

and the adjoint equations. To solve the finite element equations for the state and the adjoint

equations, the element-by-element conjugate gradient method is employed.

Moreover, the gradient of the Lagrange function with respect to the nodal coordinates is obtained as 

(11)

and this gradient is obtained by the computed temperature and the Lagrange multiplier. Here, the

matrices  and the vector  indicate  and , The shape of the

reinforcement corrosion is determined so as to minimize the value of this gradient, i.e., the

computed temperature is close to the target temperature at the observation point. It is too difficult to

obtain the appropriate shape for the reinforcement corrosion directly such that the computed

temperature is close to the target temperature. In general, the appropriate shape is therefore

computed by using the iterative method.

In this study, the steepest descent method is introduced to update the shape of the reinforcement

δJ
*

δλ{ }T ∂J*

∂λ
-------

⎩ ⎭
⎨ ⎬
⎧ ⎫ ∂J*
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-------

⎩ ⎭
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-------
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δC{ }++
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------- td

t
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 tf
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0

 tf
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 tf
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      + λ
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corrosion, and the step length is updated by the Sakawa-Shindo method (Sakawa et al. 1980). The

update equation is shown as

(12)

where l and [W] indicate the number of iterations and the diagonal matrix by the weighting

parameter, and the inverse value of the weighting parameter W indicates the step length in the

iterative computation.

The algorithm of the iterative computation is shown below.

1. Set of the number of iteration l=1 and the initial coordinates , the convergence criterion ε.

2. Computation of the state equation (Eq. (8)).

3. Computation of the performance function J(l) (Eq. (5)).

4. Computation of the adjoint equation (Eq. (9)) and computation of the gradient of the Lagrange

function with respect to the coordinates (Eq. (11)).

5. Update of shape of the reinforcement corrosion (Eq. (13)).

6. Check for the convergence; if | J(l+1)−J
(l) | < ε then stop, else go to step 7.

7. Computation of the state equation (Eq. (8)).

8. Computation of the performance function J(l+1) (Eq. (5)).

9. Update of weighting parameter; if J
(l+1) < J

(l) then W(l+1)=0.9W
(t) and go to step 4, else W(l+1)=2.0W

(l)

and go to step 5.

In addition, if the iterative computation1) for the state and the adjoint equations does not converge,

the weighting parameter W is updated to 2.0W, and the computation returns to the step 5.

x
i

l 1+( ){ } xi

l( ){ } W
l( )[ ]

1– ∂J
*

∂xi

------- td
t
0

 tf

∫
⎩ ⎭
⎨ ⎬
⎧ ⎫

l( )

–=   on  Γcont.

xi

l( ){ }

1) The iterative computation indicates the computation by the element-by-element conjugate gradient method.

Fig. 5 Computational model (length of reinforcement corrosion 100 mm, diameter of reinforcement bar 16 mm)
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5. Numerical experiments

In this study, the computational model shown in Fig. 5 is employed. The size of test piece is 500

mm×550 mm×180 mm and the diameter of the reinforcement bar is 16 mm. It is assumed that there

is partially corrosion  on the center of the reinforcement bar. The finite element mesh and the

magnified figure around the reinforcement bar are shown in Figs. 6 and 7. The total number of

nodes and elements are 242,000 and 1,140,480.

The computational conditions are shown in Table 1. In addition, the temperature boundary condition

is given on the surface of the reinforcement bar. The temperature is given such as the Fig. 11 until

Fig. 6 Finite element mesh (Nodes : 242,000, Elements : 1,140,480)

Fig. 7 Magnified figure around X=250 mm,Y=550 mm, Z=180 mm
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T=240 sec., and the Neumann boundary condition, i.e., the heat flux is equal to zero, is given on the

boundary after T=240 sec. (Eq. (13)). The boundary condition shown in Eq. (14) is given on the

concrete surface. The observation point is set at the point, X=250 mm, Y=275 mm, Z=180 mm. The

weighting diagonal matrix [Q] is set 1.0 at the observation point, and is set 0.0 at the other points. In

addition, the physical constants are shown in Table 2.

(13)

(14)

φ at φ t0( )+=     on   steel  surface  in   t 0 t1,[ ]∈

q 0=     on   steel surface  in   t t1 tmax,[ ]∈

q h φ φ
∞

–( )  on  concrete  surface  in   t 0 t
max

,[ ]∈=

Table 1 Computational conditions

Real time (tmax sec.) 600

Convection coefficient (hW/m2 oC) 10.0 

Ambient temperature (φ
∞

 oC) 21.3 

Time of heating to steel (t1 sec.) 240 

Heat up ratio on surface of reinforcement bar (a 
oC/sec.) 0.081

Initial temperature in concrete (φ(t0) 
oC) 19.5 

Total number of nodes 242,000

Total number of elements 1,140,480

Time increment (∆t sec.) 5.0

Time steps 120

Convergence criterion ε 10−6

Table 2 Physical constants

Concrete Reinforcement
bar

Reinforcement
 corrosion

Density ρ (kg/m3) 2.40×103 7.85×103  5.30×103

Specific heat c (J/kg oC) 1.15 4.70×10−1 1.20

Thermal conductivity κ (W/m oC)  2.70 5.13×101 6.97×10−2

Fig. 8 Time history of temperature at observation point X=0.250 m,Y=0.275 m, Z=0.180 m (Target value)
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5.1 Numberical example 1

It is assumed that the corrosion is uniformly distributed around the reinforcement bar. In addition, the

length and the thickness of the reinforcement corrosion are set 100.0 mm and 1.0 mm. The heat transfer

analysis based on FEM is carried out based on the above conditions. The computational result by the finite

element analysis is shown in Fig. 8. It is seen that the temperature at the observation point gradually

decreases. In this study, this result is used as an artificial observation data (Target value), and the inverse

analysis is carried out. As the computational condition for the inverse analysis, the length and the thickness

of the reinforcement corrosion  at the iteration are given as 100.0 mm and 2.0 mm.

Fig. 9 Distribution of temperature at l = 1 in whole domain (T=180 sec.)

Fig. 10 Distribution of temperature at l = 1 on section X=250 mm (T=180 sec.)
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The computational results at the first iteration are shown in Figs. 9 and 10. Fig. 9 and Fig. 10

show the contour figure of temperature in the whole domain and that on the section X=250 mm. It

is seen that the temperature storage in the region of the reinforcement corrosion and transfer from

the region without the reinforcement corrosion. Though, the appropriate temperature distribution is

obtained, there is difference between the computed temperature and the target value. Therefore, the inverse

analysis is carried out to obtain the appropriate shape of the reinforcement corrosion such that the

Fig. 11 Variation of performance function Fig. 12 Time history of temperature at observation point

Table 3 Comparison of volume for reinforcement corrosion

Volume (mm3)

Result at first iteration 9,391

Result at final iteration 8,560

Target value 4,708

Fig. 13 Initial shape of reinforcement corrosion
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computed temperature is close to the target temperature at the observation point. Fig. 11 shows the

variation of the performance function. It is found that the value of the performance function gradually

decreases and converges. Fig. 12 shows the time history of the temperature at the observation point. The

solid line indicates the computational result at the final iteration, and the dot and broken lines indicate the

target temperature and the computational result at the first iteration. It is seen that the temperature at the

final iteration is close to the target temperature comparing with the result at the first iteration. Figs. 13 and

14 show the shape of the reinforcement corrosion at first and the final iterations. The center region of the

final shape hollows comparing with that of the first iteration. In addition, Table 3 shows the comparison of

the volume for the reinforcement corrosion. It is found that the result at the final iteration is close to the

target value comparing with the result at the first iteration, however there is difference between the result at

the final iteration and the target value. Therefore, it is necessary to improve the computational algorithm

such that the final shape can be much more close to the target shape.

5.2. Numerical example 2

The previous result indicates that even if the thickness for the reinforcement corrosion is uniform,

the computed corrosion thickness is not uniform. Because the distribution of the gradient vector

depends on the position of the observation point, the value of the gradient vector  can not be

uniformly obtained. Therefore, the formulation with respect to the gradient vector  is improved such

that the gradient is distributed a concentric circle. First of all, the gradient vectors  and 

are expressed by the polar coordinate system (Eq. (15)).

(15)

∂J
*

∂xi

-------

⎩ ⎭
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*
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∂xi

-------δxi

∂J
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-------δx
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*
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∂J
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∂J
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*
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Fig. 14 Final shape of reinforcement corrosion
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If the gradient is distributed a concentric circle, this fact indicates the gradient does not vary for

the θ direction, and δθ is equal to zero. Therefore, Eq. (15) can be represented as

Fig. 15 Variance of performance function Fig. 16 Time history of temperature at the observation
point

Fig. 17 Final shape of reinforcement corrosion

Table 4 Comparison of computational results (Initial length of renforcement corrosion 100 mm)

Volume
(mm3)

Tinckness of corrosion
(mm)

Length of corrosion
(mm)

Result at first iteration 9,391 2.00 100.00

Result at final iteration  4,980 1.26  100.00

Target value 4,708 1.00 100.00
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(16)

In addition, even if the gradient distribution is obtained by the Eq. (16), the gradient  does not

uniformly distribute for the r direction. Therefore, the average value for the gradient  is

calculated, and the value is employed to move the nodal position on the surface of corrosion.

The computational results are shown as follows. Figs. 15 and 16 show the variation of the

performance function and the time history of the temperature at the observation point. It is seen that

the converged value of the performance function is less than that of the previous study, and the

computed temperature at the final iteration can be much more close to the target temperature

comparing with the result of the previous study. The final shape of the reinforcement corrosion is

shown in Fig. 17. It is found that the thickness of the corrosion is thinner than  that obtained in the

∂J
*

∂x
i

-------δx
i

∂J
*

∂y
-------δy

∂J
*

∂r
-------δr = 

∂J
*

∂y
-------δy

∂J
*

∂x
-------

∂x
∂r
-----

∂J
*

∂z
-------

∂z
∂r
-----+

⎝ ⎠
⎛ ⎞δr++

∂J
*

∂y
-------δy

∂J
*

∂x
-------cosθ

∂J
*

∂z
-------sinθ+

⎝ ⎠
⎛ ⎞ rδ+= =

∂J
*

∂r
-------

⎩ ⎭
⎨ ⎬
⎧ ⎫

∂J
*

∂r
-------

⎩ ⎭
⎨ ⎬
⎧ ⎫

Fig. 18 Initial shape of reinforcement corrosion (initial length : 80 mm)

Fig. 19 Variation of performance function Fig. 20 Time history of temperature at observation point
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previous study. Table 4 shows the comparison of  the volume, the thickness and the length for the

corrosion. The length of the corrosion is calculated by the difference between the maximum and the

minimum values for the Y-axis. It is found that the volume and the thickness of the corrosion at the

final iteration are close to the target volume. In addition, the length of the corrosion did not

completely vary in the iterative computation.

5.3. Numerical example 3

In this examination, the dependency for the initial length of the corrosion is investigated. The initial

thickness and the initial length of the corrosion are set 2.0 mm and 80.0 mm. Fig. 18 shows the initial

shape of the reinforcement corrosion. The computational results are shown as follows. Fig. 19 shows the

variation of the performance function. It is found that  the convergence rate is slower than that of the

previous cases. In addition, Fig. 20 shows the time history of the temperature at the observation point. It is

seen that though the computed temperature is higher than the target value near the terminal time, the

computed temperature is totally good agreement with the target value. Fig. 21 shows the final shape of the

reinforcement corrosion. Though the top of the shape for the reinforcement corrosion is extended, the other

nodes was not updated for Y-direction. Table 5 shows the comparison of  the volume, the thickness and the

length for the corrosion. It is found that the computational results at the final iteration are not good

Fig. 21 Final shape of reinforcement corrosion (initial length : 80 mm)

Table 5 Comparison of computational results (Initial length of renforcement corrosion 80 mm)

Volume
(mm3)

Tinckness of corrosion 
(mm)

Length of corrosion
(mm)

Result at first iteration 7,513 2.00  80.00

Result at final iteration 9,251 2.34  84.39

Target value 4,708 1.00 100.00
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agreement with the target value. Therefore, it appears that the initial length of the reinforcement corrosion

should be given the appropriate length estimated by the heat image.

Fig. 22 Cross sectional figure on surface of X=250 mm and initial condition for shape determination problem

Table 6 Computational conditions for observation points

Case Numbr of observation 
points

Position of observation points

A 1 Y=275 mm

 B 2 Y=250 mm, 300 mm

 C 5 Y=225 mm, 250 mm, 275 mm, 300 mm, 325 mm

Fig. 23 Distribution of movement value  for Y axis (Case A : one observation point)W
1– ∂J

*

∂y
-------dt

t
0

 tf

∫–⎝ ⎠
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5.4 Remarks for the number of observation points

In this section, an examination is carried out to investigate the method that the appropriate

corrosion shape is obtained in case of numerical example 3. The computational model used in the

numerical example 3 is employed, and the dependency for the number of observation points is

investigated. The computational conditions are shown in Fig. 22 and Table 6.2) The observation points

are set on the line X=250 mm and Z=180 mm, and the weighting parameter W is set 1.0.

The distribution of movement value for Y-direction at the first iteration is shown in Figs. 23-25.

Fig. 24 Distribution of movement value  for Y axis (Case B : two observation points)W
1– ∂J
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 tf
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Fig. 25 Distribution of movement value  for Y axis (Case C : five observation points)W
1– ∂J
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-------dt

t
0

 tf
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2)Case A" is the same condition as numerical example 3.



80 Takahiko Kurahashi and Hideki Oshita

The distribution shows the distribution of the movement value  on the line a (See Fig. 22).

Fig. 23 shows the distribution of the movement value for Y-direction in case that one observation

point is employed. It is found that appropriate movement value is obtained such that the corrosion is

expanded for Y-direction comparing to the initial state. In addition Figs. 24 and 25 show the

distribution of the movement value  for Y-direction in case that two and  five observation points are

employed. It is seen that the sign of the movement value  on the line a is changed in the

sections “235 mm ≤Y ≤ 275 mm” and “275 mm ≤Y ≤ 315 mm”. In these sections, the value of the

same sign should be obtained, because the direction for the movement of the nodal points are same

direction. Therefore, it is found that there is a case that the appropriate gradient distribution is not

obtained, even if the number of the observation points are increased.

6. Conclusions

In this paper, the numerical shape determination system of the 3-D reinforcement corrosion in

concrete based on the observed temperature on the concrete surface was presented, and some

numerical experiments were shown. To simulate the heat transfer field, the heat transfer equation

was introduced, and the finite element method was applied. The adjoint variable method is

employed to determine the shape of the 3-D reinforcement corrosion. The iterative computation was

carried out by using the steepest descent method, and the weighting parameter was updated  based

on the method proposed by Sakawa et al.

In the numerical experiments, the shape of the reinforcement corrosion was determined such that

the computed temperature is close to the target temperature at the observation point. In this study,

the computed result is employed as the target temperature. The computed result is finally obtained,

and the computed temperature could be close to the target temperature comparing with the

temperature at the first iteration. However, comparing the volume between the final shape and the

target shape, it was found that the final result is not close to the target result. Therefore it can be

said that it is necessary to improve the computational algorithm to be able to obtain the much more

accurate result. In this study, the restrict condition that the nodes on the corrosion surface move to

the radius r and the angle θ directions was introduced to solve this problem. Finally, the final shape

could be close to the target shape comparing with the result of the previous examination. As the

next investigation, this model was applied to the problem that the shorter initial length than that of

the target shape is given. Consequently, though the computed temperature was close to the target

temperature, the final shape was not good agreement with the target shape. In addition, it was found

that it is not usual that the appropriate movement value is obtained, even if the number of the

observation point is increased. Therefore, it appears that it is necessary to give the initial length of

the reinforcement corrosion based on the result of the heat image analysis. 
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