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Analysis of RC beams subjected to shock loading 
using a modified fibre element formulation
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Abstract. In this paper an improved one-dimensional frame element for modelling of reinforced concrete
beams and columns subjected to impact is presented. The model is developed in the framework of a
flexibility fibre element formulation that ignores the shear effect at material level. However, a simple
shear cap is introduced at section level to take account of possible shear failure. The effect of strain rate
at the fibre level is taken into account by using the dynamic increase factor (DIF) concept for steel and
concrete. The capability of the formulation for estimating the element response history is demonstrated by
some numerical examples and it is shown that the developed 1D element has the potential to be used for
dynamic analysis of large framed structures subjected to impact of air blast and rigid objects.
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1. Introduction

Research on behaviour of reinforced concrete elements (structures) subjected to high strain rate

loading such as impact of dropping mass and air blast have received considerable attention in recent

years (Banthia et al. 1989, Shirai et al. 1994, Kishi et al. 2002). The response of beams under

impact load has been studied widely by plane and solid elements (Beshara 1993, Abbas et al. 2004,

May et al. 2006), but less attention has been paid to the value of the 1D discrete frame elements for

evaluating the global response of beams and framed structures (Krauthammer et al. 1990). Plane

stress and solid element approaches are more accurate but also significantly more time consuming

(computationally) in comparison with 1D discrete elements that are the focus of this paper.

Over the last 20 years the superior performance of the flexibility (force-based) approach in the

formulation of frame elements, especially for reinforced concrete members has been demonstrated

through different studies (Spacone et al. 1996, Neuenhofer and Filippou 1997, Monti and Spacone

2000). Most of the researches in this field have been focused on static and cyclic analysis but the

capability of flexibility formulation within a dynamic analysis (especially dynamic loads with high

strain rate) have not been discussed. Most of the available flexibility-based frame elements are

formulated in the fibre element framework. In the classical fibre element approach, the effect of

shear tractions on the nonlinear behaviour of the fibres is assumed to be negligible. In such a case a
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uni-axial constitutive law suffices to calculate the stress and stiffness of the fibres. Two options are

available to take account of shear effects. The first option is to couple the shear and axial tractions

at the material level (Petrangeli et al. 1999). In the second, shear forces are coupled with other

forces at section level through empirical relationships, while at the material level the axial and shear

stresses do not interact (Marini and Spacone 2006). The first approach is more accurate but also

more time consuming (computationally) in comparison with the second. 

In this study, the flexibility and force interpolation concept is used to formulate the 1D frame

element. The section flexibility (stiffness) is calculated by a numerical integration scheme rather

than discritising the section to fibres, which improves the formulation efficiency. A uniaxial

constitutive law is used for concrete and steel bars and a shear cap at section level is employed to

predict the possibility of shear failure. Adopting the dynamic increase factor (DIF) approach, the

strain rate effect on the material behaviour is taken into account.

2. Element formulation

2.1. Equilibrium equations

Fig. (1a) shows a 2-node plane frame element AB with three degrees of freedom at each node

(two translations and one rotation) subjected to distributed load w(x). The incremental equilibrium

equation of the configuration Ax, shown in Fig. 1b, yields

(1)

(2)

(3)

where ΔD(x) = [ΔN(x) ΔM(x)]T is the vector of incremental section generalised force, b(x) is the

force interpolation matrix, ΔQA= [ΔQ1 ΔQ2 ΔQ3]
T is the vector of incremental nodal generalised

force at end A and ΔD*(x) is the section internal force vector due to the distributed load Δw(x).
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Fig. 1 (a) 2-node frame element AB in x-y plane (b) free body diagram for Ax
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Removing the term ΔD*(x) from the right side of the Eq. (1) does not violate the generality of the

formulation and, hence, we can write

(4)

Equilibrium across the section requires that

(5)

where y is the distance of the integration point from the element mid-plane (see Fig. 2) and Δσx is

the increment of the x-x stress component at monitoring points.

2.2. Compatibility equations and stress-strain relations

Assuming perfect bond and adopting the Navier-Bernoulli theory, the incremental compatibility

requirement is obtained as

(6)

where Δεx denotes the increment of the x-x strain component at the integration points, Δεr denotes

the increment of the section axial strain and Δκ denotes the increment of the section curvature. 

Using a uniaxial stress-strain relationship to model the material behaviour at integration points

yields

(7)

where Et is the material tangent modulus. 

If Eq. (7) is substituted into Eq. (5), then

(8)
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Fig. 2 Comparison of the classical fibre element and present formulation at section level
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(9)

where tks(x) and tfs(x) are section stiffness and flexibility matrices, respectively. A network of integration

points is provided over the section depth (width) rather than using fibre element method that

discritise the section to fibres (Fig. 2). In such a case all of the section integrals can be estimated

numerically, which improves the formulation efficiency compared with the classical fibre element.

Using the principle of virtual work for the cantilever configuration AB, shown in Fig. 1a, and

subjected to a load vector ΔQA at end A, together with Eqs. (4) and (8), and then repeating the same

procedure for the cantilever clamped at end A and subjected to the load vector ΔQB at end B, gives

the element stiffness matrix tKe as (Valipour and Foster 2007)

(10)

where Γ is the transformation matrix

(11)

While different solution schemes can be used within the present flexibility formulation, a

modified nested iterative algorithm developed by Neuenhofer and Filippou (1997) is adopted in this

study.

3. Material constitutive law and strain rate effects

The strength of the concrete and steel bars increase with increasing loading rate. This rate

dependent behaviour of material affects the response of the reinforced concrete members under

impact and has to be considered by an appropriate method. It is a common practice to use a

dynamic increase factor (DIF) for transforming the material strength and stress-strain relationship to

their dynamic counterpart (Malvar 1998, Malvar and Ross 1999). The DIF approach is adopted for

taking account of strain rate in this study, even though for materials such as concrete, due to effect

of rate history, the adequacy of this approach is questionable in some aspects (Eibl and Schmidt-

Hurtienne 1999).

3.1. Concrete constitutive law

Different kinds of concrete material models (e.g., plasticity, continuum damage, micro plane

models etc.) with a diverse range of accuracy and generality are available (Chen 1994). In this study

the effect of shear on the nonlinear response of material is neglected and the shear failure is
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checked at sections. Hence, a uniaxial material law is adequate to model the nonlinear behaviour of

concrete.

Among the various available unaxial constitutive laws for plain concrete in compression, the stress-

strain law presented by CEB-FIP model code 1990 is adopted for the ascending branch (Fig. 3a),

(12)

where fcp and εc0 are the uniaxial concrete compressive strength and corresponding strain, respectively, E0

is the initial elastic modulus, Ec is the secant elastic modulus at the peak stress and k is a parameter

that has a positive value greater than or equal to one. For the sake of simplicity, in conjunction with

this ascending relationship a linear softening branch down to the zero stress can be adopted. With

regard to the softening branch of the stress-strain relationship and potential for lack of objectivity

over softening regime, a regularisation technique similar to crack band model is adopted to preserve

the energy release rate and maintain objectivity (Spacone and Coleman 1999). Other methods for

maintaining objectivity are presented in Valipour and Foster (2009). The confining effect on the

concrete ductility and strength can be modelled by modifying the compressive strength, fcp, the

corresponding strain, εc0, and the compressive ultimate strain, εuc, according to available uniaxial

models (Scott et al. 1982, Mander et al. 1988).

Unloading from a point on the envelope curve takes place along a straight line connecting the point εr,

at which unloading starts, to a point εp on the strain axis given by the equations (see Fig. 3a)

(13)

where ε 0 is the strain corresponding to the peak stress (ε0≥ εc0 with confinement).

For the tensile concrete a linear elastic brittle failure model is adopted (Fig. 3b). In this model the

material follows a linear elastic branch up to tensile strength, ft, and after that the material fails and

cannot carry any stress.
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Fig. 3 Stress-strain relationship of (a) concrete in compression, (b) concrete in tension, and (c) reinforcing
steel
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The DIFt proposed by Ross et al. (1989) is used to take account of the strain rate effect on the

concrete tensile strength. For concrete under compression the DIFc used by Fujikake et al. (2000) is

adopted. That is,

(14)

(15)

where DIFt and DIFc denote the dynamic increase factor for concrete under tension and compression,

respectively,  is strain rate (sec−1), =1.2×10−5 (sec−1) and =1.0×10−7 (sec−1).

3.2. Steel constitutive law

A bilinear stress-strain relationship with linear unloading is used for steel bars (Fig. 3c). The DIF

proposed by Malvar (1998) is used to account for the strain rate effect on the yield, fy, and ultimate

strength, fu, of the reinforcing bars (Malvar 1998). That is

(16)

(17)

These relationships are valid for steels with a yield stress in the rage of 290≤ fy ≤ 710 MPa and

for strain rates 10−4
≤ ≤ 225 sec−1.

3.3. Shear cap for possible shear failure

In the present formulation a shear cap is used to take account of shear failure at section level. In

this study ultimate shear resistance of the sections Vr is taken from ACI-318 (2005) as

(18)

where b is the section width, d is the effective depth of the section, fyh is the yield strength of the

transverse reinforcement and Av and sh represent the area and spacing of the transverse reinforcement,

respectively. As Eq. (18) lacks consideration of the strain rate effect, it is conservative; however,

dynamic compressive strength of concrete can be used in Eq. (18) to partly take account of the

strain rate effect. 

It should be noted that such a simplistic cap model along with Navier-Bernoulli assumption

adopted for formulation limits the applicability of the element to cases where the shear deformation

and strength do not govern the member response, such as beams with span to depth ratios greater

than or equal to five.
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4. Dynamic equilibrium equations

The dynamic equilibrium equation of a discritised system in the instant t+Δt is 

(19)

where M is the mass matrix, C is the damping matrix, t+ΔtK(k−1) is the tangent stiffness matrix with

superscript (k) denoting the iteration number, t+ΔtR is the external load vector, t+ΔtF(k−1) is internal

force vector,  is the acceleration vector,  is the velocity vector and  is the vector of

displacement increment.

Using the Newmark implicit integration scheme and substituting the corresponding value of the

acceleration and velocity vectors in Eq. (19) leads to the following equations which are solved

iteratively:

(20)

(21)

(22)

(23)

In Eqs. (21) to (23), α and δ are Newmark integration parameters. In this paper the algorithm

proposed by Neuenhofer and Filippou (1997) is employed to calculate t+ΔtΔF(k−1) in Eq. (20) at each

stage of the iterative process. 

5. Numerical examples

5.1. Beam under impulse concentrated load

A simply supported beam subjected to two concentrated loads applied instantly at mid span is

analysed (Bathe and Ramaswamy 1979). The geometry of the beam section, the span and the details

are shown in Fig. (4). The material properties are fcp=26 MPa, Ec=42000 MPa, εc0=0.002, ft=3.1

MPa, fy=304 MPa, Es=206000 MPa, ρc=20 kN/m3 (concrete weight density) and ρs=69 kN/m3

(steel weight density). The applied loads consist of a 60 kN impulse load applied at time t=0 with

the load then maintained with increasing time.

One half of the beam was modelled by 3 elements within the flexibility method (Fig. 4). In the

flexibility formulation a composite Simpson’s integration scheme with 13 integration points through

the section depth is used. The distance between longitudinal integration points varies from 90 to 110

mm. The time history of mid span deflection is shown in Fig. (5). In this example, the damping

effect was neglected and a Newmark integration technique with α=0.25 and δ=0.5 and maximum

time step of 1.0 ms adopted for solving the incremental dynamic equilibrium equations. A lumped

mass matrix approach was adopted with a diagonal component scaling. The results are compared

M
t tΔ+

U
·· k( )

C
t tΔ+

U
· k( )

K
t tΔ+ k 1–( )

U
k( )Δ+ + R

t tΔ+
F

t tΔ+ k 1–( )
–=

U
··

U
· ΔU

k( )

K̂
t tΔ+ k 1–( )

U
k( )Δ RΔt tΔ+

F
k 1–( ) 1

tΔ
-----Ĉ
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with the 2D displacement based finite element modelling approach of Beshara (1993) and 3D

approach of Bathe and Ramaswamy (1979) using the finite element code ADINA. In the ADINA

analysis the strain rate effect is not taken into account and for this reason the value of the maximum

deflection compared with the results of the present study and with the rate dependent model of

Beshara (1993) is overestimated. It is observed that the correlation between the 1D frame element

result and the more expensive FE such as plane stress (Beshara 1993) and solid (Bathe and

Ramaswamy 1979) models is reasonable.

5.2. Seabold (1967) simply supported beam

In this example a simply supported beam (specimen WE5) tested by Seabold (1967) under the

simulated blast pressure is analysed. The geometry of the beam, section detail and pressure-time

history is shown in Figs (6) and (7), respectively, the material properties are, fcp=27 MPa, Ec=24000

MPa, εc0=0.003, ft=2.7 MPa, fy=480 MPa, Es=200000 MPa, ρc=21 kN/m3 and ρs=69 kN/m3. 

Fig. 4 Geometry of the beam and section details (Bathe and Ramaswamy 1979)

Fig. 5 Mid span deflection time history
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One half of the Seabold beam is modelled (including the cantilever) using 2 to 4 elements within

the flexibility method (Fig. 6). A composite Simpson’s integration scheme was adopted with 17

integration points through the section depth and the distance between longitudinal integration points

between 90 and 110 mm. A Newmark integration scheme was used for solving the incremental

dynamic equilibrium equations with α = 0.25, δ = 0.5 and maximum time step of 0.5 ms. A lumped

mass matrix approach was adopted with a diagonal component scaling method used for constructing

the matrix. The mid span deflection and velocity history (neglecting damping) are shown in Fig. (8).

In Fig (9a) the mid span deflection versus time obtained from the flexibility model is plotted for the

different number of elements. It is observed that the response obtained from the model with just 2

elements provides an acceptable accuracy.

The effect of the Rayleigh damping with a mass matrix multiplier of α=0.0005 and initial

stiffness matrix multiplier of b=0.01 on the mid span deflection of beam is investigated in Fig. (9b).

The permanent deformation of the beam obtained from present study is 18.4 mm, which compares

Fig. 6 Geometry of the beam and section details (Seabold 1967)

Fig. 7 Pressure time history (Seabold 1967)
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favourably with the experimental result of 20.8 mm and 19.7 mm in the analysis of Beshara (1993).

The analyses were performed on a Pentium-M notebook computer with a 1.6 GHz processor and

running Windows XP. The total analysis time for the model with 3 elements was 0.55 seconds for

60 steps, indicating the efficiency of the method.

5.3. Simple beam subjected to impact of dropping mass

A simply supported beam (specimen SS3a-1) tested by Saatci (2007) and subjected to impact of a

dropping mass is analysed. The geometry of the beam, the section details and impact load-time

history are shown in Fig. (10). The material properties for the specimen are: fcp=47 MPa, Ec=34000

MPa, εc0=0.0025, ft=3.2 MPa, fy=464 MPa, Es=195000 MPa, ρc=24 kN/m3 and ρs=70 kN/m3.

One half of the beam was modelled using 5 beam elements (Fig. 10a) with numerical integration

through the section depth using a composite Simpson’s integration scheme with 21 integration

points. The distance between the longitudinal integration points varied from 110 to 130 mm. In this

example, the Newmark integration technique with α=0.25 and δ=0.5 and maximum time step of

Fig. 8 Comparisons of time versus (a) mid span deflection and (b) mid-span velocity for FE model developed
with test data and analyses of other investigators

Fig. 9 Time versus mid-span deflection for (a) mesh refinement and (b) free vibration response with damping
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0.1 ms is used for solving the incremental dynamic equilibrium equations. A lumped mass matrix

approach is adopted with a diagonal component scaling method and Rayleigh damping employed

with a mass matrix multiplier of a=0.05 and initial stiffness matrix multiplier of b=0.0001.

Two analyses are undertaken, in the first the time history of the impact force, shown in Fig. (10b),

is imposed on the beam. The mid-span deflection versus time and the support reactions versus time

obtained from the analysis are shown in Figs. (11a) and (11b), respectively. It is observed that the

flexibility model developed here can reasonably predict the displacement and force response of the

beam. The total analysis time with 2000 time steps for the model with 5 elements was just 8.70

seconds. This compares with analysis times of more than 2 hours by Saatci and Vecchio (2005) to

analyse similar problems using displacement based plane stress finite elements and demonstrates the

superior efficiency of the model developed in this paper.

In a second analysis for this example, the mass and velocity of the impactor are input, in lieu of

the force-time history. In the literature different approaches with various levels of complexity and

accuracy, which mostly inspired from SDOF models, are available to estimate the impact force

(Krauthammer et al. 1990, Miyamoto et al. 1994). In this paper a simple method based on hard

impact model of CEB code (1988) is used to verify the applicability of the procedure for cases

Fig. 10 (a) Geometry of the beam, section details and FE model, and (b) impact force-time history of impact
test of Saatci (2007)
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inputting impact velocity of the impactor. The mass of the impactor, m, is attached to a spring that

is just working in compression and this system of mass-spring is attached to the beam mid-span.

The impact velocity of the dropping mass (v=8.0 m/sec) is imposed to the mass m and the ensuing

dynamic response is obtained. It is noteworthy that for this example the contact spring was replaced

by a rigid truss element that can carry compression only. The results of analysis obtained from this

procedure are given in Fig. 11 and shows good correlation with experimental data and leads to a

more accurate prediction of support reaction compared with other analytical procedures. It should be

noted that the accuracy of results in such a procedure may be sensitive to interface stiffness and

impact type (i.e., soft and hard). However, in this example the adopted assumptions have provided

reasonably good results.

5.4. Beam subjected to air blast pressure

In this example, beam B140-D2 of Magnusson and Hallgren (2004) subjected to uniform air blast

Fig 11 (a) Mid span deflection time history and (b) reaction time history of Saachi (2007) test

Fig. 12 Geometry of beam and section details for beam
B140-D2 of Magnusson and Hallgren (2004)
test

Fig. 13 Mid-span deflection versus support reaction
for beam B140-D2 of Magnusson and Hallgren
(2004) test
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pressure is analysed. The geometry of the beam and details of section is shown in Fig. (12). The

average maximum air blast pressure and corresponding impulse density are, pr=1.55 MPa and

i=8.34 kPa and the material properties are: fcp=92 MPa, Ec=45000 MPa, εc0=0.002, ft=3.5 MPa,

fy=555 MPa, Es=200000 MPa, ρc=24 kN/m3 and ρs=69 kN/m3. One half of the beam was modelled

using 5 flexibility-based elements (Fig. 12). A composite Simpson’s integration scheme with 15

integration points through the section depth was used.

The distance between longitudinal integration points varied from 55 to 70 mm. The damping

effect is neglected and a maximum time step of 0.05 ms was adopted for the analysis. The mid span

deflection versus support reaction is shown in Fig. (13) with a good correlation observed between

analytical model and test data. Furthermore, the failure mode predicted by analytical procedure is of

flexural type associate with yielding of steel bars, which is consistent with that recorded in the

experiment.

6. Conclusions

The capability of the flexibility formulation for dynamic analysis of reinforced concrete beams

subjected to high strain rate loads, such as impact of simulated blast and dropping mass, was

investigated. The effect of strain rate on the concrete and on the steel bars strength was taken into

account using the dynamic increase factor approach. It is shown that if the dominant failure mode is

of a flexural type, the classic fibre element approach accompanied with the flexibility method can

offer great efficiencies while maintaining good accuracy. Accordingly, the formulation and analytical

tool developed in this paper have a good potential to be used for nonlinear dynamic analysis of

reinforced concrete framed structures subjected to the impact of air blast loading.

It was shown that the proposed numerical procedure can incorporate the simplified model based

on mass-spring system to calculate the impact force of impacting object as well as the nonlinear

response of the structure. In cyclic/static analysis of frames, a single flexibility-based element

suffices to capture the nonlinear response of the element and this feature makes the flexibility

method superior to displacement-based element approaches. In dynamic analysis of beams subjected

to impact, due to the effects of higher modes, the beam should be modelled by a few elements to

capture the response reasonably. 
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