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Abstract. The paper explores the potential of Support Vector Machines (SVM) approach in predicting
28-day compressive strength and slump flow of self-compacting concrete. Total of 80 data collected from
the exiting literature were used in present work. To compare the performance of the technique, prediction
was also done using a back propagation neural network model. For this data-set, RBF kernel worked well
in comparison to polynomial kernel based support vector machines and provide a root mean square error
of 4.688 (MPa) (correlation coefficient=0.942) for 28-day compressive strength prediction and a root mean
square error of 7.825 cm (correlation coefficient=0.931) for slump flow. Results obtained for RMSE and
correlation coefficient suggested a comparable performance by Support Vector Machine approach to neural
network approach for both 28-day compressive strength and slump flow prediction. 

Keywords: 28-day compressive strength; slump flow; prediction; Support vector machines technique; neural
network.

1. Introduction

Different types of concrete like high performance concrete, self-compacting concrete, ready mixed

concrete etc., consist of some well-defined constituents such as cement, water, fine aggregate,

coarse aggregate etc. Concrete is the most important and significant structural material being used in

the construction industry. The strength of concrete is considered as one of the most important

property for a given concrete mix design. Traditionally, a concrete mix is designed based on the

code recommendations as well by using previous experiences. The tests for compressive strength

are carried out at about 7 or 28 days from the date of placing the concrete. If due to some

experimental error in designing the mix, the test results fall short of required strength, the entire

process of concrete design has to be repeated which may be a costly and time consuming process.

Thus, the need of some suitable methodology was felt to estimate the compressive strength of

concrete based on its constituents at the time of design, before placing it.

Prediction of compressive strength of concrete is important for concrete construction as it gives an

idea about the time for formwork removal, project scheduling and quality control. Several
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approaches using regression functions were proposed for predicting the concrete strength (Snell, et

al. 1989, Chengju 1989, Oluokun, et al. 1990, Popovics 1998). Lee, et al. (2007) estimated the

strength of ready-mixed concrete using support vector regression (SVR) approach. Traditional

modelling approaches are based on empirical relationships derived from the experimental data.

Within last decade, researchers have explored the potential of artificial neural networks (ANNs), a

nonlinear modeling approach, in predicting the compressive strength of the concrete due to its

ability to learn input-output relation for any complex problem in an efficient way. Several work

reported the use of neural network based modeling approach in predicting the concrete strength (Lai

and Serra 1997, Yeh 1998a, 1998b, 1999, Kasperkiewicz, et al. 1995, Sebastia, et al. 2003, Kim, et

al. 2004, Dias and Pooliyadda, 2001, Oh, et al. 1999, Hong-Guang and Ji-Zong, 2000, Ren and

Zhao 2002, Lee 2003). Ji and Lin (2006) proposed prediction models of strength and workability of

mortar based on artificial neural networks. The use of Neural Network in predicting the workability

which has direct effect on the strength of concrete has been reported by Yeh (2008).

In most of the studies, a back propagation neural network was used. A neural network model

requires no functional relationship among the variables, as is the case with most of other regression

analysis techniques. A neural network based modelling algorithm requires setting up of different

learning parameters (like learning rate, momentum), the optimum number of nodes in the hidden

layer and the number of hidden layers so as to have a less complex network with a relatively better

generalization capability. A large number of training iterations may force ANN to over train, which

may affect the predicting capabilities of the model.

Within last few years, another modeling technique called Support Vector Machines (SVMs),

proposed by Vapnik (1995) is being applied in the field of civil engineering (Dibike, et al. 2001, Pal

and Mather 2003). 

Self-Compacting concrete is defined as the type of high performance concrete, which fills all

corners of formwork without vibration. It has good deformability, high segregation resistance and no

blocking around reinforcement. SCC was developed initially in Japan in the 1980’s (Okamura 1997)

and later adopted in countries like USA, UK, Europe, and Asian countries as well. The successful

development of SCC must ensure a good balance between deformability and stability. It requires the

manipulation of several mixture variables to ensure acceptable rheological behaviour and proper

mechanical properties. Some guidelines which have been set for mixture proportioning of SCC are

i) reducing the volume ratio of aggregate to cementitious material; increasing the paste volume and

water-cement ratio (w/c); ii) controlling the maximum coarse aggregate particle size and total

volume; and iii) using various viscosity-enhancing admixtures (VEA) (Nagamoto and Ozawa, 1997).

Also, absence of theoretical relationships between mixture proportioning and measured engineering

properties of SCC makes it more complex. Some attempts have been made to describe these

properties using traditional regression analysis tools and statistical models (Sonebi 2004a, Sonebi

2004b). 

One major issue in the design of an artificial neural network is the determination of suitable

architecture. A back propagation neural network based modelling algorithm requires setting up of

different learning parameters (like learning rate, momentum etc), the optimal number of nodes in

the hidden layer and the number of hidden layers so as to have a less complex network with a

relatively better generalization capability. In most of the reported applications, selection of a number

of hidden layers and the number of nodes in hidden layer is done by using a rule of thumb or trying

several arbitrary architectures and selecting one that gives the best performance. Further, a suitable

value of parameters like learning rate and momentum is also required for selected hidden layers and
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nodes. Design of a neural network involves in using non-linear optimisation problem that provides a

local minima. During training process a large number of training iterations may force artificial

neural networks to over train, which may affect the predicting capabilities of the model. Several

studies suggested using a validation data set (i.e. a data set other than the training data set) to have

an idea about the suitable number of iterations for a specific data set. This may be a problem for

studies where number of data set is limited, like concrete strength predictions. Choice of a suitable

architecture has always been a problem with neural network approach and requires a lot of efforts

and computational cost. Presence of local minima due to the use of a non-linear optimization

problem with a back propagation neural network approach is another drawback while the advantage

of using Support Vector Machines is its speed and requiring no user-defined parameter. 

The objective of the present study was to examine the potential of support vector machines

(SVMs) for predicting the slump flow and 28-day compressive strength of SCC mixtures and was

found to work well in comparison to much used neural network approach (Nehdi, et al. 2001). The

complex relationship between mixture proportions and engineering properties of SCC is generated

based on existing data in the open Literature.

2. Support vector machines

Support vector machines (SVMs) are classification and regression methods, which have been

derived from statistical learning theory (Vapnik 1995). The SVMs classification methods are based

on the principle of optimal separation of classes. If the classes are separable – this method selects,

from among the infinite number of linear classifiers, the one that minimize the generalization error,

or at least an upper bound on this error, derived from structural risk minimization. Thus, the

selected hyper plane will be one that leaves the maximum margin between the two classes, where

margin is defined as the sum of the distances of the hyper plane from the closest point of the two

classes (Vapnik 1995).

If the two classes are non-separable, the SVMs try to find the hyper plane that maximizes the

margin and at the same time, minimizes a quantity proportional to the number of misclassification

errors. The trade off between margin and misclassification error is controlled by a positive constant

that has to be chosen beforehand. This technique of designing SVMs can be extended to allow for

non-linear decision surfaces. This can be achieved by projecting the original set of variables into a

higher dimensional feature space and formulating a linear classification problem in the feature space

(Vapnik 1995). The formulation of support vector machines so that it can be applied to regression

problems can be as given by Vapnik (1995) for ε-Support Vector Regression (SVR). The purpose of

the SVR is to find a function having at most ε deviation from the actual target vectors for all given

training data and have to be as flat as possible (Smola 1996).

3. Details of SVMs 

As discussed in previous section, in situations with non-linear decision surfaces, support vector

machines use a mapping to project the data in a higher dimensional feature space. To make

computation simpler, the concept of the kernel is introduced. A number of kernels are discussed in

the literature, but it is difficult to choose one, which gives the best generalisation with a given data
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set. As the choice of kernel may influence the prediction capabilities of the SVMs, present study

uses a polynomial

(1)

and a radial basis kernel 

(2)

where d and γ are kernel specific parameters. 

The use of SVMs requires setting of user-defined parameters such as regularisation parameter (C),

type of kernel, kernel specific parameters and error-insensitive zone ε. Variation in error-insensitive

zone ε found to have no effect on the predicted compressive strength and a value of 0.0010 was

chosen for all experiments. The optimum value of parameters C, d and γ were obtained after a large

number of trials by varying these values for different data sets used in present study. The correlation

coefficients and Root Mean Square Error (RMSE) values were compared to reach at a suitable

choice of these parameters. Cross-validation is used to generate the model with SVMs on the input

data set and predicting the 28-day compressive strength and slump flow of the data sets used in the

study. The cross-validation is a method of estimating the accuracy of a classification or regression

model. All computations were carried out using a PIV personnel computer with 256 MB of RAM.

It requires a small computational time to reach at a suitable choice of user-defined parameter with

both data sets. SVM software used in present study is based on sequential minimisation

optimisation (Platt 1999) as implemented by Witten and Frank (2000).

4. Database

The model’s success in predicting the behaviour of SCC mixtures depends on comprehensiveness

of the training data. Availability of large variety of experimental data is required to develop the

relationship between the mixture variables of SCC and its measured properties. The basic

parameters considered in this study were cement content, sand content, coarse aggregate content,

pulverised fly ash (PFA), water-to-powder ratio and superplasticizer dosage (Percentage of quantity

of superplasticizer with reference to total powder content i.e. Cement + PFA) added. The response

was derived for slump flow and 28-day compressive strength. The data were identified from the

literature having mixture component with comparable physical and chemical properties. The

exclusion of one or more of SCC properties in some studies and the ambiguity of mixture
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Table 1a Source of training data

S. No. Source of training data
No. of 

training data
Data used for prediction 

1. Bouzoubaa and Lachemi (2001) 9 Slump flow, 28-day compressive strength

2. Ghezal and Khayat (2002) 18 Slump flow, 28-day compressive strength

3. Bui, et al. (2002) 14 28-day compressive strength

4. Patel, et al. (2004) 21 Slump flow, 28-day compressive strength

5. Sonebi (2004) 18 Slump flow, 28-day compressive strength
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Table 1b Values of different parameters

Sr. 
No.

Cement 
(kg/m3)

PFA 
(kg/m3)

W/B
SP

 (%)
Sand

(kg/m3)

Coarse 
Aggregate
 (kg/m3)

Slump flow 
(cm)

28-day 
Compressive 

Strength (MPa)

Source of Training 
Data

1 290 100 0.45 0.80 913 837 43.40 42.70

Sonebi (2004)

2 250 261 0.55 0.50 478 837 70.50 17.00

3 210 100 0.65 0.80 910 837 57.50 19.10

4 250 160 0.55 0.50 742 837 62.50 24.10

5 210 220 0.45 0.80 768 837 55.50 26.70

6 290 100 0.65 0.20 709 837 62.30 26.60

7 290 220 0.45 0.20 625 837 34.50 32.90

8 250 160 0.55 0.50 742 837 60.50 26.00

9 250 160 0.55 0.50 742 837 62.50 28.50

10 250 160 0.55 0.50 742 837 60.50 26.40

11 250 160 0.55 0.00 739 837 41.90 27.30

12 317 160 0.55 0.50 594 837 69.70 29.10

13 210 220 0.65 0.20 562 837 73.70 10.20

14 250 160 0.55 0.50 742 837 60.00 25.30

15 250 160 0.38 0.50 919 837 20.00 36.30

16 250 160 0.55 1.00 746 837 79.00 26.70

17 250 160 0.72 0.50 566 837 88.00 11.00

18 183 160 0.55 0.50 891 837 36.10 22.10

19 220 180 0.39 0.35 916 900 59.00 49.00

20 220 180 0.39 0.35 916 900 59.00 49.00

21 160 240 0.39 0.35 886 900 63.00 44.00

22 193 158 0.39 0.35 1024 900 41.00 44.00

23 220 180 0.45 0.35 850 900 76.00 38.00

24 198 232 0.34 0.20 874 900 54.00 46.00

25 248 203 0.39 0.35 808 900 68.00 50.00

Patel, et al. 
(2004)

26 237 133 0.36 0.20 1034 900 33.00 49.00

27 220 180 0.39 0.35 916 900 57.00 49.00

28 237 133 0.43 0.50 960 900 65.00 46.00

29 275 155 0.43 0.50 827 900 81.00 48.00

30 280 120 0.39 0.35 946 900 51.00 45.00

31 170 200 0.43 0.20 930 900 60.00 31.00

32 220 180 0.39 0.60 916 900 77.00 43.00

33 220 180 0.39 0.35 916 900 60.00 47.00

34 220 180 0.39 0.10 916 900 38.00 44.00

35 198 232 0.36 0.50 872 900 71.00 52.00

36 220 180 0.39 0.35 916 900 58.00 45.00

37 220 180 0.33 0.35 982 900 35.00 51.00

38 170 200 0.43 0.50 928 900 76.00 33.00

39 275 155 0.43 0.20 830 900 48.00 36.00

40 247 165 0.45 0.12 845 846 24.00 34.60

41 238 159 0.40 0.29 844 844 24.00 37.80

42 232 155 0.35 0.38 846 847 24.00 48.30

NA - Not used for modelling slump flow
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Table 1b Continued.

Sr. 
No.

Cement 
(kg/m3)

PFA 
(kg/m3)

W/B
SP

 (%)
Sand

(kg/m3)

Coarse 
Aggregate
 (kg/m3)

Slump flow 
(cm)

28-day 
Compressive 

Strength (MPa)

Source of Training 
Data

43 207 207 0.45 0.40 845 843 23.00 33.20

Bouzoubaa
& Lachemi

(2001)

44 200 200 0.40 0.17 842 843 24.00 34.90

45 197 197 0.35 0.28 856 856 24.00 38.90

46 169 254 0.45 0.00 853 853 23.00 30.20

47 163 245 0.40 0.20 851 851 24.00 26.20

48 161 241 0.35 0.30 866 864 24.00 35.80

49 350 162 0.59 0.09 768 840 NA 51.70

50 349 162 0.57 0.15 779 852 NA 59.90

51 350 133 0.53 0.17 815 883 NA 55.30

52 350 111 0.51 0.16 831 900 NA 61.00

Bui, et al.(2002)

53 250 257 0.77 0.12 787 853 NA 51.50

54 427 115 0.46 0.13 779 844 NA 59.40

55 348 224 0.50 0.44 783 848 NA 58.60

56 350 90 0.49 0.15 852 923 NA 46.50

57 327 173 0.54 0.20 902 803 NA 61.60

58 380 145 0.48 0.10 788 854 NA 73.50

59 350 186 0.51 0.11 786 851 NA 70.40

60 380 145 0.48 0.14 988 659 NA 65.50

61 380 192 0.53 0.11 931 621 NA 67.80

62 275 250 0.67 0.10 775 840 NA 54.50

63 325 60 0.65 0.43 899 850 67.00 30.80

64 325 60 0.65 0.43 899 850 66.50 32.60

65 325 120 0.75 0.43 755 850 75.50 32.20

66 249 60 0.68 0.43 1079 850 20.20 24.00

67 325 60 0.85 0.43 722 850 88.50 13.30

68 370 96 0.57 0.25 833 850 24.00 39.50

69 400 60 0.63 0.43 718 850 78.50 30.40

Ghezal & Khayat
(2002)

70 325 60 0.65 0.43 899 850 62.50 35.30

71 370 24 0.69 0.62 770 850 86.00 18.70

72 325 0 0.55 0.43 1042 850 23.00 41.20

73 280 96 0.87 0.25 820 850 66.00 19.60

74 325 60 0.65 0.75 896 850 68.00 27.70

75 325 60 0.65 0.43 898 850 68.50 35.00

76 325 60 0.65 0.12 900 850 23.00 31.40

77 370 96 0.57 0.62 830 850 68.50 38.80

78 325 60 0.65 0.43 898 850 66.00 34.30

79 280 96 0.87 0.62 817 850 79.50 15.90

80 370 24 0.69 0.25 772 850 70.50 26.40

NA - Not used for modelling slump flow
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proportions and testing methods in others was responsible for setting the criteria for identification of

data. Table 1a, b gives the description of the data identified from the literature.

The training of Support Vector Machines was carried out using pair of input vector and output

vector. The Support Vector Machines was designed using 69 pairs of input and output vectors for

slump flow and 80 data for 28-day compressive strength prediction. The data sets were collected

from studies by Bouzoubaa and Lachemi (2001), Ghezal and Khayat (2002), Bui, et al. (2002),

Patel, et al. (2004) and Sonebi (2004a, b) as given in table 1a and values of different parameters as

given in table 1b . Input vector consisted of mixture variables and an output vector of one element

i.e. slump flow and 28-day compressive strength. For slump flow and 28-day compressive strength

prediction, the input parameters were weight of cement (kg/m3), sand (kg/m3), coarse aggregate (kg/

m3), water-binder ratio, superplasticizer (%) and PFA (kg/m3). A back propagation neural network

was also used to compare its performance with Support Vector Machines based approaches. 

5. Results and analysis

The acceptance/rejection of the model developed was determined by its ability to predict the

slump flow and 28-day compressive strength of SCC. Also, a successfully trained model is

characterized by its ability to predict slump flow and 28-day compressive strength values for the

data it was trained on. Several trials were carried out to find the suitable choice of parameter C and

kernel specific parameters in predicting the strength of high strength concrete data. Table 2 gives the

values of user-defined parameters for both polynomial and RBF kernels in predicting the 28-day

concrete strength and slump flow. A 10-fold cross validation was used to predict the slump flow

and 28-day compressive strength for the data set used in this study. The cross validation is the

method of accuracy of a classification or regression model. The input data set is divided into several

parts (a number defined by the user), with each part intern used to test a model fitted to the

remaining part. The correlation coefficient and root mean square error (RMSE) was used to judge

Table 2 Values for various parameters of Support Vector Machines

RBF kernel Polynomial kernel

Parameter C γ C D

28-day compressive strength (MPa) 20 0.25 20 2.0

Slump flow(cm) 2 4 2 2.0

Table 3 Summary of coefficients by Neural Network (NN) and Support Vector Machines

Methodology Property Correlation 
Coefficient

Mean Absolute 
Error

Root Mean 
Square Error

NN
Slump flow (cm) 0.914 7.085 8.778

28-day compressive Strength(MPa) 0.906 4.819 6.005

SVM(rbf)
Slump flow (cm) 0.931 5.606 7.825

28-day compressive Strength(MPa) 0.942 3.695 4.688

SVM(poly)
Slump flow (cm) 0.916 6.286 8.817

28-day compressive strength (MPa) 0.935 3.888 5.057
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Fig. 1 Graph for actual v/s predicted slump flow (cm) by using Radial basis kernel of support vector machines

Fig. 2 Graph for actual v/s predicted slump flow (cm) by using polynomial based kernel of support vector machines

Fig. 3 Graph for actual v/s predicted strength (MPa) by using radial basis kernel of support vector machines
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the performance of Support Vector Machines as well of the neural network approach in predicting

the slump flow and strength.

Table 3 provides the correlation coefficient and RMSE obtained with this data using Support

Vector Machines to predict the slump flow and 28-day compressive strength. To compare the

performance of Support Vector Machines, graphs between actual and predicted slump flow and 28-

day compressive strength were plotted. The performance of Support Vector Machines approach in

predicting the slump flow is shown in Fig. 1 and Fig. 2 for SVM (RBF) and SVM (Polynomial)

respectively and for predicting 28-day compressive strength for this data set is shown in Fig. 3 and

Fig. 4 for SVM (RBF) and SVM (Polynomial) respectively. Results suggest that most of the points

are lying within ±20% of the line of perfect agreement, which suggest that Support Vector

Machines approach can effectively be used to predict the compressive strength for self-compacting

Fig. 4 Graph for actual v/s predicted strength (MPa) by using polynomial based kernel of support vector
machines

Fig. 5 Actual v/s Predicted value for Slump Flow (cm) by Neural Network
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concrete data. A correlation coefficient of 0.942 and 0.935 (RMSE=4.688 and 5.057) were achieved

with support vector machines radial based and polynomial based approaches respectively. Results

suggested a better performance by Support Vector Machines for this data set in slump flow

prediction also. Most of the points are again lying within ±20% of the line of perfect agreement and

a correlation coefficient of 0.931 and 0.916 (RMSE=7.825 and 8.817) were achieved with support

vector machines radial based and polynomial based approaches respectively.

To compare the performance of Support Vector Machines, a back propagation neural network

based modelling approach was used. An Architecture performing well for both data sets is chosen

after a large number of trials. The back-propagation neural network used for slump and strength

Fig 6 Actual v/s Predicted value for Strength (MPa) by Neural Network

Fig. 7 Response Surface Diagram for Interaction between C and Gamma for Strength
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prediction uses a learning rate of 0.3-momentum value as 0.2 and one hidden layer with six

numbers of nodes; weights and biases were initialised randomly. Correlation coefficient and RMSE

achieved by using neural network modelling approach for strength and slump prediction are given

in table 3. A comparison of results obtained by Support Vector Machines and neural network

approach suggest a comparable performance by both modelling approaches for both strength and

slump prediction. Fig. 5 and Fig. 6 show the plot between the actual and predicted values of slump

flow and 28-day compressive strength by neural network approach.

6. Conclusions

 

Results from this study suggested that Support Vector Machines modelling approach perform well

in predicting both 28-day compressive strength and slump flow for the SCC data set used in present

study. The optimum value of parameters C, d and γ were obtained as 20, 2 and 0.25 respectively,

after a large number of trials by varying these values for different data sets used in present study.

Further enhancement of model can be achieved by using new data developed during the actual

designing of SCC mixtures. The SCC mixture can be designed as per specifications, and then

presented to the Support Vector Machines model to predict its properties. The results obtained

suggest that Support Vector Machines based approach can effectively be used to analyse the

complex relationship between various parameters used in predicting the 28-day compressive

strength and slump flow of self-compacting concrete as an alternative to neural network approach. It

was observed that in comparison to neural network, Support Vector Machines approach requires less

number of user-defined parameters to be set and also involves using a small computational cost, as

choice of suitable architecture has always been a problem with neural network approach and

requires lot of efforts and computational cost.

Fig. 8 Response Surface Diagram for Interaction between C and Gamma for Slump flow
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