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Abstract. Increasingly numerical (finite element) modeling of concrete hinges on our ability to develop
a representative volume element with all its heterogeneity properly discretized. Yet, despite all the
sophistication of the ensuing numerical models, the initial discretization has been for the most part
simplistic. Whenever the heterogeneity of the concrete is to be accounted for, a mesh is often manually
crafted through the arbitrary inclusion of the particles (aggregates and/or voids) in an ad-hoc manner. This
paper develops a mathematical strategy to precisely address this limitation. Algorithms for the random
generation and placement of elliptical (2D) or ellipsoid (3D) inclusions, with possibly radiating cracks, in
a virtual concrete model are presented. Collision detection algorithms are extensively used. 

Keywords: composites; mesoconcrete; concrete; representative equivalent volume.

1. Introduction 

Concrete is a particularly complex and heterogeneous material which is still not fully understood.
Laboratory tests which could elucidate some of its most intriguing behavior are not always easy to
perform, and (as is often done in numerous scientific endeavors) we often replace physical tests
with numerical simulation. Numerical models, accounting for the heterogeneity of the concrete,
have been used to investigate its effective elastic, thermal, and transport characteristics. 

Numerical (finite element) simulation of concrete must begin with a numerical model (i.e. finite
element  mesh) which is representative of its heterogeneity through a representative volume element
(RVE). Ideally, a granulometric curve distribution, such as the one of Fuller and Thompson (1907)
should be emulated. This is a particularly difficult task in which various levels of simplifications
have been adopted. 

The critical role played by the aggregates in triggering the formation of crack propagation, and
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thus a nonlinear response of the RVE, was first highlighted by the experimental work of Hsu, et al.
(1963) and Slate and Olsefski (1963). On the other hand, the earliest work in numerical concrete
can be traced to the work of Roelfstra, et al. (1985) which has set the stage to numerous
subsequent “meso-concrete” (termed coined for the first time) simulation. The problem of mesh
generation for numerical concrete is a particularly challenging task, and in the earliest work those
meshes were essentially hand-crafted, i.e., they were not the result of a rigorous methodology
which seeks to randomly place a properly scaled set of aggregates. Indeed, one of the earliest
mesh developed by Willam, et al. (1989) does appear againin more recent work by Carol and
López (2001) and Willam, et al. (2005). Most recently, Leite, et al. (2007) presented a model for
the simulation of fracture in cementitious material based on a mathematical modeling of the
heterogeneity which bears great similarity to the model proposed in this paper (albeit described in
much less details). 

Currently, amongst the most advanced models for heterogeneous concrete are those of Roberts
and Garboczi (2002) and Cusatis, et al. (2003). Alternatively, very few papers have addressed
exclusively the simulation of aggregate distribution. Zheng, et al. (2003) developed such a 2D
model for circular aggregates, albeit not in the context of a finite element simulation, but to
replicate the Fuller distribution. 

To generate representative volume elements (RVE) of heterogeneous materials, we need to
simulate the placing of concrete. In this process, particles are to be randomly placed inside a cylinder at
random orientations. Clearly, particles can not overlap, hence there is a need to implement a collision
detection mechanism. Furthermore, the viscosity of the cement ensures that there is a minimum
distance between aggregates. 

To address the aforementioned issues, this paper will develop a numerical algorithm to generate a
2D (rectangular) or 3D (hexagonal or cylindrical) representative volume element (RVE) 

2. Mathematical model of the heterogeneity

In a 2D model, voids and inclusions are assumed to be elliptical in shape with a parametric
representation. For collision detection, and for inclusions without or with one or two radiating
cracks, we introduce the concept of Transformed Particle (TP). 

In 2D, the TP is defined as an ellipse which completely surrounds the inclusion and its eventual cracks.
This ellipse will in turn be characterized by its center ( ), the length of its semi-major axis (aT), the
length of its semi-minor axis (bT), and the rotational angle with respect to the x axis ( ).

The transformed shapes and the characteristics of each inclusion type are summarized in Fig. 1
and in table 1 which identifies the four possible configurations: ellipse, crack, ellipse with one or
two radiating cracks. 

In 3D case, we define the TP as the sphere completely surrounding the inclusion or crack with the
eventual cracks. The shpere is then in turn characterized by its center and radius. The transformed
shapes and the characteristics of each inclusion type are summarized in Fig. 1 and in Table 2. 

Ellipse: The analytical equation of an ellipse centered at ( ) which major axis is at an angle α
with respect to the x axis, Fig. 2, is given by 

(1)

xc
T  yc

T,
αT

xc yc,

x′( )2

a2
---------- y′( )2

b2
----------+ 1=
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Table 1 Parameters defining a TP in 2D 

Type aT bT αT

1 xc yc a b α

2 user defines β

3 a β

4 xc yc max(a,b) β

Table 2 Parameters defining a TP in 3D 

Type RT

1 xc yc zc max (a, b, c)

2 max (acr, bcr)

3 xc yc zc RT

4 xc yc zc RT

xc
T yc

T

xt1
L
2
--- βcos+ yt1

L
2
---sinβ+

L
2
---

x1 x2+
2

--------------
y1 y2+

2
-------------- 1

2
---max a b,( ) 1

2
--- x1 xc–( )2 y1 yc–( )2++

x1 xc–( )2 y1 yc–( )2+

xc
T yc

T zc
T

xc
cr yc

cr zc
cr

Fig. 1 2D and 3D particle transformation 
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where

(2)

where a11 = cos α, α12 = sin α, α21 = −sin α and α22 = cos α. Vectorially, the parametric equation of
an ellipse is given by Fig. 2: 

(3) 

Ellipsoid: Similarly, the analytical equation of an ellipsoid centered at (xc, yc, zc) with three
rotational angles α, β and γ with respect to the x, y and z axes, respectively, Fig. 3 is given by: 

(4)

where 

(5)

x′
y′⎩ ⎭

⎨ ⎬
⎧ ⎫ a11 a12

a21 a22

x xc–

y yc–⎩ ⎭
⎨ ⎬
⎧ ⎫

=

r c a cos θ( )u b θ( )vsin++   for  0 θ 2π≤ ≤,=

x′( )2

a2
---------- y′( )2

b2
---------- z′( )2

c2
----------+ + 1=

x′
y′
z′⎩ ⎭

⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫ a11 a12 a13

a21 a22 a23

a31 a32 a33

x xc–

y yc–

z zc–⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

Fig. 3 General representation of ellipsoid 

Fig. 2 General representation of an ellipse 
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where 

a11 = cosβ cosγ
a12 = −cosβ sinγ
a13 = sinβ
a21 = cosα sinγ + sinα sinβ cosγ
a22 = cosα cosγ sin − sinα sinγ (6)
a23 = −sinα cosβ
a31 = sinα sinγ − cosα sinβ cosγ
a32 = sinα cosγ + cosα sinβ sinγ
a33 = cosα cosβ

The corresponding parametric representation of the ellipsoid, Fig. 3, becomes 

(7)

Sphere: The analytical equation of a sphere of radius r centered at the origin (0, 0, 0), is 

(8)

In general, the sphere of radius r centered at (xc, yc, zc) is represented by 

(9)

3. Collision detection algorithms

Once the (randomly generated) location of each particle has been determined inside the RVE, we
must ascertain that the transformed particle will not collide with either another one or a wall. If
there is no collision, then we place the particle, otherwise the particle is shifted (as discussed
below). 

Hence, a collision detection algorithm must ensure that the distance between the transformed
particle and another one (or a wall) is at least equal to the (user defined) minimum distance Dmin.
To satisfy this physical requirement, the algorithm must determine if two entities (line or ellipse in
2D and plane or sphere in 3D) intersect, and the distance between them. 

3.1. 2D formulation 

3.1.1. Ellipse and line
Since the RVE is a rectangular entity, we must ascertain that there is no collision between a

particle and the boundary (aggregate and cylinder). 
Intersection: Given an ellipse characterized by the coordinates of its center (xc, yc), length of the

semi-major axis = a, length of the semi-minor axis = b, and the orientation of its semi-major axis α
with respect to the x axis and a vertical line defined by x = x1 = constant, we first substitute x = x1

into Eqs. (1), and (2) and simplify

r c a θ( )cos φ( )cos u b θ( ) φ( )υsincos+ +=

 c θ( )wsin+ for
π
2
--- θ π

2
---  

π
2
---–, φ π

2
---≤ ≤ ≤ ≤–

x2 y2 z2+ + r2=

x xc–( )2 y yc–( )2 z zc–( )2+ + r2=
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Ay2 + By + C=0  (10)

where 

(11)

The y coordinates of the intersection points can be determined from Eq. (10)

(12)

Hence, there will two intersection points if and only if

(13)

If B2 − 4AC = 0, there will be only one intersection at (x1,−B/2A). The intersection between an
ellipse and a horizontal line (y = constant) can be handled in a similar manner. 

Distance: If there is no intersection between the ellipse and the line, we seek the distance
between those two entities. For illustrative purposes, we restrict our self to the distance between an
ellipse and a vertical line, Fig. 4. 

A
a11

2

a2
------

a22
2

b2
------+=

B
2daa11

a2
---------------

2dba22

b2
---------------+=

C
aa

2

a2
-----

db
2

b2
----- 1–+=

da a11x1 a11xc a12yc––=

db a21x1 a21xc a22yc––=

y1 2⁄
B– B2 4AC–±

2A
-------------------------------------=

B2 4AC 0≥–

Fig. 4 Distance between an ellipse and a vertical line
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We rewrite the parametric equation of the ellipse, Eq. (3), as 

(14)

while the one of the line is given by

(15)

From Fig. 4, the distance between the ellipse and the line is given by

(16)

We define the function F as half of the squared distance D

(17)

Hence, the problem of determining the (minimum) distance between the ellipse and the line is
recast as the determination of y and θ which minimize the function F in Eq. (17), or 

(18)

We thus have a system of two (nonlinear) equations in terms of two unknowns (y and θ ). The
Newton-Raphson method, (Press, et al. 1988) is used to solve this nonlinear problem. Once we
determine the two variables, then coordinate (xe, ye) of the point having the angle θ from the local
X' axis on the ellipse can be determined and the actual distance d can be simply determined from

3.1.2. Two ellipses
Intersection: Given two ellipses, E1 and E2 characterized by center point (xci, yci), the 2 semi axes

(ai, bi) and the rotational angle αi, (i=1, 2). We assume that a2 is the longest of the semi-major axis,
and hence ensure that E2 can not lie entirely inside E1. As will be shown later, we place the
inclusions in ascending order (of size) inside the RVE.

To test for the intersection of two ellipses, we must determine if one of the ellipses is not fully
contained by the other, or if the two ellipses intersect at two points.

● Ellipse Embedded into another:
We first check if E1 is not fully inside E2. We substitute Eq. (2) into Eq. (1), rearranging the

equation we obtain

(19)

where

U
xc

yc⎩ ⎭
⎨ ⎬
⎧ ⎫

a  θ
αcos

αsin⎩ ⎭
⎨ ⎬
⎧ ⎫

cos b  θ
αsin–

αcos⎩ ⎭
⎨ ⎬
⎧ ⎫

sin+ +=

V
x1

y⎩ ⎭
⎨ ⎬
⎧ ⎫

=

D V U–=

F
1
2
--- V y( ) U θ( )–

2
=

∂F
∂y
------ V U–( ) ∂V

∂y
------⋅ 0= =

∂F
∂θ
------ V U–( ) ∂U

∂θ
-------⋅ 0=–=

d xe x1–( )2 ye y–( )2+=

f Ax2 By2 Cxy Dx Ey F+ + + + +=
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(20)

Then, to determine whether the center of E1 is inside E2, f in Eq. (19) is evaluated by substituting
x, y with xc1, yc1. If f is less than or equal to zero, the center of E1 is inside E2, otherwise, it is
outside. 

● E1 and E2 are separated 
If the center of an ellipse is not inside the other one, then to test for intersection we must first

perform a so-called preparatory transformation process, Fig. 5: 
1. Transform E2 into a unit circle 
2. Transform E1 into the coordinate system of the transformed ellipse E2 in step 1 
3. Rotate the coordinate system of the transformed E2 until the the axes of E1 are parallel to the

new coordinate axes. 
Following the preparatory transformation process, we do have a new coordinate system in which

E2 is now a unit circle which has its center at the origin and E1 remains an ellipse. Therefore,
checking intersection of two ellipses is reduced to checking the intersection of the unit
transformed circle E2 and the transformed ellipse E1 in the new coordinate system. 

From Fig. 5, we assign xiyi as the local coordinate systems for ellipse Ei. Therefore, the equation
of the ellipse E1 and E2, in their respective local coordinate systems, is given by 

(21)

(22)

Hence, the preparatory process proceeds as follows: 
1. Transformation of E2 into a unit circle: We first define the new coordinate system ,
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related to the original one x2y2 through 

(23)

Then substituting x2 and y2 in Eq. (23) into Eq. (22), we obtain 

(24) 

Eq. (22) of ellipse E2 is now transformed into the one of a unit circle Eq. (24) in 
coordinate system, Fig. 5. 

2. Transform E1 into the coordinate system of the transformed ellipse E2: Ellipse E1 is now
transformed into the coordinate system  as follows 

(25) 

where 

x2 a2x2′=

y2 b2y2′=

x2′( )2 y2′( )+ 1=

x2′ y2′–

x2′ y2′–

x1

y1⎩ ⎭
⎨ ⎬
⎧ ⎫ c1 s1

s1– c1

c2 s2–

s2 c2

a2x2′
b2y2′⎩ ⎭

⎨ ⎬
⎧ ⎫ xc2 xc1–

yc2 yc1–⎩ ⎭
⎨ ⎬
⎧ ⎫

+
p1x2′ q1y2′ r1+ +

p2x2′ q2y2′ r2+ +⎩ ⎭
⎨ ⎬
⎧ ⎫

= =

Fig. 5 Preparatory Transformation Process 
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c1 = cosα1 
s1 = sinα1 
c2 = cosα2 
s2 = sinα2 
p1 = c1 c2 a2 + s1 s2 a2 
q1 = s1 c2 b2 − c1 s2 b2 (26)
r1 = c1 xc2

 − c1 xc1
 + s1 yc2

 s1 yc1
 

p2 = c1 s2 a2 − s1 c2 a2 
q2 = s1 s2 b2 + c1 c2 b2 
r2 = −s1 xc2

 + s1 xc1
 + c1 yc2

 − c1 yc2
 

Then, substitute values of x1 and y1 in Eq. (25) into Eq. (21) and rearrange it. We will then obtain
the equation of the transformed ellipse E1 in the coordinate system  asgiven by 

(27)

where 

(28)

3. Rotate the coordinate system: rotate the coordinate system  until the coordinate axes
becomes parallel to the ellipse E1’s axes. From Eq. (27) if , then the coordinate system

 can be rotated until the coordinate axes becomes parallel to the ellipse E1’s axes by
determining the eigenvalues λ1,λ2 and corresponding normalized eigenvectors 

and then defining the new coordinate system UV which is related to coordinate system 
through 

 (29)

x2′ y2′–

A11 x2′( )2 A22 y2′( )2 2A12x2′ y2′ B1x2′ B2y2′ C1+ + + + + 0=
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2
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2
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2
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2
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2
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2
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2

------------+=
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2
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2

-----
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2
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2
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x2′ y2′–
A12 0≠

x2′ y2′–

e1 e11 e21,( ) and e e12 e22,( ) of 
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 A12 A22

= =

x2′ y2′–

x2′
y2′⎩ ⎭

⎨ ⎬
⎧ ⎫  e11 e12 

e21 e22

u

ν⎩ ⎭
⎨ ⎬
⎧ ⎫
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Substituting  and  in Eq. (29) into Eq. (27), we obtain 

(30)

where

(31)

Rearraging Eq. (30), we obtain 

(32)

where 

(33)

or

(34)

Hence, the ellipse E1 in the new coordinate UV has center coordinates

(35)

where one semi axis length is given by 

(36)

along direction =(e11, e21) and the other axis length is given by 

(37)

along direction =(e12, e22) 
Following this prepatory process, both ellipses are now in the new coordinate system shown in

step 3 of Fig. 5. 
Now, we can proceed to test the intersection of the 2 ellipses by checking the intersection of the

transformed unit circle E2 and the transformed ellipse E1. The equation of the transformed unit
circle E2 is given by 

(38)

We thus substitute  from Eq. (38) into Eq. (34) and rearrange 

(39)

x2′ y2′
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2 λ2v
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a C
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b C
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u2 v2+ 1=

u 1 v2–=

P1v
2 P2v P3+ + P4 1 v2–=
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where

(40)

We now have a nonlinear equation in terms of ν in Eq. (39) and it is again solved by the Newton-
Raphson Method (Press, et al. 1988). If a solution does exist, the two ellipses intersect, otherwise,
there is no intersection between the 2 ellipses. 

Distance: Next we seek to determine the distance between the two ellipses E1 and E2 using a
procedure similar to the one adopted to determine the shortest distance between an ellipse and a
line. 

With reference to Fig. 6 we begin with the parameteric representation of the two ellipses 

(41)

(42)

The shortest distance between the 2 ellipses is thus given by

(43)

We again define a function F which is half of the squared distance D and is given by 

(44)

To determine the distance between 2 ellipses, F must be minimized, and such a minimization
exists if 

P1 a2 b
2

–=

P2 2a2vc–=

P3 b
2

a2b
2

– b
2
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2 a2vc
2+ +=

P4 2b
2
uc–=

U
xc1

yc1⎩ ⎭
⎨ ⎬
⎧ ⎫

a1  θ1

 α1cos

 α1sin⎩ ⎭
⎨ ⎬
⎧ ⎫

cos b1  sin θ1

 α1sin–

 α1cos⎩ ⎭
⎨ ⎬
⎧ ⎫

+ +=

V
xc2

yc2⎩ ⎭
⎨ ⎬
⎧ ⎫

a2  θ2

 α2cos

 α2sin⎩ ⎭
⎨ ⎬
⎧ ⎫

cos b2  sin θ2

 α2sin–

 α2cos⎩ ⎭
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⎧ ⎫

+ +=

D V U–=

F
1
2
--- V θ1( ) U θ2( )–

2
=

Fig. 6 Distance between 2 ellipses



Numerical modeling of heterogeneous material 187

(45)

and

(46)

where c1, s1, c2, and s2 are equal to cosθ1, sinθ1, cosθ2, and sinθ2, respectively.
To solve for θ1 and θ2, we need two additional equations 

(47)

(48)

Eqs. (45)-(48) constitute a set of nonlinear equations which will again be solved through the
Newton-Raphson method, (Press, et al. 1988), to determine c1, s1, c2, and s2. Once those are
obtained, we can easily determine θ1 and θ2, the coordinates of the points on both ellipses which
have the shortest distance between them, and the actual distance between the 2 ellipses. 

3.2. 3D Formulation 

3.2.1. Sphereand REV surface
The sphere (bounded particle) shouldn’t intersect with surface of the REV and at least should

have the minimum distance Dmin from the surface. Consider the sphere represented by its center (xc,
yc, zc) and its radius (r). Checking for the intersection and the minimum distance between the sphere
and both types of REV surface, box and cylinder, are considered in this section. 

Box surface: The intersection of the sphere and a plane parallel to yz plane is first considered.
The plane is defined by x−x1= 0. Hence, intersection occurs if xc + r + Dmin ≥ x1 The equations for
checking the intersection of the sphere and the other box surface and their minimum distance are
summarized in Table 3. 

From Fig. 7(a), the intersection of the given sphere with the surface can be checked by
considering the intersection of the sphere and the surface in the plane of z = zc as shown in Fig.
7(b). The equation of the intersection is given by 

(49)

where d is a distance from the origin to the center of the sphere. The sphere should have at least

∂F
∂θ1

-------- V U–( ) ∂V
∂θ1

--------⋅ f1 θ1 θ2,( ) f1 c1 s1 c2 s2, , ,( ) 0= = = =

∂F
∂θ2

-------- V U–( )–
∂V
∂θ2

--------⋅ f2 θ1 θ2,( ) f2 c1 s1 c2 s2, , ,( ) 0= = = =

f3 c1 s1,( ) c1
2 s1

2+ 0= =

f4 c2 s2,( ) c2
2 s2

2+ 1= =

d r R≥+

Table 3 Equations for checking the intersection of the sphere and the box surface and their minimum 
distance 

Plane Intersection Equation Minimum Distance Equation

x=0 xc−r ≤ 0 xc−r−Dmin ≤ 0
x=W xc+r ≥ W xc+r+Dmin ≥ W
y=0 yc−r ≤ 0 xc−r−Dmin ≤ 0
z=0 zc−r ≤ L xc−r−Dmin ≤ 0
z=H zc+r ≥ H xc+r+Dmin ≥ H
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minimum distance Dmin from the surface. Therefore, the equation for checking the minimum
distance between the sphere and the surface is given by 

(50)

3.2.2. Two spheres
Intersection: Given two spheres, S1 and S2 characterized by center point (xci, yci, zci) and radius

R d r+( )– Dmin≥

Fig. 7 Intersection of the sphere and the cylindrical surface 

Fig. 8 Representation of two spheres 
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(ri), Fig. 8. It must be verified that S2 is not entirely inside S1. If the center of S1 is contained in S2,
S1 intersects S2. If the center of S1 lies outside S2, then S1 intersects S2 if and only if the surfaces
intersects.

• Sphere embedded into another: We first check if the center of S1 is inside S2. From Eq. (9) we
obtain

(51)

and hence, to determine whether the center of S1 isinside S2, we evaluate f from Eq. (51) by substituting x,
y and z with xc1, yc1 and zc1, respectively. If f is less than or equal to r2, the center of S1 is inside S2,
otherwise, it is outside. 

• S1 and S2 are separated if the center of an sphere is not inside the other one, then to test for
intersection it can be done by calculating the distance between their centers and then comparing it
to the sum of the radii. The two spheres intersect if 

(52)

Distance: Next we seek to check the minimum distance between the two shperes S1 and S2 which
should have a minimum distance of Dmin if 

(53)

4. Adjusting particle location

If a particle collides with the matrix boundaries or with another ellipse (in 2D) or ellipsoid (in 3D),
then it must be repositioned such that the distance between the two entities d is larger than Dmin.

f x xc2–( )2 y yc2–( )2 z zc2–( )2+ +=

xc1 xc2–( )2 yc1 yc2–( )2 zc1 zc2–( )2+ + r1 r2+≤

xc1 xc2–( )2 yc1 yc2–( )2 zc1 zc2–( )2+ + r( 1– r2) Dmin≥+

Fig. 9 Moving direction away from matrix boundary 
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4.1. With respectto matrix boundary

In the first case, we consider adjustment if a particle collides with the boundary of the matrix. The
particle will be shifted to a new position in the direction orthogonal to the boundary. If we wish to
translate the ellipse or the ellipsoid by a distance d away from the matrix boundary (in terms of
Dmin and Dm which are the minimum allowable and the old distance between particle and matrix
boundary respectively), then d can be obtained from, Fig. 9, 

(55)

4.2. With respect to another particle

In the second case, we consider adjustment if a particle collides with another or if the shortest
distance between particles is less than the minimum allowable one. The particle will be shifted
along the direction of the shortest distance between the boundaries. Thus, if we need to shift a
particle by a distance d, and De is the shortest distance between particles at the old position and
Dmin the minimum allowable distance, then from Fig. 10, d can be determined from

(55)

d
Dm Dmin Case  a( )+

Dmin Dm– Case b( )⎩ ⎭
⎨ ⎬
⎧ ⎫

=

d
De Dmin Case  a( )+

Dmin De– Case b( )⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Fig. 10 Moving dircetion away from the allocated particle
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5. Particle placement algorithm

Following the preceding coverage, we now present the actual algorithm for random placement of
particles inside a matrix, Fig. 11. 

6. Computer implementation

The various algorithms previously presented have been programmed in C++ in a Windows based
application (PARSIFAL, PARticle Simulator For AnaLysis). This application is the program used to
generate hetero-geneous material model in RVE, and then it can be used to generate finite difference
grid or finite element meshes through tools such as T3D, (Rypl 1998). Fig. 12 illustrated the mesh
generation process in 2D.

Fig. 11 Particle generation algorithm (2D example) 



192 W. Puatatsananon, V. Saouma and V. Slowik

Fig. 14 3D Finite element mesh

Fig. 12 Particle definition and corresponding finite difference grid and finite element mesh in 2D

Fig. 13 Mesh and boundary conditions used in the simulation
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7. Application 

A 2D example of application for the developed mesh generation algorithm is the meso-mechanical
simulation of drying shrinkage in concrete, (Segura and Carol 2004). Fig. 13 illustrates the original
mesh with the top surface exposed to 30% relative humidity while the other sides remain sealed.
Mono-size circular aggregates have been generated with adiameter of 6 mm (aggregate volume
fraction equal to27% of the total volume). 

Another application is the meso-mechanics investigation of a concrete cylinder with 20 elliptical
aggre-gates. The 300 by 150 mm cylinder has an 11% fraction of aggregates with a Young modulus
ten times higher the one of the cement paste. As a result the effective Young modulus is 13.6%
higher than the one of the cement paste. This is close to the theoretical increase of 9.5% for
spherical inclusions (Christensen 1979). 

8. Conclusions 

The mathematical procedure to implement a numerical model for a representative volume element
of hetero-geneous materials (such as concrete) is presented. The model idealizes particle as either
ellipses or ellipsoids (2D and 3D respectively) which can be randomly placed in a rectangular or
cylindrical environment. 

A numerical example for the simulation of dry shrinkage of concrete, using a finite element mesh
generated by the proposed procedure, is presented. 
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