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Numerical simulation of fracture and damage 
behaviour of concrete at different ages

Nanguo Jin, Ye Tian and Xianyu Jin†

Department of Civil Engineering, Zhejiang University, Hangzhou 310027, China

(Received September 16, 2006, Accepted June 29, 2007)

Abstract. Based on the experiment results, the damage and fracture behavior of concrete at the ages of
1d, 2d, 7d and 28d, in three-point bending and uniaxial tensile tests, were simulated with a finite element
program, ABAQUS. The critical stress intensity factor  and the critical crack tip opening displacement
(CTODC) of concrete were calculated with effective-elastic crack approach for the three-point bending test
of grade C30 concrete. Based on the crack band model, a bilinear strain-softening curve was derived to
simulate the LOAD-CMOD curves and LOAD-Displacement curves. In numerical analysis of the uniaxial
tension test of concrete of grade C40, the damage and fracture mechanics were combined. The smeared
cracking model coupling with damaged variable was adopted to evaluate the onset and development of
microcracking of uniaxial tensile specimen. The uniaxial tension test was simulated by invoking the
damage plastic model which took both damage and plasticity as inner variables with user subroutines. All
the numerical simulated results show good agreement with the experimental results.

Keywords: concrete; ABAQUS; three-point bending test; uniaxial tension test; damage; fracture.

1. Introduction

The damage and fracture behavior of concrete at different ages have attracted a lot of attention in

last a few decades. 

In 2002, Z. P. Bazant reviewed the existing fracture models for concrete and the testing

methods for fracture energy and other fracture characteristic (Bazant 2002). He related the

fracture energy of concrete, as well as other fracture parameters such as the effective length of

the fracture process zone, critical crack-tip opening displacement and the fracture toughness with

the standard compression strength, maximum aggregate size, water-cement ratio, and aggregate

type of concrete. Jin, et al. (2005) had ever applied two-parameter model (TPM) to investigate

the fracture properties of normal concrete and high strength concrete at early ages. Jin, et al.

(2004) also studied  and CTODC as well as microstructure of early-age concrete. Li and Jin

(2004) discussed the relationship between porosity and fracture parameter of young concrete. Niu,

et al. (1995) analyzed the thermomechanical damage of early-age concrete. Kim (2004)

investigated the fracture characteristics such as critical crack tip opening displacement, critical

stress intensity factor, fracture energy and obtained bilinear softening curve as an input data for

finite element analysis of concrete at early ages.
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These experiment results and established models of the researches have provided good base for

the numerical investigation on fracture and damage properties of concrete at different ages. Stergaard et

al. (2004) developed a new inverse analysis algorithm for the extraction of the stress-crack opening

relationships. Hanson and Ingraffea (2003) developed the models to predict crack growth in

materials such as concrete with tension softening behavior. Lackner, et al. (2004) developed and

applied a three-dimensional model to simulate the early-age cracking of concrete. Schutter and

Vuylsteke (2004) utilize finite element method to simulate the evolving temperature fields and

damage at any time during hardening for concrete. However, most previous investigations limited

research merely to damage or fracture properties neglecting the internal relationship of damage and

fracture behavior of concrete at different ages. Moreover, there was no systematic study on

numerical analysis of damage and fracture behavior of concrete at different ages with the finite

element method.

The purpose of this study is to investigate the material fracture and damage behavior of concrete

at ages of 1d, 2d, 7d and 28d, and further clarify the failure process of concrete at different ages. In

this study, the three-point bending and uniaxial tensile tests of concrete were simulated. By applying

the effective-elastic crack approach, the critical stress intensity factor, , and critical crack tip

opening displacement (CTODC) of concrete were calculated. By utilizing the crack band model and

a bilinear strain-softening curve with the parameters determined from the three-point bending tests,

the global behavior under the progress of damage and fracture, the load-CMOD and load-

displacement curve, were simulated and compared with the curves obtained by experiment at

different ages. A good agreement had been found between the simulated and experimented results.

The smeared cracking model with damage parameters was adopted to simulate the onset and

development of the cracking of concrete under uniaxial tensile. The numerical results showed that

such a simulation could predict the global behavior of load-displacement of concrete at different

ages well.

2. Materials and mix proportions

Two concrete mix proportions utilized in this study are listed in Table 1. The detail information of

raw materials is given as follows:

• Cement used in this study was ASTM Type I Portland cement (or ordinary Portland cement in

the British Standards Institution), with relative density of 3.15 and fineness of 385 m2/kg.

• The coarse aggregate used was crushed limestone with a maximum size of 10 mm, and relative

density of 2.57.

• The fine aggregate used was natural river sand with a fineness modulus of 2.3, and relative

density of 2.66.
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Table 1 Mix proportions

Mix W/C Cement Coarse aggregate Fine aggregate

C30 0.55 1.0 2.7 2.0

C40 0.50 1.0 1.5 2.4
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3. There-point bending test

3.1. Experiment program

At least four beams were tested in each group, and total 4 groups of specimens were tested at 4

different ages. The specimen size was 75 mm × 150 mm × 750 mm. The depth of the notch, a0, was

50 mm, and the width of the notch, 3 mm. The span length, S (the clear distance between two

supports), was 600 mm. All the specimens were demoulded one day after casting, and then cured

under the temperature of (23 ± 2)oC and the relative humidity of 100%. A typical load-CMOD

curve and a sketch of the specimen are shown in Fig. 1. As shown in Fig. 2, the bending tests were

conducted with Materials Testing System (MTS810) with a maximum loading capacity of 250 kN.

The tests were controlled by the crack mouth opening displacement (CMOD) as the feedback to

obtain stabilized post peak response. 

3.2. Two-parameter model (TPM)

In this model, the critical stress intensity , the critical crack tip opening displacement CTODC

and the modulus of elasticity can be calculated as follows (Jenq and Shah 1985):

(1)

where S, a0 and D are shown in Fig. 1; α0 = (a0 + H0)/(D + H0) and H0 is the thickness of the clamp;

V(α0) is the shape function about α0, V(α0) = 0.76−2.28α0+3.87α0
2 − 2.02α0

3+0.66/(1−α0)
2; B is the

width of the specimen; Ci is the initial flexibility.

Take E into Eq.(2) and the critical effective crack length, ae, can be determined. 

(2)
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Fig. 1 Typical load-CMOD curve Fig. 2 Bending test setup
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where αe = (ae + H0)/(D + H0); V(αe) is the same shape function as V(α0) in which α0 is replaced by

αe; Cu is the unloading flexibility.

(3)

where Pmax is the ultimate load; α = ae/D; W is the weight of the beam; F(α) is the shape function about

α, F(α)=[1.99 − α(1 − α)(2.15-3.93α + 2.7α2)]/[ (1 + 2α)(1 − α)3/2; L is the length of the beam.

(4)

where β=a0/ae.

The test results are listed in Table 2.

3.3. Numerical analysis

3.3.1. The finite element model

The crack band model proposed by Bazant (2002) is utilized for numerical analysis of concrete

under three point bending. In the case of plane stress, when two cracks occur on a Gaussian point

of an element, along the cracking direction, the incremental form stress-strain relationship can be

expressed as:

(5)

where  and  are the positive stress and strain of crack 1 respectively, while  and  are

respectively the positive stress and strain of crack 2.  and  are the shear stress and strain. E0

is the initial modulus of elasticity; G0 is the initial modulus of shear; ksoft, 1 and ksoft, 2 are

respectively the tension crack softening coefficient of crack 1 and crack 2; ϕ is shear transfer factor

and it reveals the interlocking action between the surfaces of the crack. Because the deformation

mode for crack propagation and fracture, in this research, is opening mode, so post-shear effect can

be neglected.

In smeared crack model, the conception of band width in this model is equal to the characteristic

length of the element in ABAQUS, which is dependent of the element type. For beam and truss

elements, it is the distance between Gaussian points. For shell and plane elements, it is the square
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Table 2 TPM results for concrete of C30

Ages (d)  (MPa · m0.5) CTODC (mm)  (Mpa)

1 d 0.415 0.0109 10.46

2 d 0.707 0.0146 15.30

7 d 0.977 0.0143 25.66

28d 1.263 0.0159 35.97

More details about this test can be found in the literature (Jin, et al. 2005).
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root of the distance between Gaussian points. While for solid elements, it is the cube root of the

distance between Gaussian points. CPS4R (plane stress 4-node simplified integral element) in

ABAQUS element family was adopted in this simulation, the sum of the elements and nodes were 3

702 and 3 905 respectively. A modified Riks iterative method was applied to find the softening

curve. Fine meshing was adopted within the crack band and supports. The supports and the loading

bar were simulated by analytical rigid bodies. The detailed meshing partitions are shown in Fig. 3.

3.3.2. Bilinear tension softening curve

It is well known that there exists a fracture process zone in front of the crack tip, which arouses a

phenomenon termed as tension softening. This characteristic plays a very important role on finding

the ultimate load and the descending curve.

The primitive work was completed by Hillerborg (1976). He suggested an exponential decay

softening curve with the separate displacement, w, independent variable (see Fig. 4). Thereafter,

based on large amounts of experiments, Petersson (1981) gave a bilinear softening curve, as shown

in Fig 5. Subsequent experiments and numerical analysis indicated that it was adequate for bilinear

curve to describe this softening phenomenon.

The stress value at the slope transition is usually taken as 0.15ft~0.33ft, and the area under the

stress-displacement curve represents the required energy to develop an unit area crack, denoted as

GF (N/m). Gf represents the area under the initial slope. Planas, et al. (1997) pointed out that it was

that determined the ultimate load. The value of Gf in Two-Parameter Model (TPM) is equal to the

critical strain energy release rate, denoted as . Once the stress at slope transition is determined,

with GF and Gf, the shape of the bilinear tension softening curve can be gained. Assuming the stress
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Fig. 3 FEM mesh of three-point bending beam

Fig. 4 Stress distribution of FPZ and soften curve (after reaching ft should be a constant!)
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at slope transition is ψ ft, two equations below can be derived from area calculations:

(6)

(7)

By trial and errors, Petersson’s suggestion of  is adopted. To get an approximation of GF,

the ,directly obtained from three point bending test, is used.

First,  is determined by the equation below:

(8)

Then, based on the conclusions proposed by Planas (1992) and Guinea (1994), an approximate

equation of GF affirmed by Bazant, et al. (2002) can be obtained as:

(9)

This relationship had been taken as the optimal choice generalized from 238 series of tests in

different labs around the world.

In general, we can write:

(10)

where . 

Normally, the ratio of tension strength to compression strength of concrete is 1/12~1/10, from which

W0 and Wf can be determined. W0 and Wf can be taken as the length incremental of crack band width,

h, the characteristic element length in ABAQUS. Then Eqs. (6) and (7) can be rewritten as:

(11)

(12)
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Fig. 5 Bilinear tension soften stress-displacement curve
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3.3.3. Numerical analysis

Taking three-point bending concrete beam of 28d for example, its cracking deformation and stress

distribution in the whole failure process are shown as follows:

It can be seen from Figs. 6~8 that the opening displacement gradually increases with the

increasing load, the maximum tension stress is developing upwards into the ligament of beam along

the notch. For the existence of the fracture process zone, the tension stress is not rapidly decreasing

to zero, that is, a fraction of stress still remains. Taking out the first cracking element above the

notch, a stress-strain curve of integral point is shown in Fig. 9.

From the numerical results of ABAQUS, the LOAD-CMOD curves at ages of 1, 2, 7, 28 days

can be derived as Fig. 10 shows:

As shown in Fig. 10, the numerical results match up with the experiment results in the ascending

segment of the curves. However, as to the descending segment, it has not a very good agreement for

following reasons:

1. Because of the unloading process occurring in the TPM test, energy loss cannot be avoided;

2. The crack band theory assumes that GF can only be dissipated in crack band zone, while all

deformations out of this band are elastic, which cannot dissipate the fracture energy. However, it

can be clearly seen from Figs. 6~8 that there do exist some plastic deformations near the supports,

which by all means dissipate the fracture energy.

From the comparisons of the numerical and experimental results, it is found that the average error

is merely about 3%, which indicates that the calculations of Gf that determines the ultimate load is

relatively exact.

Comparisons of LOAD-CMOD curves and LOAD-Displacement curves at different ages are

Fig. 6 Initial cracking deformations and distribution of the maximum principle



228 Nanguo Jin, Ye Tian and Xianyu Jin

Fig. 7 Cracking deformations and distribution of the maximum principle stress stress under ultimate load

Fig. 8 Ultimate cracking deformations and distribution of the maximum principle stress
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shown in Figs. 11~12.

As shown in Figs. 11~12, in the stable crack propagation segment, that is, before the ultimate

load, the slope increases with the increment of age. While, in the descending segment, that is, the

unstable crack propagation segment, the load rapidly descends with increasing age, especially the

Fig. 10 Comparisons of the simulated LOAD-CMOD curves and the experimental results

Fig. 9 Stress-strain curve of the first element integral point above the notch
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early-age concrete beams. Taking beams of 1d for example, the load descending is relatively slow

due to plasticity of young concrete. These conclusions can also be found in the literature of Kim

(2004).

The calculations of  and CTODC had been explained in the TPM test, and here another

LEFM method will be applied to solve the equivalent elastic critical crack length a
ce

. Consequently,

 and CTODC can be gained by the crack opening displacement (COD) derived from

simulations. The detailed processes are listed as follows.

Based on effective-elastic crack approach, for the single side notched three-point bending
beams (S=4b), the following equations can be gained:

(13)

(14)

where x-the vertical distance away from the bottom of beams

a-length of the crack

g3-geometry factor

The g3 function curves for different crack length, a=65, 70, 75, 80, 85 (mm) respectively, are

shown in Fig. 13. 

Fig. 13 shows that the shape of curves around the crack tip is nonlinear, and as it becomes more

distant from the crack tip it shows a linear relationship.

Along the notch, choose five nodes every 10mm from the first node at the bottom of beams, and

thus the horizontal displacement of the first node is equal to half the CMOD. With the numerical

results, values of COD for five nodes can be obtained when reaching the ultimate load. Then take

the CMOD of the first node with any COD of the rest four nodes into the Eq. (13) and a nonlinear

equation can be derived about the crack length a. The solution, a, is the equivalent elastic critical
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crack length, a
ce

, corresponding to the ultimate load. Then, take another COD into the Eq. (13) and

another a
ce

 can be solved the same way. The average value of these two a
ce

 is the final a
ce

.

Based on effective-elastic crack approach for the three-point bending beams (S=4b), there is:

(15)

(16)

(17)

Substituting a
ce

 and Pmax into the Eq. (17),  can be calculated. Taking a
ce

, x=50 mm and CMOD

into the Eq. (13), CTODC can be obtained.

Taking the concrete beam of one day age as an example, the input data are shown as follows: 

Pmax=1 138N (against experiment result Pmax =1 186.7N); 

x=0 and CMOD=3.661 28×10−2 mm; 

x=10 mm and COD=3.240 92×10−2 mm; 

x=20 mm, COD=2.814 44×10−2 mm. 

Bring these into the Eq. (13) and solve this nonlinear equation. The results are that:

x=10 mm, a
ce

=61.18 mm; 

x=20 mm, a
ce

=61.90 mm. 

Thus the average value of these two a
ce is 61.54 mm. The experiment result of a

ce
 derived from

the TPM test is 62.51 mm, and the relative error is 1.6%. 

Substituting a
ce

= 61.54 mm and Pmax=1 138 N into the Eq. (15) and (16), the  is obtained as 0.325

6 (MPa*m0.5) against the experiment result 0.364 5 (MPa*m0.5) with the relative error of 10.67%. 

Substituting a
ce

= 61.54 mm, CMOD=3.66×10−2mm, x=50 mm into the Eq. (13), the solved CTODc

is 0.0131 mm against the experiment result 0.0117 mm with the relative error of 12.1%. The COD

curves under the ultimate load are shown in Fig. 14.
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Fig. 13 COD of three-point bending beam (s=4b) Fig. 14 COD at peak load
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4. Uniaxial tension test

4.1. Preparation of specimens

A total of 12 plate specimens were prepared. The tension specimens were cast in a premade

acrylic glass mold with the dimension of 350×100×20 mm. The mold was made of acrylic sheet

with a thickness of 25 mm. With such a specimen size, the uniaxial tension can be ensured as a

two-dimensional problem.

The further curing of demolded specimens was carried out in a curing room with a temperature of

21±2°C and relative humidity of 100%.

4.2. Experiment program and test results

The setup for the uniaxial tension test is shown in Fig. 15. Two identical loading fixtures were

used: one was gripped on the actuator of the MTS machine, the other was connected to the load

cell. The loading fixture contained a ball joint that was essential for protecting the tension specimen

from possible bending effects. Four aluminum loading plates were glued with the specimen. Then

the glued specimen was connected to the loading fixture by using a pin of diameter 12 mm. Four

Schaevitz LVDTs (linear variable differential transformer), with a working range of ±0.635 mm and

a designed gauge length of 120 mm, were mounted on the two sides of the specimen for deformation

measurement as well as test control. The LVDT holders were specially designed to allow the

adjustment of the entering and offsetting for the LVDTs. 

Tension tests were conducted using a MTS machine with a capacity of 250 kN. The tests were

carried out using newly developed adaptive control method (Li, et al. 1998). In this method, the

control mode could be switched among load cell, MTS stroke displacement, and four LVDTs. The

key point for this adaptive control was to use the LVDT that caught the formation of major crack as

control. In this way, the loading would gradually decrease with the increase of the LVDT reading.

Fig. 15 Uniaxial tension test setup



Numerical simulation of fracture and damage behaviour of concrete at different ages 233

Thus, a stable post-peak response could be measured. 

The uniaxial tensile stress-displacement curves obtained in the test are shown in Fig. 16.

In Fig. 16, the increase of the uniaxial tensile strength and initial slope coefficient indicated the

development of brittleness with aging which could also be seen from the smooth softening part of

the curve at 2 days against the sudden drop after peak load in the curves of 7days and 28 days.

4.3. Damage plastic model

The stress-strain curve under uniaxial tension of damage plastic model for concrete is shown in

Fig. 17. From Fig. 17, it can be seen that the curve is linear elastic before peak stress σt0 which

indicates the generation of the microcracks. After σt0, microcracks propagate and expand to macrocracks

which lead to the strain localization of concrete specimen which can be shown as the softening part

of the curve. It can be concluded from the curve that 

(18)

(19)

(20)

where σt is the uniaxial tensile stress; εt is the uniaxial tensile strain; E0 is the initial elastic modulus; 

is the elastic strain neglect damage;  is the crack strain of concrete;  is the equivalent tensile

plastic strain, and dt is the damage variable of concrete.

The strain softening can be presented by  curve or  curve. As only one main crack

generates, the deformation of specimen localizes around the crack zone. Because the deformation of

crack zone is independent of the measuring gauge length, the  curve in which fracture

energy applied is more suitable to present the mechanical properties of strain softening than 

curve. The  curve is introduced in this study as  well as curve in considering damage

effect.
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From Eqs. (18)~(20), it can be seen that the  curve and  curve can be derived from

the damage variable dt. The unloading curve under uniaxial tension test conducted by Zhao (1996)

was applied in this study.

(21)

where σt and ut are the stress and displacement at unloading point; σtd and utd are the stress and

displacement during unloading process, where  and σt0 is peak stress.

Replace the strain in Eqs. (16)~(18) with corresponding displacement, then following expression

can be obtained:

(22)

(23)

(24)

where ut is the uniaxial tensile displacement; k0 is the initial slope coefficient of the linear part in

stress-displacement curve;  is the elastic displacement neglect damage;  is the crack

displacement of concrete;  is the equivalent tensile plastic displacement. 

With the stress and displacement at unloading point ( ) and , in Eq. (21), the residual

displacement utd can be calculated as the equivalent tensile plastic displacement . Substituting

(σt, ut) and  into Eq. (24), the damage variable dt can be derived. With the crack displacement

 obtained from Eq. (22) and Eq. (23), the  curve and curve are finally determined.

The whole process, as shown in Fig. 18, is programmed to simulate the uniaxial tension test of

concrete by ABAQUS in damage plastic model. 

Taking concrete at 28d as example, with the carefully selected stress and displacement,
(σt, ut), at tension softening curve derived from experiment, the  curve and 
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Fig. 17 Stress-strain curve of concrete under uniaxial tension
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curve, as shown in Fig. 19 and Fig. 20, are configured.

4.4. Numerical simulation

4.4.1. Finite element modeling and detailed gridding mesh

As shown in Fig. 21, a tie constraint in ABAQUS was applied to simulate the contact face

Fig. 18 Flow chart of the numerical procedure

Fig. 19  curveσt u
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– Fig. 20  curve dt u
 

t

ck

–
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between concrete specimen and aluminum loading plate as well as the contact face between

aluminum loading plate and loading fixture against relative slipping. With kinematic coupling constraint in

ABAQUS, all the nodes on the aluminum loading plate were coupled to a reference node to which

the constraint and load was applied to control the movement and deformation of the specimen. The

linear elastic constitutive relationship was employed in materials of loading fixture and aluminum

loading plate. 

In this analysis, C3D8R elements in ABAQUS were applied. One end of the model was fixed,

while the displacement was loaded on the reference point at the other end. With the modified Riks

method, the complete stress-strain curves were derived.

Still, a series meshing model were made actually and the numerical results were almost the same.

4.4.2. Numerical analysis

Base on the research of Lublinerm, the crack generates when the equivalent tensile plastic strain

 and the value and direction of the maximum plastic principle strain is positive and vertical

to crack, respectively. So, once plotted the vector diagram of the maximum principle plastic strain,

the whole failure process of microcracks propagated to macrocracks in uniaxial tension test is

pictured clearly. In Fig. 22, the maximum principal plastic strain is displayed as vector arrows along

the specimen at a certain step and at failure.

As shown in Fig. 22, at a certain step, the arrows mostly centralized in the middle of the

specimen against the scattered vector arrows at the other parts which meant the generation and

propagation of the microcracks in the middle of the specimen. At failure, because only one main

ε 
t

pl
0>

Fig. 21 Finite element model and detailed gridding mesh

Fig. 22 Maximum principal plastic stain
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macrocrack generates, so all the arrows concentrate in the middle of the specimen. 

The damage of concrete specimen at a certain step and at failure was shown in Fig. 23.

As shown in Fig. 24, the principal stress evenly distributes along the width of the concrete

specimen at the connected part between two aluminum loading plates. Thus, it can be concluded

that the eccentric bending has little influence in loading process.

The numerical complete stress-displacement curves and experimental curves at ages of 2, 7 and

28 days are shown in Figs. 25~27. 

As shown in Figs. 25~27, the numerical simulated results had a good agreement with the

experimental results. The main difference between numerical results and experimental results came

from the unavoidable energy loss and experimental error. 

5. Conclusions

The following conclusions can be drawn from the current research:

In numerical simulation of three-point bending test of this research, smear crack model with

bilinear softening curves was applied to obtain fracture parameters. The simulated results were very

close to the results obtained by TPM. It implied that there may be some relations between two-

parameter model and smeared cracking model. A further investigation is needed to confirm the

observation.

Fig. 23 Damage of the specimen

Fig. 24 Principal stress profile in 2 direction
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In simulating the uniaxial tension test, the damage plastic model and smeared crack model were

incorporated into the numerical analysis. In this way, the damage and fracture process could be

analyzed numerically in one program to interpret the properties of concrete at different ages.

All the simulated results agreed well with the experimental results of concretes at different ages,

including the LOAD-CMOD curves under three point bending and the complete stress-displacement

curves under uniaxial tension. The development of the properties of concrete at different ages

confirmed to the relevant experiment results. 

Notation

There-Point Bending Test

a length of the crack

a0 depth of the notch

a
ce

equivalent elastic c critical crack length

a
e

critical effective crack length

Fig. 25 Stress-displacement curve at 2 day Fig. 26 Stress-displacement curve at 7 day

Fig. 27 Stress-displacement curve at 28 day



Numerical simulation of fracture and damage behaviour of concrete at different ages 239

B width of the beam

Ci initial flexibility

Cu unloading flexibility

CMOD crack mouth opening displacement

COD crack opening displacement

CTODC critical crack tip opening displacement

D depth of the three-point bending beam

E modulus of elasticity

initial modulus of elasticity

F, V shape function

g1, g3 geometry factors

G0 initial modulus of shear

GF energy required to develop an unit area crack

Gf area under the initial slope 

critical strain energy release rate

H0 thickness of the clamp

ksoft, 1 tension crack softening coefficient of crack 1 

ksoft, 2 tension crack softening coefficient of crack 2

critical stress intensity factor

L length of the beam

LEFM linear elastic fracture mechanics

Pmax ultimate load

S span length

TPM two-parameter model

W weight of the beam

x vertical distance away from the bottom of beams

σnn positive stress of crack 1

σtt positive stress of crack 2

σnt shear stress

εnn positive strain of crack 1

εtt positive strain of crack 2

εnt shear strain

ϕ shear transfer factor

Uniaxial Tension Test 

dt damage variable of concrete

k0 initial slope coefficient of the linear part in stress-displacement curve

ut uniaxial tensile displacement

utd displacement during unloading process

elastic displacement neglect damage

crack displacement of concrete

equivalent tensile plastic displacement 

σt uniaxial tensile stress

E0
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σt0 peak stress

σtd stress during unloading process

εt uniaxial tensile strain

elastic strain neglect damage

crack strain of concrete

equivalent tensile plastic strain
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