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Abstract. A rational three-dimensional nonlinear finite element model is described and implemented for
evaluating the behavior of high strength concrete slabs under transverse load. The concrete was idealized
by using twenty-nodded isoparametric brick elements with embedded reinforcements. The concrete material
modeling allows for normal (NSC) and high strength concrete (HSC), which was calibrated based on
experimental data. The behavior of concrete in compression is simulated by an elastoplastic work-
hardening model, and in tension a suitable post-cracking model based on tension stiffening and shear
retention models are employed. The nonlinear equations have been solved using the incremental iterative
technique based on the modified Newton-Raphson method. The FE formulation and material modeling is
implemented into a finite element code in order to carry out the numerical study and to predict the
behavior up to ultimate conditions of various slabs under transverse loads. The validity of the theoretical
formulations and the program used was verified through comparison with available experimental data, and
the agreement has proven to be very good. A parametric study has been also carried out to investigate the
influence of different material and geometric properties on the behavior of HSC slabs. Influencing factors,
such as concrete strength, steel ratio, aspect ratio, and support conditions on the load-deflection
characteristics, concrete and steel stresses and strains were investigated. 

Keywords: nonlinear analysis; finite element method; reinforced concrete slabs; ultimate strength; high
strength concrete; stress-strain relation ships; tension stiffening. 

1. Introduction

Reinforced concrete slabs are one of the important elements in most structural systems; they are

relatively thin structural element, whose main function is to transmit the vertical loading to their

supports. Flat plates or beamless slabs have no beams, column capitals or drop panels, which make

formwork very simple and widely used, but the great disadvantage of flat plates or slabs supported

by columns is that they are highly susceptible to punching shear failure under concentrated loads,

compared with slabs supported by beams or walls. 

In order to ensure the serviceability and strength requirements of such slabs, it is necessary to

accurately predict their overall deformational characteristics throughout the range of their elastic and

inelastic response as well as their strength at ultimate collapse. Although the need for experimental

research to provide the basis for design equations continues, the development of powerful and

reliable analytical techniques, such as finite element method, can, however, reduce the time and cost
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of otherwise expensive experimental tests, and may better simulate the loading and support conditions of

the actual structure. Accurate results of finite element analysis, however, require adequate modeling

of the actual behavior of reinforced concrete materials including nonlinearity. Reinforced concrete

exhibits nonlinearity because of cracking, inelastic material behavior, stiffening and softening

phenomena, complexity of bond between reinforcement and concrete and other factors (Chen and

Saleeb 1982). 

The derivation and implementation of various analytical finite element and materials models to

investigate the structural and deformational behavior of reinforced concrete slabs and materials

modeling has been the subject of many researches. However, the majority of these researches

studied different behavioral aspects of normal strength concrete slabs (Vidosa, et al. 1988, Jiang and

Mirza 1997, Reitman and Yankelevsky 1997, Polak 1998, 2005, Vainiunas, et al. 2004, Murray, et

al. 2005, Deaton 2005) and others. This is not the case for high strength concrete, where very

limited investigations have been carried out on the behavior of slabs (Marzouk and Chen 1993,

Marzouk and Jiang 1996, Staller 2000, Salim and Sebastian 2002) and on other aspects of material

modeling (Vecchio, et al. 1994, Shanmugam, et al. 2002, Fields and Bischoff 2004). 

Through using a plasticity-based model and an 8-noded quadratic shell element with incorporating a

realistic stress-softening relationships, Marzouk and Chen (1993) concluded that the post-cracking of

high strength concrete has a significant effect on the entire load-deflection of high strength concrete

slabs. In other finite element study by Marzouk and Jiang (1996) the enhancement of five types of

shear reinforcement of high strength concrete plates was evaluated, and concluded that the double-

bend, shear stud, and T-headed reinforcement were the most efficient shear reinforcements. Similar

analytical studies using different finite element models was used by Staller (2000) and by Salim and

Sebastian (2002) to predict the punching shear failure of normal and high strength concrete slabs. 

The present study is part of this continuing effort to further explore the behavior of high strength

concrete slabs through developing and implementing a three-dimensional nonlinear finite element

program with proper materials models. Elasto-plastic work-hardening model, using 20-noded isoparametric

brick element with embedded reinforcement is used. A suitable post-cracking model for high

strength concrete is implemented to represent the retained post-cracking tensile stresses. 

The FE formulation and material modeling is implemented in a finite element code in order to

carry out the numerical study and to predict the behavior up to ultimate conditions of various slabs

under transverse loads. The performance of slabs is evaluated in terms of load-deflection characteristics,

concrete strains, and steel stresses. The validity and calibration of the theoretical formulations and

the program used is judged through comparison of analytical results with available experimental

data. Finally, a parametric study is carried out to investigate the influence of different material and

geometric properties on the behavior of slabs. 

2. Research significance

Although large amounts of analytical and experimental studies are available on the behavior of

normal strength concrete slabs, limited number of finite element investigations have been carried

out on slabs having higher strength concrete. In this paper, appropriate material nonlinearity models

of high strength concrete including compression-softening and tension-stiffening phenomenon with

proper failure criteria for concrete plates and shells is investigated. The models are implemented

into a finite element program to provide the strength and deformational characteristics of companion
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concrete slabs under variety of parameters and boundary conditions. Comprehensive data related to

load-deflection curve, and stress and strain distribution is also provided. 

3. Modeling of concrete material in compression 

The behavior of concrete in compression is simulated by an elastic-plastic work hardening model

up to onset of crushing. Generally, according to incremental theory of plasticity, the total strain

increment is usually assumed to be the sum of elastic strain and plastic strain. 

The formulation of the constitutive relations in the work-hardening plastic model is based on three

fundamental assumptions (Chen and Saleeb 1982, Kwak and Filippou 1990, Al-Shaarbaf 1990,

Crisfield 1994): The shape of the initial yield surface (failure criteria), the evolution of the

hardening rule and formulation of an appropriate flow rule. However, the plasticity model and its

constituent, and the modeling of concrete under triaxial state of stress, will be discussed in terms of

the following elements with concentration on the difference of NSC and HSC material behavior: 1)

Uniaxial stress-strain relationship, 2) Failure criterion, 3) Hardening rule, 4) Flow rule, and 5)

Crushing condition. 

3.1. Uniaxial stress-strain relationship 

Frequently, the widely used stress-strain relationship of concrete up to the peak stress is given as a

parabolic relationship as follows (Foster, et al. 1996, Pang and Hsu 1996, Bahn and Hsu 2000,

Wang and Hsu 2001):  

(1)

Where ε0 is the strain at peak stress  given by 

(2)

 

However, this equation failed to simulate the HSC and UHSC correctly. Therefore, a modified

uniaxial stress-strain relationship is used in the present study which is composed of two parts;

elastic linear part and parabolic part as shown in Fig. 1. A stress limit of ( ) is used to separate

the elastic and plastic portions of the curve, where the coefficient (ζ ) represents the limit of elastic

part and initiation of plastic deformation (Al-Shaarbaf 1990). 

▶ For , the linear part is given by:

(3)

▶ For , the parabolic part is given by:

(4)
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(5)

Based on best fitting of the linear parts of large number of concrete stress-strain properties of

different grades presented by Attard and Stewart (1998) based on experimental data by Dahl (1992),

the value of ζ is assumed to be dependent on the ultimate strength of concrete, and may be found

using the following equation: 

ε0
2 1 ζ –( )

E
-------------------f 

c

′
=

Fig. 1 Stress-strain relationship for concrete

Fig. 2 Comparison of the proposed concrete stress-strain equation against other data
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(6)

Fig. 2 indicates excellent agreement of the proposed uniaxial stress-strain model (Eq. 4) with the

data presented by Attard and Stewart (1998) for normal, and high strength concrete. In the presence

of orthogonal cracks which are caused by shear or transverse tensile stresses, concrete exhibits

lower compressive strength and stiffness than uniaxially compressed state. Such degradation or

softening in compressive strength of concrete is taken into consideration in the present study by

multiplying the uniaxial compressive concrete stress defined by Eq. (4) by a softening factor 0 ≤ λ
≤ 1 as shown in Fig. 3. Among various compression reduction models available in literature, the

model suggested by Vecchio, et al. (1994), which takes into consideration the softening behavior of

high strength concrete, is implemented in the present finite element formulation. The model can be

expressed as: 

(7)

Where: Kc, represents the effect of the transverse cracking and straining, Kf represents the

dependence on the strength of the concrete ( ), and are given by: 

(8)

(9)

Where: K
r
 is the tensile strain normal to the cracked plane given by: 

▶ For cracked sampling point in the principal direction (① ) 

(10)

For doubly cracked sampling point in both directions (① ) and (② ) 
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Fig. 3 Compression reduction of transversely cracked concrete
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Where εl is the transverse tensile strain in the principal direction (① ) normal to the cracked plane,

ε2 is the tensile strain in the second direction (② ) normal to the second crack plane. 

3.2. Failure criterion 

Under triaxial state of stress the failure criterion for concrete is generally assumed to be dependent

on three stress invariants. However, the failure criterion used in this study is dependent on two

stress invariants which has been proved to be adequate for most practical situations and has been

successfully used by many investigators for analyzing reinforced concrete plate and shells (Figueiras

and Owen 1984, Cervera and Hinton 1986, Naji 1989, Al-Shaarbaf 1990) which can be expressed

as: 

(12)

Where 

I1  = the first stress invariant

J2  = the second deviatoric stress invariant 

σ0  = the equivalent effective stress at the onset of plastic deformation. 

(13)

(14)

Noting that, for the equal biaxial compression state, the yield stress is given by 

(15)

Where γ is a constant to be determined from the biaxial failure envelop at stress ratio σ1/σ2 = 1.

However, the constant was found by Hussein and Marzouk (2000) to have values of 19, 14 and 9%

for  of 42.7, 73.7 and 96.5 MPa, respectively (Fig. 4). Based on best fitting of these data the

following equation for γ is suggested as function of : 

(16)

3.3. The hardening rule and flow rule 

An isotropic hardening rule is adopted in the present study which implies a uniform expansion of

the initial yield surface without translation as plastic deformation increases. The required incremental

stress-strain relationship may be obtained by differentiation of equivalent stress-strain relationship

with respect to the plastic strain. This operation leads to the slope of the tangent of effective stress-

plastic strain curve which represents the hardening coefficient, which is needed in the formulation

of the incremental stress-strain relationship. 

In order to calculate the plastic strain increment for a given stress increment, a flow rule must be

defined. The associated flow rule has been widely used to concrete application by many researchers

for reason of simplification (Al-Shaarbaf 1990, Marzouk and Chen 1993), and it was adopted in the

present study (Belakhdar 2006). 
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3.4. The crushing condition 

The experimental tests of concrete under multiaxial loading indicate that the crushing is a strain

related phenomenon (Chen and Saleeb 1982), so concrete is considered to crush when the strain

reaches a specified ultimate value, after that the current stresses drop suddenly to zero and the

concrete is assumed to lose its resistance completely against further deformation. Hence the

crushing criterion is directly obtained by using the same form of yield criterion but in terms of

strains, as follow (Al-Shaarbaf 1990): 

(17)

Where 

ε
cu

: the ultimate concrete strain that can be obtained from the uniaxial compression test 

If Eq. (17) is satisfied or the strain is grater than the specified ε
cu

 in this case the concrete is

assumed to be crushed and the structure is ruptured, therefore the analysis stopped. 

Frequently, the ultimate concrete crushing strain ε
cu

 is estimated to be in the range of 0.0030

as suggested by ACI-318-02 and NZS-95 codes to 0.0035 as given by BS8110 and CSA-94

codes. Based on experimental tests of singly reinforced concrete beams or eccentrically loaded

columns without lateral confinement steel, the ultimate strain measured at the extreme

compression face at failure was found to decrease as the ultimate compressive strength of

concrete  increases as shown in Fig. 5 (ACI Committee 363R-92 1997). Consequently, the

value of the crushing strain ε
cu

 is taken as 0.0035 for normal strength concrete and 0.0030 for

high strength concrete. 
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Fig. 4 Biaxial failure envelop of concrete (Hussein
and Marzouk 2000)

Fig. 5 Ultimate compressive strain versus compressive
strength of concrete (ACI Committee 363R-92
1997)
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4. Modeling of concrete materials in tension

When tensile stress exceeds a limiting value a crack is assumed to form in the plane perpendicular

to the direction of that stress and concrete behaves no longer isotropic, and therefore, the normal

stiffness is reduced through tension-stiffening concept. Once concrete has cracked, fixed smeared

cracking model is used in the current study to model the crack. The gradual release of tensile

stresses normal to the cracked plane may be represented by different types of average stress-strain

curves to simulate the tension stiffening behavior. Although some of the tension stiffening models

available in literature vary exponentially, the majority of models used in numerical analysis and

implemented in finite element formulation are idealized as linear or bilinear curves (Sam and Lyer

1995, Staller 2000, Polak 2005) as follows: 

▶ For 

 (18)

▶ For 

(19)

Where: 

σ
n

, ε
n

: are the stress and strain normal to the cracked plane 

σ
cr

, ε
cr

: are the cracking stress and its corresponding cracking strain 

α1 : Parameter of tension stiffening which represents the rate of stress release as the crack widens.

α2 : Parameter of tension stiffening which represents the sudden loss of stress at instant of

cracking 

The bilinear curve can also be simplified to linear curve by assuming that α2 equals the to unity

value. Bilinear tension-stiffening model is adopted in the present study as illustrated in Fig. 6. 

The shear stiffness is also reduced when cracking occurs because it retains the two major

mechanisms by which shear is transferred across the crack (the aggregate interlock of the rough

crack surfaces and dowel action of the reinforcing bars crossing the crack planes). A bilinear shear

retention model is used as shown in Fig. 7. This model consists of three parameters: (γ1: represents

the rate of decay of shear stiffness as the crack widens, γ2: is the sudden loss in shear stiffness at

the instant of cracking, and 

γ3: is the residual shear stiffness due to the dowel action.). Besides, at onset of cracking Poisson’s

ratio (ν
c
) is set to zero. 

The material parameters used in the analysis are as follow: 

− Tension stiffening: α1 = 5, α2 = 0.6 

− Shear retention: γ1 = 10, γ2 = 0.5, γ3 = 0.04 

5. Material modeling of reinforcement 

In contrast to concrete, the material modeling of steel is rather simple. Frequently, the steel is

modeled using linear elastic-full plastic model, as shown in Fig. 8. 
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6. Finite element idealization

The concrete is represented by using 20-noded isoparametric brick element with total of sixty

degrees of freedom as three translations at each node (u, v, w) in X, Y and Z directions respectively,

and 27-integration rule (3*3*3). The reinforcing bars are modeled as one dimensional element

subjected to axial force only embedded within the concrete brick elements and perfect bond is

assumed to occur between the two materials, as shown in Fig. 9. 

The non-linear equations of equilibrium have been solved using the incremental-iterative

technique based on the modified Newton-Raphson method. The convergence of the solution was

controlled by a load convergence criterion. 

7. Validation of the analytical results

7.1. Description of selected experimental slabs 

Eleven simply supported square slabs were selected from an experimental test of reinforced

concrete slabs made of HSC and UHSC, to be used to validate and corroborate the predicted

Fig. 6 Bilinear average tensile stress-strain of concrete Fig. 7 Bilinear shear retention model

Fig. 8 Modeling of steel reinforcing bars Fig. 9 Material idealization: (a): concrete element, (b): steel
element
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analytical results. The selected experimental slabs were carried out by Tomaszewicz (1993). All the

selected slabs have span ranging between 1100 mm and 2500 mm, with thickness varies between

120 mm and 320 mm. The concrete compressive strength  ranged from a minimum value of

about 64 MPa to a maximum value of about 119 MPa. The steel ratio varied between 1.37% up to

2.34%. Thus, the selected slabs have satisfactory geometric and material variations in order to

calibrate and test the efficiency and accuracy of the presented NLFE code. Additional information

about material and geometric properties of these slabs are fully listed in Table 1. The following

material properties are assumed in the analysis: Es = 200.000MPa, 

Ec = 3320 ·  + 6900, ft = 33.0 , and νc = 0.24.

7.2. Finite element mesh 

By taking advantage of symmetry, a segment representing one quarter of the slabs has been

considered in the finite element analysis, as shown in Fig. 10. The selected segment was modeled

f 
c

′

f 
c

′ f 
c

′

Table 1 Slabs geometric and material properties 

Ref Slab Clear span 
L (mm) 

Slab thickness 
h (mm) 

Effective 
depth d (mm) 

Comp. strength  
 (MPa) 

Steel yield 
stress fy (MPa) 

Steel ratio ρ 
(%) 

Tomaszewicz 
(1993) 

ND65 -1-1 2500 320 300 64.30 500 1.37 

ND95 -1-1 2500 320 300 83.70 500 1.37 

ND95 -1-3 2500 320 300 89.90 500 2.29 

ND115-1-1 2500 320 300 112.00 500 1.37 

ND65 -2-1 2200 240 220 70.20 500 1.56 

ND95 -2-1 2200 240 220 88.20 500 1.56 

ND95 -2-3 2200 240 220 89.50 500 2.34 

ND95-2-3D 2200 240 220 80.30 500 2.34 

ND115-2-1 2200 240 220 119.00 500 1.56 

ND115-2-3 2200 240 220 108.10 500 2.34 

ND95 -3-1 1100 120 100 85.10 500 1.44 

f 
c

′

Fig. 10 Finite element mesh
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using 20-node isoparametric brick elements, the model meshed to 108 elements with total of 679

nodes.

The load was applied carefully in small increments to prevent analysis problems and non-

converged solution due to sudden cracking of concrete or yielding of reinforcements where the

magnitude of load increment depends on the expected ultimate load (P
u
) of the analyzed slab. The

increment value ranged between 3% of P
u
 at the beginning of analysis and 0.5% of P

u
 in the second

half of analysis. 

7.3. Results of the analysis 

The results of the present nonlinear finite element analysis of the investigated slabs using the

modified program in terms of ultimate load, ultimate deflection and maximum steel strain are

compared against the experimental measurements (Tomaszewicz 1993) and listed in Table 2. Fig.

11 shows typical load-deflection curves of selected slabs which show good agreement of the

present finite element analysis and experimental results. Table 2 indicates that the predicted to

experimental ultimate load ranges from 0.909 to 1.075 with standard deviation of 0.061, while

the ultimate deflection ratio ranges from 0.681 to 1.006 with standard deviation of 0.098.

Besides, the predicted bottom steel stress at failure to the experimental result ratio ranges from

0.816 to 1.194 with standard deviation of 0.115. According to Fig. 12, it can be observed that the

present finite element model predicts the ultimate load of slabs accurately with very good

agreement with experimental tests for concrete strength up to 119 MPa. Thus the present FE

model performs satisfactory. 

Table 2 Comparison of the predicted and experimental results 

Experimental 
(Tomaszewicz 1993)

Present FE Analysis FEA/Exp

Slab Ultimate
load

P
u
 (KN)

Ultimate
deflection
D

u
 (mm)

Steel
strain

εs

Ultimate
load

P
u
 (kN)

Ultimate
deflection
D

u
 (mm)

Steel
strain

εs

P
u
/P

u
D

u
/D

u
εs/εs

ND65-1-1 2050 8.52 0.00165 1920 8.57 0.00185 0.937 1.006 1.123

ND95-1-1 2250 10.83 - 2340 9.98 0.00228 1.04 0.922 -

ND95-1-3 2400 7.97 0.00123 2580 7.89 0.00147 1.075 0.99 1.192

ND115-1-1 2450 11.65 0.00205 2540 10.29 0.00245 1.037 0.883 1.194

ND65-2-1 1200 9.61 0.00175 1120 7.53 0.00171 0.933 0.784 0.977

ND95-2-1 1100 9.28 0.00175 1160 7.34 0.00176 1.055 0.791 1.007

ND95-2-3 1450 9.73 0.00145 1480 7.48 0.00151 1.021 0.769 1.044

ND95-2-3D 1250 7.05 0.00140 1180 5.84 0.00114 0.944 0.828 0.816

ND115-2-1 1400 11.25 0.00216 1460 9.15 0.00223 1.043 0.813 1.032

ND115-2-3 1550 9.65 0.00150 1640 8,36 0.00168 1.058 0.866 1.118

ND95-3-1 330 7.81 0.00258 300 5.32 0.00252 0.909 0.681 0.977

Ave 1.005 0.848 1.048

St.Dev 0.061 0.098 0.115
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Fig. 11 Comparison of predicted and experimental load-deflection curves

Fig. 12 Comparison of experimental and predicted ultimate load in terms of concrete strength
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8. Parametric study on material properties 

8.1. Effect of concrete compressive strength 

The concrete compressive strength is considered as one of the important primary variables that

were studied in the present finite element investigation on slab's behavior. The influence of different

values of  (25 N/mm2 - 112 N/mm2) on the slab's ultimate load and ultimate deflection is shown

in Fig. 13. It can be seen that both ultimate load and deflection increases as concrete strength

increases. Agreement with experimental results is clearly indicated. 

8.2. Effect of concrete tensile strength 

The effect of tensile strength ft on the behavior of slabs was studied using the following equations

as shown in Fig. 14: 

(20)

Different values of the parameter C ranging from 0.33 to 0.70 were investigated. From the figure

it can be seen that the ultimate strength increases as the parameter C increases, but the ultimate

deflection is little influenced. Correct determination of the concrete tensile strength is very

important in FE analysis, particularly in the post cracking stage. The above figure indicates that

using  gives the closest load-deflection relationship to experimental test results. Such

finding agrees with conclusions by other researchers (Vecchio and Collins 1986, ACI Committee

435 1991, Chung and Ahmed 1994, Thabet and Haldane 2000). 

8.3. Effect of reinforcement ratio 

A numerical analysis was carried out using different values of steel ratio (ρ) ranging from 0.5 to

f 
c

′

f
t

C f 
c

′
=

f
t

0.33 f 
c

′
=

Fig. 13 Effect of the compressive strength on the
slab response

Fig. 14 Effect of tensile strength on the slab response
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2.29%, the results of which are shown in Fig. 15. It can be seen that prior to cracking, the steel

ratio does not influence the load-deflection characteristics. However, after cracking ρ significantly

influences the slab behavior, where both the ultimate load and deflection increases as the steel ratio

increases. Furthermore, the slab stiffness as indicated from the slope of the load-deflection curve

decreases as the steel ratio decreases. Such steel ratio alters the mode of failure from ductile

behavior at small values of ρ to brittle behavior at higher values. Also, at lower value of ρ it has

been observed that the yielding point is far from the ultimate point, and as ρ increases the yield

point converges to the ultimate point until they become superposed, while at higher values of ρ,

yielding may not takes place, as shown in the Fig. 16 which clarifies that the bottom steel at

reinforcement ratio greater than 1.0% has not reached the yield stress (500 MPa). 

Fig. 15 Effect of reinforcement ratio on the load-deflection behavior

Fig. 16 Stress distribution of the reinforcement ratio on the bottom steel stress
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8.4. Effect of span-to-depth ratio 

To study the effect of span-to-depth ratio on slab behavior, the selected slabs were analyzed using

different values of slab thickness which ranged from 120 mm to 320 mm, (span-to-depth ratio

ranging from 8.33 to 25). The results obtained in terms of slab load-deflection relationships are

presented in Fig. 17. Form this figure, it can be seen that the span-to-depth ratio has a great effect

on the behavior and the load carrying capacity of the slab, where small increase in slab thickness

leads to a significant increase in the ultimate load and reduction in deflection. When the span-to-

depth ratio (s/d) decreases from 25 to 12.5, the ultimate load increases to about four times, but this

increase becomes eight times at s/d = 8.33. Besides, the bottom steel stress at low values of s/d ( ≤

16.6) are small and did not reach the yield stress, however, at high values of s/d (>16.6), only the

reinforcement under or near the column face yielded, as shown in Fig. 18. 

The top concrete strain distribution over the slab midspan at onset of failure is shown in Fig. 19

which indicates that the concrete strain increases as the span-to-depth ratio (s/d) increases and

decreases with distance from midspan to the edge of slab. The maximum concrete strain (εcu) at the

top fiber of slabs for s/d of 8.33, and 25 was about (-0.0015) and (-0.00278), respectively. As can be

seen, the ultimate crushing strain of 0.003 was not reached at the top fibers in all slabs. However,

according to the failure criterion adopted in the finite element formulation, the crushing strain of 0.003

will have been reached along the third principal strain axis, more likely beneath the column stub. 

8.5. Effect of boundary conditions 

Fig. 20 illustrates the behavior of high strength concrete slabs under different combinations of

simply supported and fixed supports. It can be noticed that the supports conditions have a

significant influence on the slab load-deflection behavior. As expected, the slab with fixed edges has

higher load carrying capacity with smaller central deflection and lower ductility compared with

others. Otherwise simply supported or column supported slabs with same properties carried a lower

load with higher central deflection as shown in Fig. 21. More specifically, the load carried by fully

Fig. 17 Effect of span-to-depth ratio on 
HSC slabs behavior

Fig. 18 Effect of span-to-depth ratio on mid-span steel-stress
distribution
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fixed slab can attain to about 130% and 210% of the load carried by simply supported slab and

column supported slab, respectively with corresponding deflection percentages equals to 40% and

50%, respectively. 

9. Conclusions 

A computer program suitable for nonlinear analysis of three dimensional reinforced concrete

members under monotonic increasing loads has been developed to simulate the behavior of HSC

and UHSC slabs. The concrete is represented by using 20-noded isoperimetric brick elements, while

the reinforcing bars are modeled as one dimensional element embedded within the concrete brick

elements. The nonlinear behavior of concrete in compression is simulated by an elastic-plastic

work-hardening model up to onset of crushing. A linear-parabolic stress-strain curve has been used

Fig. 19 Effect of span-to-depth ratio on concrete stain distribution Fig. 20 Effect of boundary condition on HSC
slab response

Fig. 21 Effect of boundary conditions on ultimate load capacity and corresponding deflection 
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to model the equivalent uniaxial stress-strain curve of concrete. In tension, a fixed smeared crack

model has been used with tension-stiffening model. A shear retention models that modifies the shear

stiffness, and softening models that reduce the concrete compressive strength, due to cracking are also

implemented. The non-linear equations have been solved using the modified Newton-Raphson method.

The presented finite element code program is used for the analysis of HSC concrete slabs. Various

aspects of slab behavior were predicted using proper materials models and NLFE program and

compared with available experimental data. The comparison was judged to be very well, and the

analytical formulations were capable of accurately predicting the total response and capacity of the

concrete slabs. Material and geometric parametric-study was carried out to investigate the effect of

different parameters on the slab's behavior. 

There are several conclusions that may be drawn from the present study, which are related to the

FE analysis and to the behavior of HSC slabs: 

A) The part of the study concerning developing nonlinear finite element formulation to predict the

response of high strength concrete slabs yields the following conclusions: 

1-Nonlinear finite element method based on advanced 3D models is a powerful and relatively

economical tool which can be effectively used to simulate the true behavior of reinforced concrete

slabs even under complex conditions. 

2-The choice of adequate material model for numerical simulation is the most important aspect in

finite element modeling of concrete structures. 

3-The proposed equation for the complete stress-strain diagram of concrete (Eq. 4) was proved to

be applicable for all grades of concrete strength, and found to comply well with test data. 

4-The tension stiffening and shear retention models have a considerable effect on the total

behavior of high strength concrete slabs and their parameters can significantly improve the

correlation of the predicted results with the experimental data. 

5-The compression reduction factor (λ) (compression softening model) has small effect 

on the concrete slabs response and slightly affects the failure load. 

B) The other part of study concerning the effect of material properties on slab behavior 

yields the following conclusions: 

1-The slab capacity depends largely on the concrete strength, slab thickness, and reinforcement

ratio. The amount of augmentation in slab capacity using higher strength concrete (HSC), increases

as the slab thickness and reinforcement ration increases. However, using HSC in thin slabs with low

reinforcement ratio has a small effect on slab ultimate load capacity, but increases the slab

deflection. 

2-Tensile strength affects the cracking load as well as the entire load-deflection curve and the

failure load. Thus correct determination of the tensile strength of concrete is very important. In the present

study, the best result was obtained using 

3-The span-to-depth ratio has a great effect on the behavior and the load carrying capacity of

concrete slabs, where small increase in slab thickness leads to a significant increase in the ultimate

load capacity and reduction in deflection. 

4-The supports conditions have a significant influence on the slab load-deflection behavior. Slabs

with fixed supports provide highest load capacity with lowest deflection, while highest deflection

was obtained in slabs with simply supported edges and column supported slabs having the same

properties. 
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Notation 

α, β = Material parameters of failure criterion

γ = Constant of hydrostatic biaxial stress

α1, α2 = Tension-stiffening parameters

β = Shear retention factor 

E, Ec = Modulus of elasticity of concrete

Es = Modulus of elasticity of reinforcement 

ε = Strain

ε0 = Strain at peak stress

εcr = Concrete cracking strain

εcu = Concrete crushing strain

εe = Elastic strain

εp = Plastic strain

εn = Strain normal to the crack surface 

εu = Ultimate strain 

f(σ) = Failure function 

= Uniaxial compressive strength of concrete 

fy = Steel yielding stress

G0 = Original shear modulus 

Gi = Reduced shear modulus 

γ1, γ2, γ3 = Shear retention parameters 

I1 = First stress invariant

J2 = Second deviatoric stress invariant

Kc = Transverse strain-related modification factor

Kf = Concrete strength--related modification factor 

λ = Compressive strength reduction factor 

ζ = Plasticity limit coefficient

ρ = Steel ratio

σ = Stress

υc = Poisson’s ratio

σcr, ft = Cracking stress, concrete tensile strength

σn = Stress normal to the crack surface 
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