
Computers and Concrete, Vol. 3, No. 5 (2006) 335-355 335

Using radial basis function neural networks to model
torsional strength of reinforced concrete beams
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Abstract. The application of radial basis function neural networks (RBFN) to predict the ultimate torsional
strength of reinforced concrete (RC) beams is explored in this study. A database on torsional failure of
RC beams with rectangular section subjected to pure torsion was retrieved from past experiments in the
literature; several RBFN models are sequentially built, trained and tested. Then the ultimate torsional
strength of each beam is determined from the developed RBFN models. In addition, the predictions of the
RBFN models are also compared with those obtained using the ACI 318 Code equations. The study
shows that the RBFN models give reasonable predictions of the ultimate torsional strength of RC beams.
Moreover, the results also show that the RBFN models provide better accuracy than the existing ACI 318
equations for torsion, both in terms of root-mean-square error and coefficients of determination.
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1. Introduction

Numerous analytical models have been reported on the torsional behavior of reinforced concrete

(RC) beams subjected to pure torsion or combined torsion, bending, and shear since the 1920s.

Thus the torsional behavior of RC beams are able to be predicted accurately, including the torque-

twist curve, stiffness, cracking state, yielding state, ultimate state, and descending branch. Although

the characteristic parameters for these models have been carefully examined, their implementation

into design codes still requires considerable simplification. Recent researches have shown that

artificial neural network-based modeling is an alternative method for modeling complex nonlinear

relationship. An artificial neural network (ANN) is simply a computational tool that attempts to

simulate the architecture and internal features of the human brain and nervous system (Sanad and

Saka 2001). Much of the success of ANN is due to such characteristics as nonlinear processing and

parallel processing. Moreover, it can learn functional relationships from examples without prior

knowledge of the underlying mathematical model and thus discover patterns and regularities in data

through self-organization (Hopfield 1982). In civil engineering, the methodology of ANN has been

successfully applied to model the structural behavior and properties of concrete materials such as

strength and constitutive modeling (Hajela and Berke 1991, Consolazio 2000, Tang, et al. 2003,

Ghaboussi, et al. 1991, Yeh 1999, Zhao and Ren 2002). 

The most commonly used ANN is probably the multilayer perceptrons (MLP) network with back-

† Associate Professor, E-mail: tangcw@csu.edu.tw

DOI: http://dx.doi.org/10.12989/cac.2006.3.5.335



336 Chao-Wei Tang

propagation algorithm that uses the gradient-descent method to minimize the error between the

network outputs and the target outputs (Rumelhart, et al. 1986). This type of neural network is

known as a supervised network because it requires a target output in order to learn. And it has been

proved a powerful data-modeling tool that is able to capture and represent complex input/output

relationships. However, for nonlinear modeling themes in real applications, MLP networks have

poor process interpretability and are hindered by problems associated with weight optimization such

as slow learning and local minimization (Jang, et al. 1997). Recently, radial basis function networks

(RBFNs) have been applied as alternatives to alleviate some of the limitations of MLP networks.

The training of RBFNs can be split into an unsupervised part and a supervised but linear part.

Unsupervised updating techniques are straightforward and relatively fast. Meanwhile its supervised

part consists in solving a linear problem, which is therefore also fast. The training methods used for

RBFNs are thus substantially less time and resources consuming (Bishop 1995). Therefore, RBFNs

have gradually become one of the most popular feedforward neural networks with applications in

regression, classification and function approximation problems (Bishop 1995, Haykin 1994). 

In light of the availability of more experimental data and recent advance in the area of data

analysis techniques, it would be significant to develop new methods that are easier, convenient, and

accurate than the existing methods. Based on the ANNs technology, this paper presents a

nontraditional approach to the prediction of the ultimate torsional strength of RC beams with

rectangular section subjected to pure torsion. In this study a commercially available software

package, STATISTICA Neural Networks, was used to establish the RBFN models. A database of 76

records including normal- and high-strength concretes was retrieved from the existing literature for

analysis. Besides, a comparative study between the developed RBFN models and the ACI Building

Code equations for torsion strength is also made. The findings will provide valuable information for

modeling the torsional strength of RC beams.

2. Prediction of torsional strength

The method for analysis of torsional strength can be roughly classified into two main categories:

the skew-bending and the space-truss analogy theory. In this section, the two theories for torsional

strength of reinforced concrete members are reviewed briefly. On the other hand, the ACI Building

Code provisions for torsional design were selected and used in this study for comparison with the

results from the RBFN models. Therefore, the ACI equations for torsional strength of RC beams are

also outlined in the following.

2.1. Skew-bending theory 

The skew-bending theory considers in detail the internal deformation behavior of the series of

transverse warped surfaces along the beam (Lessig 1958). Its basic aspect is the assumption of a

skew failure surface that is initiated by a helical crack on the three faces of a rectangular beam

while compression zone near the fourth face connects the ends of this helical crack, as shown in

Fig. 1. Afterward, it was further developed and applied to concrete structures (Yudin 1962, Collion,

et al. 1965, Goode and Helmy 1968, Hsu 1968a). And thus this theory formed the basis for the

1971 ACI Building Code provisions for torsional design of RC beams subjected to combined

actions of torsion, bending, and shear.
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Essentially, the 1971 ACI Building Code provisions for torsion design of RC beams remain in the

ACI 318-89 Building Code (1989). Therefore, the ACI 318-89 Building Code specifies the nominal

torsional strength Tn of reinforced concrete members was contributed by both concrete Tc and

torsional reinforcements Ts and expressed as

(1)

where 

x = short dimension of the cross section;

y = long dimension of the cross section;

= concrete compressive strength, MPa; 

fyv = yield strength of closed stirrups, MPa;

At = cross-sectional area of one leg of closed stirrup; 

s = spacing of stirrups; 

αt = 0.66+0.33(y1/x1)≤1.5;

x1 = short dimension of the closed stirrup; and 

y1 = long dimension of the closed stirrup. 

Tn Tc Ts 0.067x
2
y f c

′
αt

x1y1At fyv

s
--------------------- SI units( )+=+=

f c
′

Fig. 1 Skew-bending theory analogy
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2.2. Space-truss analogy theory 

In fact, the space-truss analogy was the first theory for calculating the torsional strength of

reinforced concrete members subjected to torsion. It was initially proposed by Rausch (1929) and

further developed by many scholars in this field (Anderson 1935, Cowan 1950, Elfegren, et al.

1974, Hsu and Mo 1985a, Hsu and Mo 1985b, MacGregor and Ghoneim 1995). It is assumed in

this theory that the concrete beam behaves in torsion similar to a thin-walled box with a constant

shear flow in the wall cross-section, producing a constant torsional moment. This assumption was

proved to be true since later experiments have shown that the ultimate torques of hollow and solid

members are virtually the same. In other words, once cracking has occurred, the concrete in the

center of the member has little effect on the torsional strength of the cross section and can be

ignored. Accordingly, in the process of torsion design for a RC beam, the beam can be considered

to be equivalent tubular member, as shown in Fig. 2 (MacGregor and Ghoneim 1995). After

cracking, the tube is idealized as a space truss consisting of closed stirrups, longitudinal steel bars in

the corners, and concrete compression diagonals approximately centered on the stirrups. The

diagonals are at an angle θ to the member longitudinal axis, as shown in Fig. 2. Generally, the

Fig. 2 Thin-walled tube and space-truss analogy
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design method for torsion based on the thin-walled tube, space-truss analogy is considerably simpler

to understand and apply, and is equally accurate. Consequently, since 1995, the torsion provisions in

the ACI 318 Code have been substantially revised using the thin-walled tube analogy.

According to the current torsion provision of ACI 318-05 (2005), the nominal torsional strength

Tn of RC beams is assumed to be resisted by the closed stirrups and longitudinal steel while the

torsion moment Tc resisted by the concrete compression struts is assumed as zero. Therefore, the

following equation is given for Tn

(2)

in which

(3)

where 

A0 = gross area enclosed by shear flow path; 

θ = angle of compression diagonals; 

fyl = yield strength of longitudinal torsional reinforcement, MPa; 

Al = total area of longitudinal torsional reinforcement; and 

ph = perimeter of centerline of outmost closed transverse torsional reinforcement. 

3. Radial basis function networks

A RBFN is a special kind of neural network, which contains three layers with different functional

roles: the input, hidden and output layers. The input layer serves only as input distributor to the

hidden layer, where they are transformed into a high-dimensional feature space using radial basis

functions, called basis functions. The basis functions are exponentially decaying nonlinear functions

and are radial functions, which have radial symmetry with respect to a center. The centers can be

regarded as the neurons (or nodes) of the hidden layer. Each neuron in the hidden layer is a radial

function. Then, the transformed data in this space are linearly transformed in order to approximate

the target outputs. The architecture and training algorithm of RBFNs are described below.

3.1. Architecture of RBFNs

The problem of interpolation of real multivariable functions can be expressed as follows. Given a

set of N data points in the input space R D, together with their associate target output values in the

output space R P, one has to calculate a function f(x) from R D to R P. In a RBFN, f(x) is

approximated by a set of D-dimensional radial activation functions. Fig. 3 shows the typical

architecture of a RBFN with an input layer of D neurons, a hidden layer of M neurons, an output

layer of P neurons, adjustable weights that exist only between the hidden and output layers, and

biases at each output neuron. Given a set of N data points in a multidimensional space, the aim of

exact interpolation is to find a function such that every D-dimensional input feature vector x
n={ :

i=1,…, D} has a corresponding P-dimensional target output vector f
n = { : k=1,…, P}. The

approximation of function f(x) may be expressed as a linear combination of the radial basis functions,

Tn

2A0At fyv

s
--------------------⎝ ⎠
⎛ ⎞ θcot=

θcot
Al fyl s

At fyv ph

------------------=

xi

n

f k
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of which the kth output of the network consist of sums of the weighted hidden layer neurons plus the

bias when the network is presented with the nth input vector and can be expressed by

                                                           (4)

where

wkj = weight connecting the jth basis function and the kth output; 

hj(x
n) = output from the jth hidden neuron for the input vector x n; and 

wk0 = a bias term at the kth output neuron. 

A typical choice for the radial basis functions is a set of multi-dimensional Gaussian kernel, its

dimensionality being the same as the D-dimensional input vector x
n. Thus, the output hj(x

n) from

the jth hidden neuron for the input vector x n has the following form:

                                             (5)

where

µ j = a center vector with the same dimension as xn; 

σj = width factor (or standard deviation) of the jth basis function; and

= Euclidean distance between an input vector xn and a center vector µ j. 

The output hj(x
n) has a significant response to the input vector only over a limited range called the

receptive field of which the size is determined by the value of σ. The receptive field is controlled

by the center µ j and the width σj of the neuron, i.e., the shape of the exponential function. The

receptive field is that region in space over which the neuron has appreciable response. It is restricted

to a small region of the input space. This ensures that there exists a set of weights that approximates

the target function better than any other set.

f̂k x
n( ) wkjhj x

n( ) wk0 +  ,
j 1=

M

∑=   k 1 2 … P, , ,=

hj x
n
;  µ j   σj,( )

x
n

µ j–
  

2σj

--------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

2

–    ,exp= j 1 2 …    M, , ,=

  ⋅

Fig. 3 Architecture of a typical RBFN
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Once the general shape of the hj function is chosen, the purpose of a RBFN algorithm is to find

the parameters µ j, σ j; and wkj to best fit function f(x). Fitting means here that the global mean-

square error between the target output f n ={ : k = 1, …, P} for all N data points and the estimated

output   is minimized. As with MLPs the sum-of-squares error function is given by

(6)

3.2. Training algorithm of RBFNs

As pointed out previously, a RBFN learning algorithm consists of finding the parameters µj, σj;

and wkj. In practice, the training algorithm of a RBFN can be divided into a two-stage procedure:

(1) determine the centers of the Gaussian kernels and compute their widths; and (2) compute the

weights between the hidden and output layers. In the literature, a large variety of training algorithms

have been tested in RBFNs. Most of these training algorithms correspond to supervised training or

to a joint unsupervised-supervised paradigm. During the first stage, the position of the centers and

the widths of the radial basis functions are obtained by unsupervised learning rules such as K-means

clustering algorithm (Moody and Darken 1989) or supervised learning rules such as learning vector

quantization (Kohonen 1988, Schwenker, et al. 1994). In the second stage, the weights of the output

layer are trained using supervised methods, for example, direct least squares methods such as the

Moore–Penrose pseudo-inverse method (Haykin 1999) or nonlinear iterative techniques such as a

gradient descent method. Here, the K-means clustering algorithm, the pseudo-inverse algorithm, and

the gradient descent method are briefly described in the following.

The K-means clustering algorithm is a nonhierarchical clustering algorithm, for which the number

K of the data clusters basis functions has to be decided in advance, and then follows a simple re-

estimation procedure to partition the data points x
n = { : i = 1, …, D} into K disjoint subsets Sj

containing Nj data points to minimize the sum squared clustering function, defined as:

(7)

where µj is the mean/centroid of the data points in subset Sj given by

(8)

Once the centers of the K subsets are determined, the width factor of the radial basis functions has

to be estimated. One of the simplest ways is to set the σj value equal to the Euclidean distance of

the jth center µj from its nearest neighbors or to take into account the R nearest neighbors (Moody

and Darken 1989). Then:

(9)

where µi are the R-nearest neighbors of centroid µj.

Provided that the number and shape of the radial basis functions in the receptive field have been

determined, the weights of the output layer can be calculated. Considering the RBFN mapping
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defined in Eq. (4) and absorbing the bias parameter into the weights. Then Eq. (4) can be expressed

as the following equation

                                                       (10)

where h0 is an extra RBF with activation value fixed at 1. Defining matrices with components (W)kj
= wkj the weight connecting the jth basis function and the kth output, (H)nj = hj(x

n) the outcome of

the jth basis function with the nth feature vector xn as input, and (F)nk={ } the kth component of

the nth target vector f n, respectively, the above equation can be written in matrix notation as

(12)

For a large class of functions, the matrix H is non-singular, provided the data points are distinct.

Then the network weights can be computed by fast linear matrix inversion techniques (Bishop

1995). And the formal solution for the matrix of the output layer weights W is given in the form

where H+=(HTH)−1HT denotes the pseudo-inverse of H. It can be seen to have the property H+H= I.

In practice, it is prefer to use singular value decomposition (SVD) to avoid possible ill-conditioning

of H, i.e., H+H being singular or near singular. The output layer weights can also be found by

gradient descent optimization of the sum-of-squares error function defined in Eq. (6). In other

words, the network is trained by adjusting its weights so as to minimise the error function over the

entire training data set. This leads to the delta learning rule for the output weights. Hence, the

change of the weight is given by

(13)

where η is the learning rate and  is the gradient. Then, the output layer weights would be

iteratively updated using the following equation

(14)

4. RBFN modeling of torsion strength 

A commercially available software package, STATISTICA Neural Networks, was used to

establish the RBFN models for predicting the ultimate torsional strength of RC beams. Details on

the establishment of neural network-based models for torsion strength, along with sources of the

data that are used in the development, are described below.

4.1. Data set and system model

The experimental data used in this study include 76 records retrieved from the existing literature

(Fang and Shiau 2004, Hsu 1968b, Koutchoukali and Belarbi 2001, Rasmussen and Baker 1995).

The complete list of the data is given in Table 1, where the name and the source of each specimen

are referenced, and their ranges are listed in Table 2. The data set is then divided into three subsets;

f̂k x
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Table 1 Experimental data

No.
x

(mm)
y

(mm)
x1

(mm)
y1

(mm) (MPa)
s

(mm)
At

(mm2)
fyv

(MPa)
Al

(mm2)
fyl

(MPa)
ρ
t

(%)
ρ
l

(%)
Tu

(kN-m)
Type of sub-

set
Source

Ref.

H-06-06 350 500 300 450 78.5 100 71.33 440 1191.6 440 0.61 0.68 92.0 test

F
an

g
 an

d
 S

h
iau

(2
0
0
4
)

H-06-12 350 500 300 450 78.5 100 71.33 440 2027.2 410 0.61 1.16 115.1 verification

H-12-12 350 500 300 450 78.5 50 71.33 440 2027.2 410 1.22 1.16 155.3 test

H-12-16 350 500 300 450 78.5 50 71.33 440 2865 520 1.22 1.64 196.0 training

H-20-20 350 500 300 450 78.5 55 126.70 440 3438 560 1.97 1.96 239.0 training

H-07-10 350 500 300 450 68.4 90 71.33 420 1719 500 0.68 0.98 126.7 test

H-14-10 350 500 300 450 68.4 80 126.70 360 1719 500 1.36 0.98 135.2 training

H-07-16 350 500 300 450 68.4 90 71.33 420 2865 500 0.68 1.64 144.5 test

N-06-06 350 500 300 450 35.5 100 71.33 440 1191.6 440 0.61 0.68 79.7 training

N-06-12 350 500 300 450 35.5 100 71.33 440 2027.2 410 0.61 1.16 95.2 training

N-12-12 350 500 300 450 35.5 50 71.33 440 2027.2 410 1.22 1.16 116.8 test

N-12-16 350 500 300 450 35.5 50 71.33 440 2865 520 1.22 1.64 138.0 verification

N-20-20 350 500 300 450 35.5 55 126.70 440 3438 560 1.97 1.96 158.0 verification

N-07-10 350 500 300 450 35.5 90 71.33 420 1719 500 0.68 0.98 111.7 test

N-14-10 350 500 300 450 35.5 80 126.70 360 1719 500 1.36 0.98 125.0 training

N-07-16 350 500 300 450 35.5 90 71.33 420 2865 500 0.68 1.64 117.3 test

B5UR1 203 305 165 267 39.6 108 71.33 373 506.8 386 0.92 0.82 19.4 test K
o
u
tch

o
u
k
ali an

d
 B

elarb
i

(2
0
0
1
)

B7UR1 203 305 165 267 64.6 108 71.33 399 506.8 386 0.92 0.82 18.9 verification

B9UR1 203 305 165 267 75 108 71.33 373 506.8 386 0.92 0.82 21.1 verification

B12UR1 203 305 165 267 80.6 108 71.33 399 506.8 386 0.92 0.82 19.4 verification

B14UR1 203 305 165 267 93.9 108 71.33 386 506.8 386 0.92 0.82 21.0 training

B12UR2 203 305 165 267 76.2 102 71.33 386 506.8 386 0.98 0.82 18.4 test

B12UR3 203 305 165 267 72.9 95 71.33 386 649.46 373 1.05 1.05 22.5 training

B12UR4 203 305 165 267 75.9 90 71.33 386 760.2 373 1.11 1.23 23.7 training

B12UR5 203 305 165 267 76.7 70 71.33 386 794.4 380 1.42 1.28 24.0 training

Note: The definitions of the parameters are shown in Table 2.
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Table 1 Continued

No.
x

(mm)
y

(mm)
x1

(mm)
y1

(mm) (MPa)
s

(mm)
At

(mm2)
fyv

(MPa)
Al

(mm2)
fyl

(MPa)
ρ
t

(%)
ρ
l

(%)
Tu

(kN-m)
Type of
subset

Source 
Ref.

B30.1 160 275 130 245 41.7 90 78.54 665 1543.9 620 1.49 3.51 16.6 test

R
asm

u
ssen

 an
d
 B

ak
er (1

9
9
5
)

B30.2 160 275 130 245 38.2 90 78.54 669 1543.9 638 1.49 3.51 15.3 training

B30.3B 160 275 130 245 36.3 90 78.54 672 1543.9 605 1.49 3.51 15.3 verification

B50.1 160 275 130 245 61.8 90 78.54 665 1543.9 612 1.49 3.51 20.0 training

B50.2 160 275 130 245 57.1 90 78.54 665 1543.9 614 1.49 3.51 18.5 test

B50.3 160 275 130 245 61.7 90 78.54 665 1543.9 612 1.49 3.51 19.1 training

B70.1 160 275 130 245 77.3 90 78.54 658 1543.9 617 1.49 3.51 20.1 test

B70.2 160 275 130 245 76.9 90 78.54 656 1543.9 614 1.49 3.51 20.7 training

B70.3 160 275 130 245 76.2 90 78.54 663 1543.9 617 1.49 3.51 21.0 training

B110.1 160 275 130 245 109.8 90 78.54 655 1526.8 618 1.49 3.47 24.7 training

B110.2 160 275 130 245 105 90 78.54 660 1526.8 634 1.49 3.47 23.6 training

B110.3 160 275 130 245 105.1 90 78.54 655 1543.9 629 1.49 3.51 24.8 verification

B1 254 381 215.9 342.9 27.58 152.4 71.33 341.29 508 313.71 0.54 0.52 22.3 test

H
su

 (1
9
6
8
b
)

B2 254 381 215.9 342.9 28.61 181.1 126.70 319.92 635 316.47 0.81 0.66 29.3 verification

B3 254 381 215.9 342.9 28.06 127 126.70 319.92 762 327.5 1.15 0.79 37.5 training

B4 254 381 215.9 342.9 30.54 92.2 126.70 323.36 889 319.92 1.59 0.92 47.3 test

B5 254 381 215.9 342.9 29.03 69.9 126.70 321.30 1016 332.33 2.09 1.05 56.2 training

B6 254 381 215.9 342.9 28.82 57.2 126.70 322.67 1143 331.64 2.56 1.18 61.7 training

B7 254 381 215.9 342.9 25.99 127 126.70 318.54 508 319.92 1.15 0.52 26.9 training

B8 254 381 215.9 342.9 26.75 57.2 126.70 319.92 508 321.99 2.56 0.52 32.5 training

B9 254 381 215.9 342.9 28.82 152.4 126.70 342.67 762 319.23 0.96 0.79 29.8 training

B10 254 381 215.9 342.9 26.48 152.4 126.70 341.98 1143 334.40 0.96 1.18 34.4 verification

D1 254 381 215.9 342.9 26.61 152.4 71.33 337.84 508 333.02 0.54 0.52 22.4 training

D2 254 381 215.9 342.9 25.58 181.1 126.70 330.95 635 322.67 0.81 0.66 27.7 verification

D3 254 381 215.9 342.9 28.41 127 126.70 333.02 762 341.29 1.15 0.79 40.2 training

D4 254 381 215.9 342.9 30.61 92.2 126.70 333.02 889 330.26 1.59 0.92 47.9 training

Note: The definitions of the parameters are shown in Table 2.
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Table 1 Continued

No.
x

(mm)
y

(mm)
x1

(mm)
y1

(mm) (MPa)
s

(mm)
At

(mm2)
fyv

(MPa)
Al

(mm2)
fyl

(MPa)
ρ
t

(%)
ρ
l

(%)
Tu

(kN-m)
Type of subset

M1 254 381 215.9 342.9 29.85 149.4 71.33 353.01 635 326.12 0.55 0.66 30.4 training
H

su
 (1

9
6
8
b
)

M2 254 381 215.9 342.9 30.54 104.9 71.33 357.15 762 328.88 0.79 0.79 40.6 training

M3 254 381 215.9 342.9 26.75 139.7 126.70 326.12 889 321.99 1.05 0.92 43.8 training

M4 254 381 215.9 342.9 26.54 104.9 126.70 326.81 1016 318.54 1.39 1.05 49.6 training

M5 254 381 215.9 342.9 27.99 82.6 126.70 330.95 1143 335.09 1.77 1.18 55.7 training

M6 254 381 215.9 342.9 29.37 69.9 126.70 340.60 2288 317.85 2.09 2.36 60.1 training

I2 254 381 215.9 342.9 45.23 98.6 71.33 348.87 635 325.43 0.84 0.66 36.0 training

I3 254 381 215.9 342.9 44.75 127 126.70 333.71 762 343.36 1.15 0.79 45.6 training

I4 254 381 215.9 342.9 44.95 92.2 126.70 326.12 889 315.09 1.59 0.92 58.1 training

I5 254 381 215.9 342.9 45.02 69.9 126.70 325.43 1016 310.26 2.09 1.05 70.7 training

I6 254 381 215.9 342.9 45.78 57.2 126.70 328.88 1143 325.43 2.56 1.18 76.7 test

G1 254 508 215.9 469.9 29.79 187.5 71.33 339.22 508 321.99 0.4 0.39 26.8 training

G2 254 508 215.9 469.9 30.89 120.7 71.33 333.71 635 322.67 0.63 0.49 40.3 training

G3 254 508 215.9 469.9 26.82 155.7 126.70 327.50 762 338.53 0.87 0.59 49.6 verification

G4 254 508 215.9 469.9 28.27 114.3 126.70 341.98 889 325.43 1.18 0.69 64.9 training

G5 254 508 215.9 469.9 26.89 85.9 126.70 327.50 1016 330.95 1.57 0.79 72.0 training

G6 254 508 215.9 469.9 29.92 127 126.70 349.56 1144 334.40 1.06 0.89 39.1 verification

G7 254 508 215.9 469.9 30.96 146.1 126.70 322.67 1430 319.23 0.92 1.11 52.7 training

G8 254 508 215.9 469.9 28.34 104.9 126.70 328.88 1716 321.99 1.28 1.33 63.3 training

C1 254 508 215.9 215.9 27.03 215.9 71.33 341.29 381 341.29 0.22 0.3 11.3 training

CC2 254 508 215.9 215.9 26.54 117.6 71.33 344.74 508 334.40 0.41 0.39 15.3 training

C3 254 508 215.9 215.9 26.89 139.7 126.70 329.57 635 330.95 0.61 0.49 20.0 training

C4 254 508 215.9 215.9 27.17 98.6 126.70 327.50 762 336.46 0.86 0.59 25.3 verification

C5 254 508 215.9 215.9 27.23 73.2 126.70 328.88 889 328.19 1.16 0.69 29.7 verification

C6 254 508 215.9 215.9 27.58 54.1 126.70 327.50 1016 315.78 1.57 0.79 34.2 training
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train, verify and test cases. And the cases are divided in the proportions 3:1:1 between the three

subsets. In other words, among the collected data, 46, 15, and 15 are sampled randomly as training,

verification, and test examples, respectively.

It is well known that neural network training algorithms are iterative, training over a period of

time, and need to be repeated a number of times until a satisfactory solution is found. What is

more, some difficult decisions have to be made. Among the decisions that the neural network

designer must make, which of the available variables to use as inputs to the neural network is one

of the most difficult. Fortunately, neural networks can learn functional relationships from examples

without prior knowledge of the underlying mathematical model. In the study, therefore, a RBFN

using all available variables as the input variables was developed. Nevertheless, a neural network

with less input is usually preferable. Accordingly, several RBFN models that use fewer parameters

as the input variables were also developed. Practically, a sensitivity analysis was carried out on the

impact of each input on the neural network performance. The sensitivity analysis ranks parameters

in order of importance. Sensitivity is reported separately for training and verification subsets, and

the consistency of the sensitivity ratings across the two subsets is a good initial cross check on the

reliability of the sensitivity analysis. The possible redundancies and interdependencies between

variables imply that the sensitivity figures must be interpreted with caution since they may be quite

different on another network applied to the same data set. However, it was found that certain

variables consistently have high or low sensitivity, and then one can begin to identify key and

unnecessary variables. Furthermore, the selection of input variables for network models was also

guided by examining those variables given in the literature. Finally, five most important parameters

(i.e. short dimension of closed stirrup, long dimension of closed stirrup, concrete compressive

strength, steel ratio of stirrups, and steel ratio of longitudinal reinforcement) were selected to use as

inputs to the neural network.

On the other hand, no specific guidelines exist on how to choose the number of neurons in the

hidden layer. Therefore, the number of neurons in the hidden layer is determined through a trial-

and-error process, as is normally done. After a number of trials by using different hidden neurons,

several models are considered for predicting the ultimate torsional strength Tu. The architecture of

Table 2 Ranges of parameters in database

Parameters Minimum Maximum

x = short dimension of the cross section (mm) 160 350

y = long dimension of the cross section (mm) 275 508

x1 = short dimension of the closed stirrup (mm) 130 300

y1 = long dimension of the closed stirrup (mm) 216 469

= concrete compressive strength (MPa) 26 110

s = spacing of stirrups (mm) 50 215

At = cross-sectional area of one leg of closed stirrup (mm2) 71 127

fyv = yield strength of closed stirrups (MPa) 319 672

Al = total area of longitudinal torsional reinforcement (mm2) 381 3438

fyl = yield strength of longitudinal torsional reinforcement (MPa) 310 638

ρt = (Atph)/(xys) (%) 0.22 2.56

ρl = Al/(xy) (%) 0.30 3.51

Tu = ultimate torsional strength (N-m) 11 239
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the developed RBFN models is shown in Table 3. The first column in Table 3 denotes the neural

network structure. For example, RBF-12-46-1 stands for the network model using RBFN with 3

layers, 12 input neurons, 1 hidden layer (with 46 hidden neurons), and 1 output neuron.

4.2. Network topology and training algorithm

As preivously mentioned, training of RBFNs takes place in distinct stages. First, the centers and

width factors of the radial basis functions must be set; then the linear output layer is optimized.

Consequently, the centers stored in the radial hidden layer are optimized first using a kind of

unsupervised training technique (i.e. the K-means method). A set of data points is randomly selected

from the training data set. These data points are the seeds of an incremental K-means clustering

procedure and these K-means centers are used as centers in the RBFN. Then the width of the data is

reflected in the radial deviations, and deviations are assigned by the K-nearest neighbor method. In

other words, each basis's deviation is individually set to the mean distance to its K nearest

neighbors. Hence, deviations are smaller in tightly packed areas of space, preserving detail, and

higher in sparse areas of space. Once centers and deviations have been set, the linear output layer is

optimized using the pseudo-inverse technique, as this is quick, and guaranteed to minimize the error

if the deviations are not too small.

The data set is divided into three subsets; training, verification and test cases. To reiterate, the neural

networks are trained using the training subset only. The verification subset is used to keep an

independent check on the performance of the networks during training, with deterioration in the

verification errors indicating over-learning. If over-learning occurs, the software stops training the

network, and restores it to the state with minimum verification error. The verification error is also used

by the software to select between the available networks. However, if a large number of networks are

tested, a random sampling effect can kick in, and one may get a network with a good verification error

which is not actually indicative of good generalization capabilities. Therefore, a third subset (i.e. the

test subset) is maintained, and one can visually inspect performance after training.

4.3. Validation of RBFN models

During the training process, all RFB network models use the same training, verification, and test

subsets. Basically, the performance of the developed RBFNs is measured in two aspects: one is the

Table 3 Architecture of RBFN models

Model Inputs variables
Output
variable

Number of neurons

Input
 layer

Hidden
 layer

Output 
layer

RBF-12-46-1 x, x1, y, y1, , s, At, fyv, Al, fyl, ρt, ρl Tu 12 46 1

RBF-5-28-1 x1, y1, , ρt, ρl Tu 5 28 1

RBF-5-13-1 x1, y1, , ρt, ρl Tu 5 13 1

RBF-5-12-1 x1, y1, , ρt, ρl Tu 5 12 1

RBF-5-10-1 x1, y1, , ρt, ρl Tu 5 10 1

RBF-5-9-1 x1, y1, , ρt, ρl Tu 5 9 1

RBF-5-8-1 x1, y1, , ρt, ρl Tu 5 8 1
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root-mean-square error (RMSE) value, and the other is the coefficient of determination (R2). On the

other hand, the coefficient of determination (R2) can be used as an index of how well the

independent variables considered account for the measured dependent variable and thus testing the

accuracy of the developed RFBNs. 

In principle, the lower the RMSE value or the higher the R2 value is, the better the prediction

relationship will be. Judging from this, it can be seen from Table 4 that the developed RBFN

models (i.e. RBF-5-28-1 and RBF-12-46-1) performance well in terms of the RMSE and R2 values.

Especially, the RMSE values of the verification and test subsets are reasonably close together, and

thus the network is likely to generalize well. Besides, the R2 values are all greater than 0.98 for the

verification and test subsets. These demonstrate a near correlation between the independent

variables and the measured dependent variable. In other words, the results indicate the ultimate

torsional strength Tu of RC beams under pure torsion can be fairly accurately estimated using

RBFNs.

The results shown in Table 4 also indicate the ultimate torsional strength Tu of RC beams under

pure torsion can be fairly accurately estimated using only five input variables x1, y1, , ρt and ρl

(i.e. short dimension of closed stirrup, long dimension of closed stirrup, concrete compressive

strength, steel ratio of stirrups, and steel ratio of longitudinal reinforcement). This is quite consistent

with most existing analytical methods. On the whole, however, the performance of the developed

RBFN models deteriorates with the decrease of neurons in the hidden layer. Besides, inclusion of x,

y, s, At, fyv , Al, and fyl (i.e. short dimension of cross section, long dimension of cross section, spacing

of stirrups, cross-sectional area of one leg of closed stirrup, yield strength of closed stirrups total

area of longitudinal torsional reinforcement, and yield strength of longitudinal torsional

reinforcement), in addition to x1, y1, , ρt and ρl, has positive effect upon the accuracy of

predictions for Tu. Nevertheless, networks with fewer inputs and neurons in the hidden layer are

desirable, if not too much performance is sacrificed in comparison with larger networks, as this

means that less information has to be collected to use the network. Moreover, a network with fewer

inputs and neurons in the hidden layer is also, in most circumstances, likely to generalize better.

4.4. Comparison with ACI design code equations

To compare the neural network results with aforementioned ACI 318 Code equations, the same

training, verification and test data are used to calculate the predicted ultimate torsional strength Tup.

Regarding all 76 specimens, the measured ultimate torsional strength (Tue collected from the

literature) is plotted against the predicted values, as shown in Fig. 4. To show the overall trend of

correlation, the theoretical line with Tue / Tup = 1 are drawn on the graphs along with the data points

plotted. The nearer the points gather around the diagonal line, the better are the predicted values.

Fig. 4 clearly shows that the less scatter of data around the diagonal line confirms the fact that

neural network-based models are an excellent predictor for the value of Tu. While the correlation

between the values of Tue and Tup, which were obtained from Eq. (1) and Eq. (2), is more scattered.

Histograms of the measured-to-predicted ultimate torsional strength ratios for training, verification,

and test data are given in Fig. 5. For instance, the ranges of strength ratios for the beams examined

were 0.322 to 1.381 and 0.646 to 1.144 for the ACI-05 model and RBF-12-46-1 model,

respectively. For comparison purpose, the values of RMSE and R2 of the training, verification and

test results for all prediction models are also listed in Table 4. Overall, it is seen that the RBF-12-

46-1 model gives the smallest RMSE and the largest R2. In addition, all prediction models have
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been compared by means of the average value (AVG), standard deviation (STD), and coefficient of

variation (COV) of the strength ratios of Tue / Tup (as shown in Table 5). The overall predictions

from the RBFN models (i.e. RBF-5-28-1, RBF-5-13-1, RBF-5-12-1, RBF-5-10-1, and RBF-12-46-

1) were found to be better than the ACI 318 equations. This indicates that the neural network

performs better than the other methods selected in this study.

Since the ACI 318 code has been the most widespread code of practice in the design process of

concrete structures, the strength ratios of Tue / Tup from the RBF-12-46-1 model were compared with

those derived from Eq. (2) for various values of , ρt, and ρl. From Fig. 6-8, it can be observed

that a large variation in the accuracy is noticed in the ACI 318-05 torsion strength prediction. For

f c
′

Fig. 4 Measured-versus-predicted ultimate torsional strength of RC 
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example, reviewing the test specimens with ρt of 1.49%, as shown in Table 1 (Rasmussen and

Baker 1995), it can be found that excluding the concrete strength, the cross-sectional dimensions,

and strength and dimensions of the reinforcement, were constant for all beams. In other words, of

the parameters that influence torsional capacity, concrete strength was the only one varied. The

Fig. 5 Histograms of measured-to-predicted ultimate torsional strength ratios 

Table 4 Summary of values of RMSE and R2

Model
Root-Mean-Square error (RMSE): kN-m Coefficient of determination (R2)

Training set Verification set Test set Training set Verification set Test set

ACI 318-89 14.34 12.79 24.23 0.96791 0.96025 0.93034

ACI 318-05 13.12 31.49 17.93 0.95738 0.94005 0.93983

RBF-12-46-1 6.29 4.02 3.23 0.98213 0.98772 0.98836

RBF-5-28-1 5.37 4.78 4.12 0.99276 0.99447 0.99726

RBF-5-13-1 6.46 7.13 10.18 0.98939 0.98825 0.98179

RBF-5-12-1 6.47 7.17 10.18 0.98937 0.98789 0.98162

RBF-5-10-1 7.01 7.62 10.74 0.98749 0.98592 0.97925

RBF-5-9-1 7.01 8.24 9.46 0.98749 0.98825 0.98371

RBF-5-8-1 7.16 8.46 9.59 0.98695 0.98774 0.98327
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concrete strength varied between 36 and 110 MPa. The test series has shown the ultimate torsional

strength of RC beams increases with the increase of concrete strength. However, according to the

current torsion provision of ACI 318-05, the ultimate torsional strength of RC beams is assumed to

be resisted by the closed stirrups and longitudinal steel while the torsion moment resisted by the

concrete compression struts is assumed as zero. That is to say, the ACI 318-05 method does not

include the effect of the concrete strength. Therefore, from Fig. 8(a) for 1.49% value of the steel

ratio stirrups, it is clear that the measured-to-predicted ratios in the case of ACI-05 method yielded

unconservative and scattered results. This reveals that a large variation in the accuracy is noticed in

the ACI 318-05 torsion strength prediction. By contrast, the result obtained from the RBFN is the

consistent one, having values close to 1 for a wide variation of those parameters. 

A lot of parametric studies concerning the effects of numerous variables such as the amount of

transverse and longitudinal reinforcement, the concrete strength, and the aspect ratio on the torsional

behavior of RC beams have been reported in the literature. In fact, one advantage of neural network

models is that parametric studies can be easily done by simply varying one input parameter and all

other input parameters are set to constant values. For example, the RBF-12-46-1 method is

Table 5 Summary of values of AVG, STD and COV for all prediction models

Model

AVG STD COV

Training 
set

Verifica-
tion set

Test set
Training 

set
Verifica-
tion set

Test set
Training 

set
Verifica-
tion set

Test set

ACI 318-89 0.9681 0.9301 1.0854 0.2076 0.1905 0.3237 0.2145 0.2048 0.2982

ACI 318-05 0.9951 0.9059 0.9620 0.2866 0.2756 0.3133 0.2881 0.3042 0.3257

RBF-12-46-1 0.9746 0.9786 1.0031 0.0880 0.0745 0.0498 0.0903 0.0762 0.0496

RBF-5-28-1 1.0115 1.0237 1.0008 0.1208 0.1240 0.0551 0.1194 0.1211 0.0551

RBF-5-13-1 1.0057 1.0293 1.0557 0.1657 0.1696 0.1121 0.1648 0.1648 0.1062

RBF-5-12-1 1.0049 1.0387 1.0473 0.1704 0.1707 0.1177 0.1696 0.1643 0.1123

RBF-5-10-1 1.0025 1.0511 1.0283 0.1756 0.2241 0.1590 0.1751 0.2132 0.1546

RBF-5-9-1 1.0099 1.1110 1.1438 0.1736 0.2601 0.4651 0.1719 0.2341 0.4066

RBF-5-8-1 1.0126 1.1192 1.1423 0.1858 0.2762 0.4750 0.1835 0.2468 0.4158

Fig. 6 Measured-to-predicted ultimate torsional strength ratios versus compressive strength of concrete
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Fig. 7 Measured-to-predicted ultimate torsional strength ratios versus steel ratio of longitudinal reinforcement

Fig. 8 Measured-to-predicted ultimate torsional strength ratios versus steel ratio of stirrups

Fig. 9 Variation of ultimate torsional strength with concrete strength
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considered to further investigate the effect of  on the predictions of the torsional strengths of the

RC beams. Fig. 9 shows an almost linear relation between the torsional strength and  with the

other parameters constant. Therefore, it should be noted that if the RBFN model will be used in

design, then an acceptable factor of safety may be applied to the predicted value. However, the

value of the factor of safety has still to be evaluated since the RBFN model can be further improved

by considering more experimental data especially at high strength concrete and in the region of

larger steel ratios for longitudinal reinforcement and stirrups.

5. Conclusions

The use of RBFNs for predicting the torsional strength of reinforced concrete beams is presented.

The RBFNs approach can be used to predict results reasonably well and show to be an easy and

sufficiently accurate method of analysis. Based on the analytical results, the following conclusions

can be drawn for the present study:

1. The results clearly demonstrate that the use of RBFNs is a feasible method in predicting the

ultimate torsional strength of RC beams with rectangular section subjected to pure torsion by

the excellent correlation between experimental and calculated values; 

2. Compared with ACI 318 equations, the RBFNs approach provides better results both in terms

of root-mean-square error and coefficients of determination; and

3. The measured-to-predicted ultimate torsional strength ratio from the ACI Code was affected

with the material properties of the beam. By contrast, the RBFNs keep consistent accuracy in

all ranges of these variations.
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Notation

A0 = gross area enclosed by shear flow path
Al  = total area of longitudinal torsional reinforcement
At  = cross-sectional area of one leg of closed stirrup
f

n  = target output vector
= estimated output

 = concrete compressive strength
(F)nk = kth component of the nth target vector f n

fyl = yield strength of longitudinal torsional reinforcement
fyv = yield strength of closed stirrups
hj(x

n)= output from the jth hidden neuron for the input vector x n

h0 = an extra RBF with activation value fixed at 1
(H)nj = outcome of the jth basis function with the nth feature vector xn as input
ph = perimeter of centerline of outmost closed transverse torsional reinforcement
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s = spacing of stirrups
Tc = torsional resistance provided by concrete
Tn = nominal torsional strength (kN-m)
Ts = torsional resistance provided by steel reinforcement
Tu = ultimate torsional strength
Tue = measured ultimate torsion strength
Tup = predicted ultimate torsional strength
W = matrix of the output layer weights
wk0 = a bias term at the kth output neuron
wkj = weight connecting the jth basis function and the kth output
x = short dimension of the cross section
x1 = short dimension of the closed stirrup
x

n = input feature vector
y = long dimension of the cross section
y1 = long dimension of the closed stirrup
σj = width factor (or standard deviation) of the jth basis function
∆wkj = change of weight
µj = a center vector
θ = angle of compression diagonals
ρt = steel ratio of stirrups
ρl = steel ratio of longitudinal reinforcement
η = learning rate
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