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1. Introduction 
 

Composite materials are formed combining at least two 

differrent materials, which are insoluble in each other, in 

macro dimensions to provide new features such as very 

high strength and stiffness coupled with a very low density, 

resistance to chemicals, thermal and electrical insulation 

properties, etc. to the yielding new material suitable for the 

application areas. Therefore, the theoretical and 

experimental study of the mechanical behavior of 

composite structures is one of the interesting topics in the 

literature. (Patle et al. 2018, Mehar et al. 2020, Pandey et 

al. 2019, Sahoo et al. 2019, Anil et al. 2020, Dewangan et 

al. 2020a, b, Sahu et al. 2020). However, in composites, the 

sharp discontinuity between the material properties at the 

interface of two different types of material may cause 

vigorous failures in connection with stress concentrations, 

namely fibers could be separated from the matrix which is 

called delamination under extreme working conditions 

(Mahamood et al. 2012, Hirwani and Panda 2019). 

Therefore, scientists suggested Functionally Graded 

Materials (FGMs), which eliminate the stress concentration 

at interfaces with the continuity and gradual variation of 

material properties (Kouizimi 1993). In FGMs, the volume 

fraction of two materials changes (generally ceramic and 

metal) as a function of position throughout a specific 
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dimension of the structure in order to achieve the desired 

function. In the said structural element, the graded structure 

of the material keeps metals against corrosion, oxidation, 

and wear while diminishes imperfections such as interface 

and surface cracks and failure of the ceramic. FGMs have 

wide application field in aerospace, automotive, aviation, 

civil and mechanical engineering structures (Koizumi 1997, 

Suresh and Mortensen 1998, Kieback et al. 2003, Birman 

and Byrd 2007, Chackraverty and Pradhan 2016, Alsaid-

Alwan 2017, Balubaid et al. 2019, Kaddari et al. 2020, 

Nejadi and Mohammadimehr 2020, Rahmani et al. 2020). 

Besides, to having the projected structure to serve all the 

engineering purposes, in addition to the properties of the 

selected material, the theory to be used during the modeling 

stage is also of great importance. Therefore, several beam 

theories are developed; Euler-Bernoulli Beam Theory 

(EBBT), Rayleigh Beam Theory (RBT), Shear Beam 

Theory (SBT), and Timoshenko Beam Theory (TBT) are 

only four of these theories. EBBT (sometimes called the 

classical beam theory) is the first known beam theory as 

well as the most used one in the open literature due to its 

simplicity and efficiency. However, the theory considers 
only the effect of bending in the transverse vibration of 

the beam, and therewith the natural frequencies are 

overestimated and this error increases with the higher 

modes. RBT adds the effect of rotation of the cross-section 

and in this way it makes a partial correction on the values of 

the natural frequency of the EBBT. It should be noted that 

SBT and TBT are both first-order shear deformation beam 

theories of Timoshenko however in SBT just only shear 

deformation is taken into account whereas, in TBT shear 
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deformation and rotary inertia and their coupling effects are 

considered. The consideration of the effect of shear 

deformation in EBBT gives more accurate results for 

natural frequencies. Each of these four beam theory has 

been broadly utilized to serve different purposes in many 

engineering structures for many years (Timoshenko 1937, 

Han et al. 1999, Yıldırım and Kıral 2000, Wang et al. 2007, 

Civalek and Kiracioglu 2010, Civalek and Ozturk 2010, 

Avcar 2015, Shokravi 2017, Aydogdu et al. 2018, Kahya 

and Turan 2018, Lee and Lee 2019, Ebrahimi et al. 2020).  

Moreover, considering the FGM properties makes the 

examined problem more attractive and so, solution of the 

free vibration problem of FG beams using different beam 

theories has become one of the areas of interest for the 

research community and addressed by many researchers 

(Thai and Vo 2012, Wattanasakulpong and Ungbhakorn 

2012, Nguyen et al. 2013, Hadji et al. 2014, Li et al. 2014, 

Bourada et al. 2015, Hadji et al. 2015, Wang and Li, 2016, 

Akgöz and Civalek 2017, Al Rjoub and Hamad 2017, 

Avcar and Alsaid-Alwan 2017a, b, Avcar and Mohammed 

2018, Ayache et al. 2018, Avcar 2019, Chaabane et al. 

2019, Ramteke et al. 2019, Sahouane et al. 2019).  

From the search of open literature, it is seen that a 

comparative study consisting of free vibration of the FG 

beam utilizing four different beam theories simultaneously, 

i.e., EBBT, RBT, SBT, TBT, has not been dealt yet. An 

attempt is made to address this problem in the present 

study. For this aim, the extension of earlier studies of 

authors (Avcar 2015, Avcar and Alsaid-Alwan 2017a, b) 

are presented. The material properties are supposed to vary 

continuously through the thickness direction of the beam 

with respect to the volume fraction of constituents. The 

governing equations of free vibration of FG beams are 

derived in the frameworks of four beam theories. Resulting 

equations are solved versus simply supported boundary 

conditions, analytically. To verify the results, comparisons 

are carried out with the available results. Parametrical 

studies are performed for discussing the effects of assumed 

beam theory, the variation of beam characteristics, and 

FGM properties on the free vibration of beams. In 

conclusion, it is found that the interaction between FGM 

properties and the supposed beam theory is of significance 

in terms of free vibration of the beams and that different 

beam theories need to be used depending on the 

characteristics of the beam in question. 

 

 
2. Formulation of the problem 
 

2.1 Functionally graded materials 
 

Consider a FG beam consist of ceramic-metal, which 

has length, L, width b, and thickness, h, as shown in Fig. 1.  

The material properties of the FG beam, namely 

Young’s modulus E and mass density ρ, vary continuously 

through the thickness direction according to a function of 

the volume fractions of the constituents while Poisson’s 

ratio v is taken to be constant.   

Using the rule of mixture, the material properties, P, can 

be expressed as 

 

Fig. 1 Geometry of a FG beam 

 

 

m m c cP P V PV= +               (1) 

where Pm, Pc, Vm and Vc are the material properties and the 

volume fractions of the metal and the ceramic constituents 

respectively. 

The total volume fraction of the metal and ceramic as 

follows  

1m cV V+ =                 (2) 

The power law of volume fraction of the ceramic 

constituent of the beam as follows 

1

2

d

c

z
V

h

 
= + 
 

              (3) 

where d is a positive number (0≤d≤∞) called power law or 

volume fraction index, and z is the distance from the mid-

plane of the beam. Note that, FG beam transforms to a fully 

ceramic one as d=0, while it transforms to a fully metallic 

one as d=∞.  

In the present work, unless otherwise indicated, FGM 

beams are supposed to composed of Aluminum (Al) and 

Alumina (Al2O3) as metal and ceramic constituents 

respectively, whose material properties are  

3 3 70 GPa;  2702 kg/m ;  380 GPa;  3960 kg/mm m c cE E = = = =  
3 3 70 GPa;  2702 kg/m ;  380 GPa;  3960 kg/mm m c cE E = = = =        (4) 

Fig. 2 illustrates the change in Young’s modulus and 

density of FG beams through the thickness direction versus 

power law index.  

 

2.2 Governing equations 
 

The displacements at arbitrary point of a FG beam can 

be expressed as 

0( , , ) ( , ) ( , )u x z t u x t z x t= +          (5) 

0( , , ) ( , )w x z t w x t=              (6) 

here u0(x,t) and w0(x,t) denote displacements of any point 

on neutral axis along the x and y directions, respectively, θ 

is the rotation of the cross section and t is the time.  

Using the displacement field given in Eqs. (5)-(6), the 

normal and shear strains, can be expressed as, respectively 

x

u
z

x x




 
= +
 

              (7) 
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(b) 

Fig. 2 The change in (a) Young’s modulus and (b) density 

of FG beams through the thickness direction versus power 

law index 

 

 

xz

w

x
 


= +


                 (8) 

Using Hooke’s law, the normal and shear stresses can be 

expressed as, respectively 

11x xQ =                  (9) 

55xz xzQ =                 (10) 

here Q11 and Q55 are stiffness constants and are defined as 

follow 

11 ( )Q E z= , 
55

( )

2(1 )

E z
Q


=

+
          (11) 

Note that, in this study beams with small width 

(b/h<0.2) are taken into consideration and so the term 

1/(1−v2) is ignored in stiffness constant Q11 owing to it has 

negligible effect.  

The stress resultants can be expressed as  

11 11

u
N A B

x x

 
= +

 
             (12) 

11 11

u
M B D

x x

 
= +

 
             (13) 

55x

w
Q kG

x


 
= + 

 
              (14) 

where k is shear correction factor which is taken to be 5/6 

and A11, B11, D11 and G55 are the material stiffness 

constants, which are defined as follows 

( ) ( )2

11 11 11 11, , 1, ,
A

A B D Q z z dA=        (15) 

55 55

A

G Q dA=                (16) 

Using above given expressions after some mathematical 

operations and simplifications the governing equation of 

free vibration of FG beam versus EBBT, RBT, SBT and 

TBT found as follows, respectively  

4 2

0 0
11 04 2

0
w w

I
x t


 

+ =
 

            (17) 

4 2 4

0 0 0
11 0 114 2 2 2

0
w w w

I
x t x t

 
  

+ − =
            (18) 

4 2 4

0 0 011
11 0 04 2 2 2

55

0
w w w

I I
x t kG x t




  
+ − =

   
      (19) 

4 2 4 4
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11 0 114 2 2 2 4
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0
w w I w I w

I
x t kG x t kG t

 
 
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+ − + + = 

       
(20) 

here following definitions apply 

2 2

11 1
11 11 11 2

11 0

,
B I

D I
A I

  
= − = −  
   

 

 

(21) 

where I0, I1 and I0 are the moment of inertia components of 

FG beam and defined as follow 

( ) ( )2

0 1 2, , ( ) 1, ,
A

I I I z z z dA=          (22) 

 

 

3. Solution of the problem 
 

The solution of the governing Eqs. (17) and (20) can be 

obtained by separation of variables technique. In this case, 

one assumes the solution in the following form 

( , ) ( ) ( )w x t x t =  (23) 

where α(x) is a space-dependent function, and β(t) is 

temporal function, and are defined as 

1 2 3 4

1 2

( ) sinh( ) cosh( ) sin( ) cos( )

( ) cos sin

x d x d x d x d x

t c t c t

= + + +

= +

    

  

 

1 2 3 4

1 2

( ) sinh( ) cosh( ) sin( ) cos( )

( ) cos sin

x d x d x d x d x

t c t c t

= + + +

= +

    

    
(24) 

where, c1, c2, d1, d2, d3, and d4 are constants. 

FG beam is assumed to have simply supported boundary 

conditions in both ends, hence these conditions can be 

stated in terms of w as 

(0, ) 0, ( , ) 0= =w t w L t           (25) 
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Table 1 The first three dimensionless frequencies of FG 

beam versus varying power law index 

Mode Results 
d 

0 0.5 1 2 5 

1 

Present 5.483 4.669 4.221 3.852 3.668 

Wattanasakulpong and 

Ungbhakorn (2012) 
5.483 4.669 4.221 3.852 3.668 

2 

Present 21.933 18.676 16.884 15.407 14.670 

Wattanasakulpong and 

Ungbhakorn (2012) 
21.933 18.676 16.884 15.407 14.670 

3 

Present 49.350 42.021 37.989 34.667 33.007 

Wattanasakulpong and 

Ungbhakorn (2012) 
49.350 42.021 37.989 34.667 33.007 

 

 

2 2

2 2
(0, ) 0, ( , ) 0= =

d w d w
t L t

dx dx
         (26) 

Substituting Eqs. (23) and (24) into Eqs. (17)-(20) and 

then considering the Eqs. (25) and (26) in the obtained 

equation, the frequency equations of FG beam are found as 

follows for EBBT, RBT, SBT and TBT, respectively 

4

2

11 0 0
n

I
L


 

 
− = 

 

             (27) 

( )
4 2

2

11 0 11 0
n n

I
L L

 
  

    
− + =    

     

        (28) 
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2 11 0
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I
L kG L

 
 
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− + =     

      

       (29) 
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2 411 0 11 0
11 0 11

55 55

0
I In n

I
L kG L kG

  
   

      
− + + + =     

      

 

(30) 

where n denotes the number of the mode.  

 

 
4. Numerical results and discussion 
 

In this section numerical examples are given to examine 

the present problem. At first, comparisons have been 

performed to show the accuracy of the present formulations. 

Then, parametrical studies are performed for discussing the 

effects of supposed beam theory, the variation of beam 

characteristics, and FGM properties on the free vibration of 

beams.  

 

4.1 Comparison studies 
 

Table 1 offers comparison of the first three 

dimensionless frequencies of FG beams with varying power 

law index (d) with the results of Wattanasakulpong and 

Ungbhakorn (2012) using EBBT. Here following material 

and beam properties are considered Em=70 GPa, ρm=2702 

kg/m3, Ec=380 GPa, ρc=3960 kg/m3 and dimensionless 

frequency is defined as Ω = 𝜔𝐿2/ℎ√𝜌𝑚/𝐸𝑚. It is apparent 

from Table 1 that the present results are in good agreement 

with the previously published ones.  

Table 2 The first three dimensionless frequencies of 

homogenous beam 

Mode 
ω (rad/s) 

Present Study Rao (2007) 

1 696.583 696.599 

2 2713.365 2713.422 

3 5857.951 5858.065 

 

Table 3 The first three dimensionless frequencies of FG 

beam versus varying power law index 

Mode Results 
d 

0 0.5 1 2 5 

1 

Present 0.5414 0.4617 0.4176 0.3810 0.3620 

Al-Rjoub and Hamad 

(2017) 
0.5414 0.4750 0.4466 0.4231 0.3967 

2 

Present 2.0888 1.7877 1.6199 1.4774 1.3953 

Al-Rjoub and Hamad 

(2017) 
2.0888 1.7877 1.6199 1.4774 1.3953 

3 

Present 4.4480 3.8270 3.4760 3.1687 2.9674 

Al-Rjoub and Hamad 

(2017) 
4.4480 3.8376 3.5000 3.2043 2.9953 

 

Table 4 The first three dimensionless frequencies of FG 

beam versus varying power law index 

Mode Results 
d 

0 0.5 1 2 5 

1 
Present 5.4603 4.6511 4.2054 3.8374 3.6515 

Nguyen et al.(2013) 5.4603 4.6504 4.2051 3.8368 3.6509 

2 
Present 21.5732 18.3954 16.6398 15.181 14.4216 

Nguyen et al.(2013) 21.5732 18.3912 16.6344 15.1715 14.4110 

3 
Present 47.5921 40.6483 36.7931 33.5586 31.7972 

Nguyen et al.(2013) 47.5921 40.6335 36.7673 33.5135 31.7473 

 

 

Table 2 presents the comparison of the first three of 

natural frequencies of the homogeneous beam, ω (rad/s) with 

results of Rao (2007) using RBT. Here the following beam 

and material properties are taken into account  

L=1 m, b=0.05 m, h=0.15 m, d=0, E=207×109 Pa, 

ρ=76.5×103 N/m3. 

Table 3 shows comparison of the first three 

dimensionless frequencies of FG beams with varying power 

law index (d) with the results of Al-Rjoub and Hamad 

(2017) using SBT. Here following material and beam 

properties are considered  

Em=70 GPa, ρm=2702 kg/m3, Ec=380 GPa, ρc=3960 kg/m3, 

L/h=10 

and dimensionless frequency is defined as Ω =

𝜔𝐿√𝜌𝑚/𝐸𝑚. 

Table 4 demonstrates comparison of the first three 

dimensionless frequencies of FG beams with varying power 

law index (d) with the results of Nguyen et al. (2013) using 

TBT. Here following material and beam properties are 

considered 

Em=70 GPa, ρm=2702 kg/m3, Ec=380 GPa, ρc=3960 kg/m3, 

L/h=20 

and dimensionless frequency is defined as 𝛺 = 𝜔𝐿2/

ℎ√𝜌𝑚/𝐸𝑚. 
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Fig. 3 The variation of first three dimensionless frequencies 

of FG beams versus power law index 

 

 

4.2 Numerical studies 
 

The effect of the variation of the power law index, d, on 

the dimensionless frequency values of the FG beam, 

Ω𝑖(𝑖 = 𝐸𝐵𝐵𝑇, 𝑅𝐵𝑇, 𝑆𝐵𝑇, 𝑇𝐵𝑇) were analyzed with respect 

to four beam theories in Fig. 3, here L/h=5 was held 

constant. From this example, it was found that the effect of 

the variation of power law index, d, on the dimensionless 

frequency values vary depending on the beam theory 

adopted. The difference in question is lower in the 

fundamental mode while it increases with the increasing 

number of modes. Nevertheless, it was found that the effect 

of the variation of power law index, d, is higher for 

dimensionless frequency values obtained using EBBT and 

RBT when d coefficient values were lower, i.e., when the 

material used was enriched ceramic; while the change in d 

coefficient is higher for dimensionless frequency values  

 

 

 

 

Fig. 4 The variation of dimensionless frequencies of FG 

beam versus span to depth ratio 

 

 

obtained using SBT and TBT when d coefficient values 

were higher, i.e., when the material used was enriched 

metal, in higher number of modes.  

The effect of the variation of the span to depth ratio, L/h, 

on the dimensionless frequency values of the FG beam, 
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Ω𝑖(𝑖 = 𝐸𝐵𝐵𝑇, 𝑅𝐵𝑇, 𝑆𝐵𝑇, 𝑇𝐵𝑇), were analyzed with respect 

to four beam theories in Fig. 4, here d=1 was held constant. 

From the results obtained, it was found that the effect of the 

variation of the ratio, L/h, on dimensionless frequency 

values vary irregularly depending on the beam theory 

adopted. The effect in question is lower in the fundamental 

mode while it increases with the increasing number of 

modes. Moreover, it was concluded that the theory used 

gains importance in lower values of the ratio, L/h, i.e., in 

thick beams, while it was insignificant in higher values of 

the ratio, L/h, i.e., in slender beams, and that the results 

obtained using all four theories converge to those obtained 

using EBBT.  

 

 

5. Conclusions 
 

In the present work, the comparison of the supposed 

engineering theory for free vibration of FG beam is 

examined, for this aim, Euler-Bernoulli, Rayleigh, Shear 

and Timoshenko beam theories are employed. The FGM 

properties are assumed to vary continuously through the 

thickness direction of the beam with respect to the volume 

fraction of constitutes. The governing equations of free 

vibration of FG beams are derived in the frameworks of all 

engineering theories. Resulting equations are solved versus 

simply supported boundary conditions. To verify the results, 

comparisons are performed with available results. 

Parametrical studies are performed for discussing the 

effects of supposed engineering theory, the variation of 

beam characteristics and material properties on the free 

vibration of beam. 

In sum, the following results were obtained:  

•  Dimensionless frequency values decrease when the 

power law index increase 

•  The effect of the variation of the power law index on 

the dimensionless frequency values varies depending on 

the beam theory supposed 

•  The effect of the variation of power law index on the 

dimensionless frequency values is lower in the 

fundamental mode while it increases with the increasing 

number of modes 

•  The effect of the variation of power law index is 

higher for dimensionless frequency values obtained 

using EBBT and RBT when the material used was 

enriched ceramic; while the effect of the change in 

power law index is higher for dimensionless frequency 

values obtained using SBT and TBT when the material 

used was enriched metal, in higher number of modes.  

•  The effect of the variation of the span to depth ratio 

on the dimensionless frequency values varies irregularly 

depending on the beam theory adopted. The effect in 

question is lower in the fundamental mode while it 

increases with the increasing number of modes 

•  The engineering theory supposed gains importance 

in lower values of span to depth ratio, while it is 

insignificant in higher values of span to depth ratio, and 

the results obtained using all four theories converge to 

those obtained using EBBT.  

In conclusion, the basic beam theories are introduced, in 

the present study. In the end, it is found that the interaction 

between FGM properties and the supposed beam theory are 

of significance in terms of free vibration of the beams and 

that different theories need to be used depending on the 

characteristics of the beam in question. In future studies, the 

solutions developed in this study will be extended to other 

types of materials and structures in macro/micro dimensions 

as well as higher-order theories.  
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