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1. Introduction  
 

A shell is defined as a type of structural element which 

is characterized by the curved geometry of its middle 

surface and by its thickness at any point on this surface, 

being a fully three-dimensional solid object whose 

thickness is very small when compared with other two 

dimensions. Usually, these lightweight elements have many 

superior mechanical properties (e.g., high specific strength 

and stiffness and stability), are assembled to form large 

structures able to absorb an additional amount of energy as 

compared to flat structures during their service life. 

Moreover, the number of research articles and books 

published over the past four decades indicates that the 

increasing and rapid demand for shell structures made of 

composite materials, appears to be the driving force behind 

the recent technological development observed in the 

various branches of engineering, especially in civil and 

architectural engineering (varieties of shell roofs, curved 

bridges, silos, storage tanks, vaulted dams, containment 

shells of nuclear power plants and cooling towers). They 

are, also applied in aeronautical construction (rockets, 
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propellers aircraft wings). Recently, the continuous 

development of material science and engineering, has led to 

the use of shell structures in mechanical engineering (ships 

shell, vehicle body, turbine blades), and in all branches of 

the chemical and petroleum industries. Many technical 

publications on this topic can be found throughout the 

archival literature. On the other hand the design of shell 

structures requires the ability to combine aesthetic 

knowledge to give the construction an attractive 

appearance, as well as structural analysis to dimension the 

structure is needed to insure precision, safety and 

economical design. Since shell structures are more 

complicated as compared to flat plates due to their 

curvature effect (cylindrical, spherical, ellipsoidal, conical 

shells, …etc.), various numerical models have been 

proposed by practicing structural engineers using the finite 

element method and/or analytical solution procedures have 

been established by scientific researchers using many shell 

theories to analyze their structural behaviour. Nevertheless, 

they have the particularity of being among the most delicate 

structures to investigate.  

In general, the analysis of the dynamic and static 

behaviour of thin to thick laminated composite/sandwich 

plates and shells in the past has been classified according to 

one of the different approaches derived from the equations 

of elasticity, such as equivalent single layer (ESL) theories, 
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Abstract.  This research is devoted to investigate the bending and free vibration behaviour of laminated composite/sandwich 

plates and shells, by applying an analytical model based on a generalized and simple refined higher-order shear deformation 

theory (RHSDT) with four independent unknown variables. The kinematics of the proposed theoretical model is defined by an 

undetermined integral component and uses the hyperbolic shape function to include the effects of the transverse shear stresses 

through the plate/shell thickness; hence a shear correction factor is not required. The governing differential equations and 

associated boundary conditions are derived by employing the principle of virtual work and solved via Navier-type analytical 

procedure. To verify the validity and applicability of the present refined theory, some numerical results related to displacements, 

stresses and fundamental frequencies of simply supported laminated composite/sandwich plates and shells are presented and 

compared with those obtained by other shear deformation models considered in this paper. From the analysis, it can be 

concluded that the kinematics based on the undetermined integral component is very efficient, and its use leads to reach higher 

accuracy than conventional models in the study of laminated plates and shells. 
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zigzag theories, three-dimensional elasticity theory and/or 

multiple model methods. It should be recalled that the ESL 

theoretical approaches are derived from the 3D theory of 

elasticity by making suitable assumptions on the form of the 

displacement field or the stress state through the thickness 

of laminated plates and shells. In the field of thin shells, the 

first admissible theory was originally formulated by Love in 

1888 (Love 1888). It is developed on the same simplest 

ESL model based on the well-known Kirchhoff hypotheses 

(Kirchhoff 1850) of the classical plate theory (CPT) for thin 

homogeneous plate structures. However, the application of 

this theory for moderately thick or thick plates and shells 

leads to considerable errors due to neglect of the effects of 

transverse shear deformation and rotary inertia. Whereas 

Reissner (1941) developed the first-order approximation 

theory of shells, in which some inadequacies of Love’s 

theory were removed without complicating the system of 

equations, as well as the strain-displacement relationships 

and stress resultants expressions are acquired in the context 

of the 3D theory of elasticity. Sanders (1959) also proposed 

a modified first-order approximation shell theory by using 

the Kirchhoff-Love assumptions and the principle of virtual 

work. For simplicity this theory has been developed almost 

entirely as a two-dimensional model. After extensive 

research and controversy, the validity of the simple theory 

of Love was finally generalized and confirmed only much 

later by Koiter (1961), as he derived a 2D model for thin 

linearly elastic shells. Koiter’s model is in fact one of the 

most currently used for numerical calculations, it includes 

both membrane and bending effects coupled at different 

order of magnitudes. Shortly after Koiter’s work, other 

developments which also utilize another 2D linear shell 

model are founded under the Reissner-Mindlin plate theory 

and are based on some kinematic assumptions of 

moderately thick plate theory. Among these we mention the 

different mathematical models for shells proposed by 

Naghdi (1963, 1972). However, these models are described 

in curvilinear coordinates defined on the middle surface. It 

is also possible to express these models in Cartesian 

coordinates. Tessler et al. (2010) utilized a consistent 

refinement of first-order shear deformation theory for 

laminated composite and sandwich plates using improved 

zigzag kinematics. Versino et al. (2013) developed C° 

triangular elements based on the Refined Zigzag Theory for 

multilayer composite and sandwich plates. Using a 

Reissner’s mixed variational principle; Tessler (2015) 

presented a refined zigzag theory for homogeneous, 

laminated composite, and sandwich beams. Iurlaro et al. 

(2015) employed a Refined Zigzag Theory for laminated 

composite and sandwich plates derived from Reissner’s 

Mixed Variational Theorem. Kefal et al. (2017) presented 

an enhanced inverse finite element method for displacement 

and stress monitoring of multilayered composite and 

sandwich structures. Kefal et al. (2019) proposed a novel 

isogeometric beam element based on mixed form of refined 

zigzag theory for thick sandwich and multilayered 

composite beams. Madenci and Özütok (2020) presented a 

variational approximate for high order bending analysis of 

laminated composite plates. 

Furthermore, a general small deflection thermoelastic 

theory of thick laminated composite shells subjected to 

mechanical and arbitrary temperature distribution is 

presented by Kant (1981). In thus investigation the material 

of each layer is assumed to have its planes of symmetry 

coincident with the orthogonal shell coordinates. Whitney 

(1984) presented an analytical solution to study the 

buckling of anisotropic laminated cylindrical plates 

subjected to arbitrary combinations of axial compression, 

internal pressure and in-plane shear loads, utilizing the 

classical laminated shell theory, in conjunction with 

Galerkin’s method based on a variational principle of 

displacements. Reddy and Liu (1985) have developed a 

simple higher-order shear deformation theory (HSDT) for 

bending and free vibration analysis of laminated spherical 

and cylindrical shells. This theory involves the same 

dependent unknowns as in the first-order shear deformation 

theory (FSDT) and takes into account the parabolic 

distribution of transverse shear stresses through the shell 

thickness. Barbero and Reddy (1990) presented a general 

2D shear deformation theory of laminated cylindrical shells, 

in which geometric nonlinearity in the von-Karman sense is 

also considered. Various computational models available in 

the open literature were used by Noor and Burton (1992) for 

predicting the thermal and thermo-mechanical responses of 

multilayered plates and shells while Leissa and Chang 

(1996) derived a rigorous and comprehensive theory which 

governs the linearly elastic deformation, including the 

effects of shear deformation and rotary inertia to solve the 

static and dynamic problems of laminated composite 

shallow shells, having an arbitrary curvature and a constant 

thickness. The Closed-form formulations of 2D HSDT are 

provided by Khare et al. (2003) for the bending analysis of 

simply supported cross-ply laminated composite and 

sandwich shallow shells under thermo-mechanical loading 

conditions. Furthermore, the effect of the variation of 

geometry, shallowness, lamination scheme and the other 

parameters on transverse central deflection is examined in 

detail in this analysis. In another study, Panda and Singh 

(2009) studied the thermal post-buckling response of 

laminated composite cylindrical/hyperboloid shallow shell 

panels subjected to uniform temperature field, using 

nonlinear finite element model based on the HSDT for 

different geometric parameters.  

Since the composite plates and the curvature of the 

shells pose new and delicate problems compared to the case 

of conventional plates, several higher-order shear 

deformation theories (HSDTs) were subsequently 

developed to optimize the analysis of different types of 

laminated/sandwich plates and shells responses and are 

extensively used by many researchers. Kumar et al. (2013) 

applied a new finite element model based on HSDT to solve 

many problems for the static response of laminated 

composite skew shells considering different geometries, 

boundary conditions, loadings and other shell parameters. 

In the same year, Viola et al. (2013) proposed a 2D HSDT 

for free vibration analysis of moderately thick laminated 

doubly-curved shells and panels with different curvatures, 

by using the generalized differential quadrature technique 

and a displacement field having a fixed nine degrees of 

freedom. Sayyad and Ghugal (2015) reviewed the various 
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methods carried out in the available literature for the free 

vibration analysis of multilayered laminated composite and 

sandwich plates using different HSDTs. In the following 

year, new shear deformation theories have been proposed 

by Sarangan and Singh (2016) to study the bending, 

buckling and free vibration analysis of laminated composite 

and sandwich plates. Further, the generalized form of 

governing differential equations is derived by employing 

the principle of virtual work and solved by Navier’s closed-

form solution technique. Afterwards, Tornabene (2016) 

proposed a higher-order layer-wise theory, in which the 

stretching effect is included for each layer using a general 

displacement field based on the Carrera unified formulation 

for free vibration analysis of thick doubly-curved laminated 

composite shells and panels. An analytical solution for the 

thermoelastic static problem of simply supported laminated 

composite plates under bi-sinusoidal thermal load was 

presented by Ramos et al. (2016), using a modified non-

polynomial displacement field based on Carrera unified 

formulation. Abed and Majeed (2020) analyzed the effect of 

boundary conditions on harmonic response of laminated 

plates. 
Recently, many other researchers have worked on 

development of theory of laminated orthotropic plates and 

shells (Chien et al. 2016, Swain et al. 2017, Sayyad and 
Ghugal 2017, Yarasca et al. 2017, Thakur et al. 2017, 

Biswal et al. 2017, Hirwani et al. 2018, Benhenni et al. 

2018, Katariya and Panda 2019, Monge et al. 2019, Cuba et 
al. 2019, Bakhshi and Taheri-Behrooz 2019, Sayyad and 

Ghugal 2020). The main objective of the present work is to 
investigate the bending and free vibration behaviour of 

laminated composite and sandwich plates and shells, using 
the generalized and simple refined higher-order shear 

deformation theory (RHSDT), which account for the effects 

of the transverse shear stresses through the plate/shell 
thickness and without requiring the shear correction factor. 

The governing equations and its boundary conditions are 
derived by employing the principle of virtual works. 

Analytical solutions are obtained for bending and free 

vibration response of simply supported laminated composite 
and sandwich plates and shells applying Navier’s solution 

procedure. Several numerical examples are presented and 
compared with other shear deformation theories to verify 

the validity and applicability of the present theory. 

 

 

2. Formulation of the problem 
 

A generalized higher-order shear deformation theory for 

laminated composite and sandwich plates and shells is 

developed. The theory takes into account for a hyperbolic 

distribution of transverse shear stresses through the 

plate/shell thickness, and satisfies exactly the zero shear 

stress conditions on the top and bottom surfaces of the 

plate/shell without requiring any shear correction factor. 

Moreover, the proposed model is easy to implement since it 

contains a smaller number of unknowns and governing 

equations than the other higher-order theories. The main 

idea of the present theory arises from the conventional 

HSDT models developed by several authors for plates to the 

bending and free vibration analysis of shells. The original 

version of the earlier HSDT assumes the following 

displacement field 

𝑢(𝜉1, 𝜉2, 𝜉3, 𝑡) = (1 +
𝜉3

𝑅1
) 𝑢 − 𝜉3

∂𝑤

𝑎1 ∂𝜉1
+ 𝑓(𝜉3)𝜙1,  

𝑣(𝜉1, 𝜉2, 𝜉3, 𝑡) = (1 +
𝜉3

𝑅2
) 𝑣 − 𝜉3

∂𝑤

𝑎2 ∂𝜉2
+ 𝑓(𝜉3)𝜙2,  

𝑤(𝜉1, 𝜉2, 𝑡) =  

(1) 

where 𝑢(𝜉1, 𝜉2, 𝑡),  𝑣(𝜉1, 𝜉2, 𝑡),  𝑤(𝜉1, 𝜉2, 𝑡),  𝜙1(𝜉1, 𝜉2, 𝑡) 
and 𝜙2(𝜉1, 𝜉2, 𝑡)  are the well known displacement 

components of the middle surface of the panel, while 𝑓(𝜉3) 
represents shape function identifying the distribution of the 

transverse shear strains and stresses across the thickness of 

the plate/shell. The generalized displacement model under 

discussion is a four independent variables theory defined as 

follows 

𝑢(𝜉1, 𝜉2, 𝜉3, 𝑡) = (1 +
𝜉3

𝑅1
) 𝑢 − 𝜉3

∂𝑤

𝑎1 ∂𝜉1
+ 𝑘1𝑓(𝜉3)∫𝜃 𝑑𝜉1 

𝑣(𝜉1, 𝜉2, 𝜉3, 𝑡) = (1 +
𝜉3

𝑅2
) 𝑣 − 𝜉3

∂𝑤

𝑎2 ∂𝜉2
+ 𝑘2𝑓(𝜉3) ∫ 𝜃 𝑑𝜉2  

𝑤(𝜉1, 𝜉2, 𝑡) = 𝑤 

(2) 

where 𝑢̄, 𝑣̄ and 𝑤̄ are the displacement components of 

any point in the laminate domain in the 𝜉1 , 𝜉2and 𝜉3 

directions, respectively. In this study, the shape function is 

chosen based on the hyperbolic function proposed by 

Soldatos (1992) as 

𝑓(𝜉3) = ℎ 𝑠𝑖𝑛ℎ (
𝜉3

ℎ
) − 𝜉3 𝑐𝑜𝑠ℎ (

1

2
)  (3) 

In the derivation of the necessary equations, small 

elastic deformations are supposed, (i.e., displacements and 

rotations are small, and comply with Hooke’s law), and the 

shell structure is made up of a number of orthotropic layers, 

which are supposed to be perfectly bonded together.  

The basis of the present laminated shell theory is the 3D 

elasticity theory, expressed in general curvilinear 

(reference) surface-parallel coordinates, whereas the 

thickness coordinate is normal with respect to the reference 

surface as indicated in Fig. 1. The strain-displacement 

 

 

 

Fig. 1 Geometry and notations for generic laminated   

shells with positive set of layer/laminated reference axes, 

displacement components and fiber orientation 
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relations in the curvilinear coordinate system are given as 

follows (Reddy 2004) 

𝜀1 =
1

𝐴1
(
∂𝑢

∂𝜉1
+

1

𝑎2

∂𝑎1

∂𝜉2
𝑣 +

𝑎1

𝑅1
𝑤),  

𝜀2 =
1

𝐴2
(
∂𝑣

∂𝜉2
+

1

𝑎1

∂𝑎2

∂𝜉1
𝑢 +

𝑎2

𝑅2
𝑤)  

𝜀4 =
1

𝐴2

∂𝑤

∂𝜉2
+ 𝐴2

∂

∂𝜉3
(
𝑣

𝐴2
) , 𝜀5 =

1

𝐴1

∂𝑤

∂𝜉1
+ 𝐴1

∂

∂𝜉3
(
𝑢

𝐴1
)  

𝜀6 =
𝐴2

𝐴1

∂

∂𝜉1
(
𝑣

𝐴2
) +

𝐴1

𝐴2

∂

∂𝜉2
(
𝑢

𝐴1
)  

(4) 

in which 𝐴1 = 𝑎1 (1 +
𝜉3

𝑅1
) , 𝐴2 = 𝑎2 (1 +

𝜉3

𝑅2
) and 

𝜉𝑖(𝑖 = 1, . . . . ,6) denote strain components, while 𝑎1  and 

𝑎2 are scalar values associated to the type of shells. 

Substituting the expressions of displacements considered by 

Eq. (2) into the relations given in Eq. (4) of a moderately 

shallow and deep shell provides the following strain-

displacement equations, valid for an arbitrary point of a 

double curvature panel under study 

{

𝜀1
𝜀2
𝜀6
} = {

𝜀1
0

𝜀2
0

𝜀6
0

} + 𝑧 {

𝜀1
1

𝜀2
1

𝜀6
1

} + 𝑓(𝜉3) {

𝜀1
2

𝜀2
2

𝜀6
2

},

 
{
𝜀4
𝜀5
} = 𝑔(𝜉3) {

𝜀4
3

𝜀5
3} 

(5) 

where 

0 1 1

1

0

2

2 20

6

2 1

,

u w

x R

v w

x R

u v

x x







 
+ 

  
    

= +   
   

    
+ 

   

{

𝜀1
1

𝜀2
1

𝜀6
1

} =

{
 
 

 
 −

∂2𝑤

∂𝑥1
2

−
∂2𝑤

∂𝑥2
2

−2
∂2𝑤

∂𝑥1 ∂𝑥2}
 
 

 
 

,

 

{

𝜀1
2

𝜀2
2

𝜀6
2

} =

{
 

 
𝑘1𝜃
𝑘2𝜃

𝑘1
∂

∂𝑥2
∫𝜃𝑑𝑥1 +𝑘2

∂

∂𝑥1
∫𝜃𝑑𝑥2}

 

 
,

 

(6a) 

{
𝜀4
3

𝜀5
3} = {

𝑘2∫𝜃𝑑𝑥2

𝑘1∫𝜃𝑑𝑥1

} (6b) 

and 

𝑔(𝜉3) =
𝑑𝑓(𝜉3)

𝑑𝜉3
 (6c) 

The integrals adopted in the previous relations shall be 

resolved by a Navier solution and can be written as 

∂

∂𝑥2
∫ 𝜃𝑑𝑥1 = 𝐴'

∂2𝜃

∂𝑥1 ∂𝑥2
,   

∂

∂𝑥1
∫ 𝜃𝑑𝑥2 = 𝐵'

∂2𝜃

∂𝑥1 ∂𝑥2
, 

∫ 𝜃𝑑𝑥1 = 𝐴'
∂𝜃

∂𝑥1
,  ∫𝜃𝑑𝑥2 = 𝐵'

∂𝜃

∂𝑥2
 

(7) 

where 𝐴' and 𝐵' are determined according to the type of 

solution employed, in this case via Navier procedure. Thus, 

the coefficients 𝐴', 𝐵', 𝑘1 and 𝑘2 are expressed by 

𝐴' = −
1

𝛼2

  
,𝐵' = −

1

𝛽2
,  𝑘1 = 𝛼

2, 𝑘2 = 𝛽
2 (8) 

where 𝛼 = 𝑟𝜋/𝑎;    𝛽 = 𝑠𝜋/𝑏 and 𝑥𝑖 denote the Cartesian 

coordinates (𝑑𝑥1 = 𝑎𝑖𝑑𝜉𝑖 , 𝑖 = 1,2) . Assuming linearly 

elastic behavior, the constitutive stress-strain relations in the 

orthotropic local coordinate system can be summarized in 

the following matrix form 

{
 
 

 
 
𝜎1
𝜎2
𝜎6
𝜎4
𝜎5}
 
 

 
 

=

[
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄12 𝑄22 0 0 0
0 0 𝑄66 0 0
0 0 0 𝑄44 0
0 0 0 0 𝑄55]

 
 
 
 

{
 
 

 
 
𝜀1
𝜀2
𝜀6
𝜀4
𝜀5}
 
 

 
 

 (9) 

in which (𝜎1, 𝜎2, 𝜎6, 𝜎4, 𝜎5)  are the normal and shear 

stresses and (𝜀1, 𝜀2, 𝜀6, 𝜀4, 𝜀5)  are the normal and shear 

strains components in the orthotropic local coordinate 

system. The stiffness coefficients 𝑄𝑖𝑗  are calculated in the 

conventional manner from the terms of engineering 

constants given as follows 

𝑄11 =
𝐸11

1−𝜈12𝜈21
, 22

22

12 21

,
1

E
Q

 
=

−
𝑄12 =

𝜈12𝐸11

1−𝜈12𝜈21
,

 

𝑄66 = 𝐺12, 44 23 ,Q G= 𝑄55 = 𝐺13 

(10) 

in which 𝐸11, 𝐸22, 𝜈12, 𝜈21, 𝐺12, 𝐺23  and 𝐺13 are the 

material properties of the layer. By performing the 

transformation rule of stress-strain between the local 

coordinate system of the layer and the global coordinate 

system of the laminated plate/shell, the stress-strain 

relations in the global (𝜉1, 𝜉2, 𝜉3) coordinate system can be 

obtained as 

{
 
 

 
 
𝜎1
𝜎2
𝜎6
𝜎4
𝜎5}
 
 

 
 
(𝑘)

=

[
 
 
 
 
 
 𝑄11 𝑄12 𝑄16 0 0

𝑄12 𝑄22 𝑄26 0 0

𝑄16 𝑄26 𝑄66 0 0

0 0 0 𝑄44 0

0 0 0 0 𝑄55]
 
 
 
 
 
 
(𝑘)

{
 
 

 
 
𝜀1
𝜀2
𝜀6
𝜀4
𝜀5}
 
 

 
 
(𝑘)

 (11) 

where 𝑄𝑖𝑗
𝑘

 are the transformed elastic coefficients given by 

Reddy (2004), which are calculated according to the fibers 

orientation angle of each layer with respect to the global 

coordinate system.  

The governing equations and associated boundary 

conditions of the present generalized shear deformation 

theory are derived using the dynamic version of the 

principle of virtual work stated by the following analytical 

form (Abdelmalek et al. 2017, Ebrahimi and Barati 2017a, 

b, Eltaher et al. 2018, 2020, Fenjan et al. 2019, Safa et al. 

2019, Zouatnia and Hadji 2019a, Rachedi et al. 2020, 

Hamed et al. 2020) 

0 = ∫ [∫ ∫ (
𝜎1𝛿 𝜀1

(𝑘)
+ 𝜎2𝛿 𝜀2

(𝑘)
+ 𝜎6𝛿 𝜀6

(𝑘)
+

𝜎4𝛿 𝜀4
(𝑘)
+ 𝜎5𝛿 𝜀5

(𝑘)
)

Ω

ℎ

2

−
ℎ

2

𝑡

0
  

𝑑𝑥1𝑑𝑥2𝑑𝜉3]𝑑𝑡 − ∫ ∫ 𝑞
Ω

𝑡

0
𝛿𝑤𝑑𝑥1𝑑𝑥2𝑑𝑡  

−∫ 𝛿 {∫ ∫ 𝜌[(𝑢̇̄)2 + (𝑣̇̄)2 + (𝑤̇̄)2]
Ω

ℎ/2

−ℎ/2
𝑑𝑥1𝑑𝑥2𝑑𝜉3}

𝑡

0
𝑑𝑡  

(12) 

= ∫ {∫(𝑁1𝛿𝜀1
0 + 𝑁2𝛿𝜀2

0 + 𝑁6𝛿𝜀6
0 +𝑀1𝛿𝜀1

1 +𝑀2𝛿𝜀2
1

Ω

𝑡

0

+ 

𝑀6𝛿𝜀6
1 + 𝑃1𝛿𝜀1

2 + 𝑃2𝛿𝜀2
2 + 𝑃6𝛿𝜀6

2 +𝑄4𝛿𝜀4
3 + 𝑄5𝛿𝜀5

3 − 𝑞𝛿𝑤 

(13) 
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+((𝐼1 +
2𝐼2

𝑅1
) 𝑢̈ − (𝐼2 +

𝐼3

𝑅1
)
∂𝑤̈

∂𝑥1
+ 𝑘1𝐴' (𝐼4 +

𝐼5

𝑅1
)
∂𝜃̈

∂𝑥1
) 𝛿𝑢  

+((𝐼1 +
2𝐼2

𝑅2
) 𝑣̈ − (𝐼2 +

𝐼3

𝑅2
)
∂𝑤̈

∂𝑥2
+ 𝑘2𝐵' (𝐼4 +

𝐼5

𝑅2
)
∂𝜃̈

∂𝑥2
)𝛿𝑣  

+(
(𝐼2 +

𝐼3

𝑅1
)
∂𝑢̈

∂𝑥1
+ (𝐼2 +

𝐼3

𝑅2
)
∂𝑣̈

∂𝑥2
− 𝐼3 (

∂2𝑤̈

∂𝑥1
2 +

∂2𝑤̈

∂𝑥2
2)

+𝐼5 (𝑘1𝐴'
∂2𝜃̈

∂𝑥1
2 + 𝑘2𝐵'

∂2𝜃̈

∂𝑥2
2) + 𝐼1𝑤

)𝛿𝑤   

+(
𝑘1𝐴' (𝐼4 +

𝐼5

𝑅1
)
∂𝑢̈

∂𝑥1
+ 𝑘2𝐵' (𝐼4 +

𝐼5

𝑅1
)
∂𝑣̈

∂𝑥1

−𝐼5 (𝑘1𝐴'
∂2𝑤̈

∂𝑥1
2 + 𝑘2𝐵'

∂2𝑤̈

∂𝑥2
2)

  

    + 𝐼6 (𝑘1
2𝐴'2

∂2𝜃̈

∂𝑥1
2 + 𝑘2

2𝐵'2
∂2𝜃̈

∂𝑥2
2))𝛿𝜃) 𝑑𝑥1𝑑𝑥2} 𝑑𝑡  

where 𝛿  denotes the variational operator, 𝑞  is the 

transverse load, 𝜌 is the density of the plate or shell under 

consideration, 𝑁𝑖 , 𝑀𝑖 , 𝑃𝑖   and 𝑄𝑖  are the stress resultants 

can be determined in the usual form as 

(𝑁𝑖 , 𝑀𝑖 , 𝑃𝑖) = ∑ ∫ 𝜎𝑖
(𝑘)(1, 𝜉3, 𝑓(𝜉3))𝑑

𝜉3
(𝑘)

𝜉3
(𝑘−1)

𝑛
𝑘=1 𝜉3,  

𝑖 = 1,2,6, 

𝑄𝑖 = ∑ ∫ 𝜎𝑖
(𝑘)𝑔(𝜉3)𝑑

𝜉3
(𝑘)

𝜉3
(𝑘−1)

𝑛
𝑘=1 𝜉3,     𝑖 = 4,5  

(14) 

and the coefficients iI (𝑖 = 1, 2, 3, 4, 5, 6) are defined by 

the following equations 

(𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6) = 

∑ ∫ 𝜌(𝑘)𝑄𝑖𝑗
(𝑘)
(1, 𝜉3, 𝜉3

2, 𝑓(𝜉3), 𝜉3 𝑓(𝜉3), [𝑓(𝜉3)]
2)𝑑

𝜉3
(𝑘)

𝜉3
(𝑘−1)

𝑛
𝑘=1 𝜉3  

(15) 

The generalized governing equations of motion are 

derived from Eq. (13) by integrating the displacement 

gradients by parts and setting the coefficients of 

𝛿𝑢, 𝛿𝑣, 𝛿𝑤 and 𝛿𝜃  equal to zero, individually. The 

generalized equations obtained are as follows 

𝛿 𝑢:   
∂𝑁1

∂𝑥1
+

∂𝑁6

∂𝑥2
= (𝐼1 +

2𝐼2

𝑅1
) 𝑢̈ − (𝐼2 +

𝐼3

𝑅1
)
∂𝑤̈

∂𝑥1
  

+𝑘1𝐴' (𝐼4 +
𝐼5

𝑅1
)
∂𝜃̈

∂𝑥1
  

𝛿 𝑣:  
∂𝑁2

∂𝑥2
+

∂𝑁6

∂𝑥1
= (𝐼1 +

2𝐼2

𝑅2
) 𝑣̈ − (𝐼2 +

𝐼3

𝑅2
)
∂𝑤̈

∂𝑥2
  

+𝑘2𝐵' (𝐼4 +
𝐼5

𝑅2
)
∂𝜃̈

∂𝑥2
  

𝛿 𝑤: −  
𝑁1

𝑅1
−

𝑁2

𝑅2
+

∂2𝑀1

∂𝑥1
2 + 2

∂2𝑀6

∂𝑥1 ∂𝑥2
+

∂2𝑀2

∂𝑥2
2   

+𝑞 = 𝐼1𝑤̈ + (𝐼2 +
𝐼3

𝑅1
)
∂𝑢̈

∂𝑥1
  

+ (𝐼2 +
𝐼3

𝑅2
)
∂𝑣̈

∂𝑥2
− 𝐼3 (

∂2𝑤̈

∂𝑥1
2 +

∂2𝑤̈

∂𝑥2
2)  

+𝐼5 (𝑘1𝐴'
∂2𝜃̈

∂𝑥1
2 + 𝑘2𝐵'

∂2𝜃̈

∂𝑥2
2)  

𝛿 𝜃:  −  𝑘1𝑃1 − 𝑘2𝑃2 − (𝑘1𝐴' + 𝑘2𝐵')
∂2𝑃6

∂𝑥1 ∂𝑥2
  

+𝑘1𝐴
′
∂𝑄4
∂𝑥1 + 𝑘2𝐵

′
∂𝑄5
∂𝑥2 =  

− 𝑘1𝐴
′(𝐼4+

𝐼5
𝑅1
)
∂𝑢̈
∂𝑥1 − 𝑘2𝐵

′(𝐼4+
𝐼5
𝑅2
)
∂𝑣̈
∂𝑥2  

+𝐼5 (𝑘1𝐴'
∂2𝑤̈

∂𝑥1
2 + 𝑘2𝐵'

∂2𝑤̈

∂𝑥2
2)  

−𝐼6 ((𝑘1𝐴')
2 ∂

2𝜃̈

∂𝑥1
2 + (𝑘2𝐵')

2 ∂
2𝜃̈

∂𝑥2
2)  

(16) 

Substituting Eq. (5) into Eq. (11) and the subsequent 

results into Eq. (14), the stress resultants of the proposed 

analytical model can be expressed in terms of virtual 

strains, using the following constitutive equations 

𝑁1 = 𝐴11𝜀1
0 + 𝐴12𝜀2

0 + 𝐵11𝜀1
1 + 𝐵12𝜀2

1 + 𝐸11𝜀1
2 + 𝐸12𝜀2

2, 
𝑁2 = 𝐴12𝜀1

0 + 𝐴22𝜀2
0 + 𝐵12𝜀1

1 + 𝐵22𝜀2
1 + 𝐸12𝜀1

2 + 𝐸22𝜀2
2, 

𝑁6 = 𝐴66𝜀6
0 + 𝐵66𝜀6

1 + 𝐸66𝜀6
2 

(17a) 

𝑀1 = 𝐵11𝜀1
0 + 𝐵12𝜀2

0 +𝐷11𝜀1
1 + 𝐷12𝜀2

1 + 𝐹11𝜀1
2 + 𝐹12𝜀2

2, 
𝑀2 = 𝐵12𝜀1

0 + 𝐵22𝜀2
0 +𝐷12𝜀1

1 + 𝐷22𝜀2
1 + 𝐹12𝜀1

2 + 𝐹22𝜀2
2, 

𝑀6 = 𝐵66𝜀6
0 + 𝐷66𝜀6

1 + 𝐹66𝜀6
2 

(17b) 

𝑃1 = 𝐸11𝜀1
0 + 𝐸12𝜀2

0 + 𝐹11𝜀1
1 + 𝐹12𝜀2

1 + 𝐻11𝜀1
2 + 𝐻12𝜀2

2, 
𝑃2 = 𝐸12𝜀1

0 + 𝐸22𝜀2
0 + 𝐹12𝜀1

1 + 𝐹22𝜀2
1 + 𝐻12𝜀1

2 +𝐻22𝜀2
2, 

𝑃6 = 𝐸66𝜀6
0 + 𝐹66𝜀6

1 + 𝐻66𝜀6
2 

(17c) 

𝑄4 = 𝐴44
𝑠 𝜀4

3,    𝑄5 = 𝐴55
𝑠 𝜀5

3 (17d) 

in which the components of the stiffnesses are defined by 

{𝐴𝑖𝑗, 𝐵𝑖𝑗 , 𝐷𝑖𝑗 , 𝐸𝑖𝑗 , 𝐹𝑖𝑗 , 𝐻𝑖𝑗} = 

∑ ∫ 𝑄̄𝑖𝑗
(𝑘)
(1, 𝜉3, 𝜉3

2, 𝑓(𝜉3), 𝜉3 𝑓(𝜉3), [𝑓(𝜉3)]
2)𝑑

𝜉3
(𝑘)

𝜉3
(𝑘−1)

𝑛
𝑘=1 𝜉3,  

𝑖, 𝑗 = 1,2,6 

(18a) 

𝐴𝑖𝑗
𝑠 =∑∫ 𝑄̄𝑖𝑗

(𝑘)[𝑔(𝑧)]2𝑑𝜉3,    𝑖, 𝑗 = 4,5
𝜉3
(𝑘)

𝜉3
(𝑘−1)

𝑛

𝑘=1

 (18b) 

The following simply supported boundary conditions 

are assumed at all four edges of the laminated composite 

and sandwich plates and shells 

𝑢(𝑥1, 0) = 𝑢(𝑥1, 𝑏) = 𝑣(0, 𝑥2) = 𝑣(𝑎, 𝑥2) = 0, 
𝑤(𝑥1, 0) = 𝑤(𝑥1, 𝑏) = 𝑤(0, 𝑥2) = 𝑤(𝑎, 𝑥2) = 0, 
𝑁2(𝑥1, 0) = 𝑁2(𝑥1, 𝑏) = 𝑁1(0, 𝑥2) = 𝑁1(𝑎, 𝑥2) = 0, 
𝑀2(𝑥1, 0) = 𝑀2(𝑥1, 𝑏) = 𝑀1(0, 𝑥2) = 𝑀1(𝑎, 𝑥2) = 0, 
𝑃2(𝑥1, 0) = 𝑃2(𝑥1, 𝑏) = 𝑃1(0, 𝑥2) = 𝑃1(𝑎, 𝑥2) = 0, 
𝜃(𝑥1, 0) = 𝜃(𝑥1, 𝑏) = 𝜃(0, 𝑥2) = 𝜃(𝑎, 𝑥2) = 0 

(19) 

 

 

3. Solution procedure 
 

The governing differential equations given in Eq. (16) 

for the bending and free vibration analysis of laminated 

composite and sandwich plates and shells can be solved by 

using the Navier’s solution procedure in the form of double 

trigonometric series. In the case of antisymmetric cross-ply 

laminated plates and shells, it should be noted that the 

following stiffness components are identically zero 

𝐴𝑖6 = 𝐵𝑖6 = 𝐷𝑖6 = 𝐸𝑖6 = 𝐹𝑖6 = 𝐻𝑖6 = 0;    𝑖 = 1, 2 
𝐵12 = 𝐸12 = 𝐵66 = 𝐸66 = 𝐴45

𝑠 = 𝐴54
𝑠 = 0 

(20) 

The Navier’s solution procedure is applied to determine 

the analytical solutions for a simply supported 

laminated/sandwich plate and shell. The solution is 

supposed to be of the form (Zouatnia and Hadji 2019b) 

{
 

 
𝑢(𝑥1, 𝑥2, 𝑡)

𝑣(𝑥1, 𝑥2, 𝑡)

𝑤(𝑥1, 𝑥2, 𝑡)

𝜃(𝑥1, 𝑥2, 𝑡)}
 

 
=

∑ ∑

{
 
 

 
 𝑈𝑟𝑠 𝑐𝑜𝑠( 𝛼 𝑥1) 𝑠𝑖𝑛( 𝛽 𝑥2) 𝑒

𝑖 𝜔  𝑡

𝑉𝑟𝑠 𝑠𝑖𝑛( 𝛼 𝑥1) 𝑐𝑜𝑠( 𝛽 𝑥2) 𝑒
𝑖 𝜔  𝑡

𝑊𝑟𝑠 𝑠𝑖𝑛( 𝛼 𝑥1) 𝑠𝑖𝑛( 𝛽 𝑥2) 𝑒
𝑖 𝜔  𝑡

Θ𝑟𝑠 𝑠𝑖𝑛( 𝛼 𝑥1) 𝑠𝑖𝑛( 𝛽 𝑥2) 𝑒
𝑖 𝜔  𝑡

}
 
 

 
 

∞
𝑠=1

∞
𝑟=1   

(21) 
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where 𝑈𝑟𝑠, 𝑉𝑟𝑠 ,𝑊𝑟𝑠  and Θ𝑟𝑠 are the unknown coefficients, 

while 𝜔  is the natural frequency of the system. 

Substituting Eqs. (17)-(21) into Eq. (16), the following 

equations are obtained 

[

𝑀11 𝑀12 𝑀13 𝑀14

𝑀12 𝑀22 𝑀23 𝑀24

𝑀13 𝑀23 𝑀33 𝑀34

𝑀14 𝑀24 𝑀34 𝑀44

] 

{
 
 

 
 𝑈̈𝑟𝑠
𝑉̈𝑟𝑠
𝑊̈𝑟𝑠

Θ̈𝑟𝑠}
 
 

 
 

+ 

[

𝐾11 𝐾12 𝐾13 𝐾14
𝐾12 𝐾22 𝐾23 𝐾24
𝐾13 𝐾23 𝐾33 𝐾34
𝐾14 𝐾24 𝐾34 𝐾44

]  {

𝑈𝑟𝑠
𝑉𝑟𝑠
𝑊𝑟𝑠
Θ𝑟𝑠

} = {

0
0
𝑄𝑟𝑠
0

} 

(22) 

The transverse distributed load 𝑞is also chosen as the 

following form 

𝑞(𝑥, 𝑦) = ∑ ∑ 𝑄𝑟𝑠
∞
𝑠=1

∞
𝑟=1 𝑠𝑖𝑛( 𝛼 𝑥) 𝑠𝑖𝑛( 𝛽 𝑦)  (23) 

Where the coefficients 𝑄𝑟𝑠  are given below for certain 

typical loads 

𝑄𝑟𝑠 =

{
 

 
𝑞0                For sinusoidal loads
16𝑞0

𝑟𝑠𝜋2
           For uniform loads

4𝑃

𝑎𝑏
𝑠𝑖𝑛 (

𝑟𝜋𝑥0

𝑎
) 𝑠𝑖𝑛 (

𝑠𝜋𝑦0

𝑏
)        For point loads

   (24) 

The elements of stiffness matrix [𝐾𝑖𝑗] and mass matrix 

[𝑀𝑖𝑗] implicated in Eq. (22) are given as the following 

form 

𝐾11 = −(𝛼
2𝐴11 + 𝛽

2𝐴66),   𝐾12 = −𝛼𝛽(𝐴12 + 𝐴66),  

𝐾13 = 𝛼 (
𝐴11

𝑅1
+

𝐴12

𝑅2
+ 𝛼2𝐵11) ,   𝐾14 = 𝛼𝑘1𝐸11,  

𝐾22 = −(𝛼
2𝐴66 + 𝛽

2𝐴22),  

𝐾23 = 𝛽 (
𝐴12

𝑅1
+

𝐴22

𝑅2
+ 𝛽2𝐵22),  

𝐾24 = 𝛽𝑘2𝐸22, 

 

 

 

𝐾33 = −
1

𝑅2
(
𝐴12

𝑅1
+

𝐴22

𝑅2
+ 2𝛽2𝐵22)  

−2𝛼2𝛽2(𝐷12 + 2𝐷66) 

−
1

𝑅1
(
𝐴11

𝑅1
+

𝐴12

𝑅2
+ 2𝛼2𝐵11) − (𝛼

4𝐷11 + 𝛽
4𝐷22),  

𝐾34 = −(𝑘1
𝐸11

𝑅1
+ 𝑘2

𝐸22

𝑅2
) − (𝑘2𝛼

2 + 𝑘1𝛽
2)𝐹12  

+2𝛼2𝛽2(𝑘1𝐴' + 𝑘2𝐵')𝐹66 − 𝑘1𝛼
2𝐹11 − 𝑘2𝛽

2𝐹22,  

𝐾44 = −𝑘1
2𝐻11 − 𝑘2

2𝐻22 − 2𝑘1𝑘2𝐻12 

−(𝑘1𝐴' + 𝑘2𝐵')(𝑘2𝐵'𝛼
2𝛽2𝐻66 + 𝑘1𝐴'𝛼

2𝛽2𝐻66) 
−𝑘2

2𝐵'2𝛽2𝐴44
𝑠 − 𝑘1

2𝐴'2𝛼2𝐴55
𝑠  

(25) 

And 

𝑀11 = −(𝐼1 + 2
𝐼2

𝑅1
) ,   𝑀12 = 0,  𝑀13 = (𝐼2 +

𝐼3

𝑅1
) 𝛼,   

𝑀14 = −𝑘1𝐴' (𝐼4 +
𝐼5

𝑅1
) 𝛼,𝑀22 = −(𝐼1 + 2

𝐼2

𝑅2
),  

𝑀23 = (𝐼2 +
𝐼3

𝑅2
) 𝛽,   𝑀24 = −𝑘2𝐵

′(𝐼4+
𝐼5
𝑅2
)
𝛽,  

𝑀33 = −𝐼1 − 𝐼3(𝛼
2 + 𝛽2), 

𝑀34 = 𝐼5(𝑘1𝐴'𝛼
2 + 𝑘2𝐵'𝛽

2), 
𝑀44 = −𝐼6(𝑘1

2𝐴'2𝛼2 + 𝑘2
2𝐵'2𝛽2) 

(26) 

 
 
4. Numerical results and discussion 
 

In order to confirm the accuracy and efficacy of the 

present refined higher-order shear deformation theory 

(RHSDT) with four unknown variables, a number of 

numerical examples are investigated for the static bending 

and free vibration analysis of simply supported laminated 

composite, and sandwich plates and shells. For this purpose, 

the results are compared with those obtained by existing 

theories in the literature to demonstrate the validity of the 

proposed model. The following problems are considered for 

the detailed numerical study 

1. Bending analysis of antisymmetric (0°/90°)n cross- 

Table 1 Comparison of non-dimensional displacements and stresses for two-layer (0°/90°) cross-ply laminated 

plate under sinusoidal load, (b=a, Material 1) 

a/h Theory 𝑢,̄  (−ℎ/2) 𝑤̄, (0) 𝜎̄𝑥 , (−ℎ/2) 
𝜎̄𝑦 (−ℎ/2)

 
𝜏̄𝑥𝑦 , (−ℎ/2)

 
𝜏̄𝑥𝑧, (0) 

𝜏̄𝑦𝑧 , (0) 

4 

Exact 3D (a) - 2.0670 0.8410 0.1090 0.0591 0.120 0.135 

Reddy (1984) 0.0113 1.9985 0.9060 0.0891 0.0577 0.1251 0.1251 

Mindlin (1951) 0.0088 2.1492 0.7157 0.0843 0.0525 0.1091 0.1091 

Kirchhoff (1850) 0.0088 1.0636 0.7157 0.0843 0.0525 - - 

Present 0.0112 2.0003 0.9052 0.0891 0.0577 0.1249 0.1249 

10 

Exact 3D (a) - 1.2250 0.7302 0.0886 0.0535 0.121 0.125 

Reddy (1984) 0.0092 1.2161 0.7468 0.0851 0.0533 0.1276 0.1276 

Mindlin (1951) 0.0088 1.2373 0.7157 0.0843 0.0525 0.1091 0.1091 

Kirchhoff (1850) 0.0088 1.0636 0.7157 0.0843 0.0525 - - 

Present 0.0092 1.2163 0.7466 0.0851 0.0533 0.1273 0.1273 

20 

Reddy (1984) 0.0089 1.1018 0.7235 0.0845 0.0527 0.1280 0.1280 

Mindlin (1951) 0.0088 1.1070 0.7157 0.0843 0.0525 0.1091 0.1091 

Kirchhoff (1850) 0.0088 1.0636 0.7157 0.0843 0.0525 - - 

Present 0.0089 1.1019 0.7235 0.0845 0.0527 0.1277 0.1277 

100 

Reddy (1984) 0.0088 1.0651 0.7161 0.0843 0.0525 0.1281 0.1281 

Mindlin (1951) 0.0088 1.0653 0.7157 0.0843 0.0525 0.1091 0.1091 

Kirchhoff (1850) 0.0088 1.0636 0.7157 0.0843 0.0525 - - 

Present 0.0088 1.0651 0.7161 0.0843 0.0525 0.1280 0.1280 

(a) Results taken from reference of Zenkour (2007) 
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ply laminated composite plates. 

2. Bending analysis of three-layer symmetric sandwi

ch (0°/Core/0°) plates.  

3. Bending analysis of two-layer antisymmetric cross-

ply laminated spherical shells. 

4. Free vibration analysis of antisymmetric (0°/90°)n

 cross-ply laminated composite plates. 

 

 

 

5. Free vibration analysis of cross-ply laminated cyl

indrical and spherical shells. 

The numerical results of these problems are illustrated 

in Tables 1-10 and graphically shown in Figs. 2-7 followed 

by subsequent discussions. The material properties used in 

the numerical studies are as follows 

Material 1 (Reddy 1984) 

Table 2 Comparison of non-dimensional displacements and stresses for four-layer (0°/90°)2 cross-ply laminated 

plate under sinusoidal load, (b=a, Material 1) 

a/h Theory 𝑢̄ (−ℎ/2) 𝑤̄ (0) 𝜎̄𝑥 (ℎ/2) 
𝜎̄𝑦 (ℎ/2)

 
𝜏̄𝑥𝑦 (−ℎ/2)

 
𝜏̄𝑥𝑧 (0) 

𝜏̄𝑦𝑧  (0) 

4 

Exact 3D (a) 0.0087 1.9581 - 0.7444 0.0457 0.2325 0.2410 

Reddy (1984) 0.0087 1.6093 0.0495 0.6970 0.0350 0.1358 0.1358 

Mindlin (1951) 0.0061 1.5921 0.0357 0.4868 0.0250 0.1091 0.1091 

Kirchhoff (1850) 0.0061 0.5065 0.0357 0.4868 0.0250 - - 

Present 0.0087 1.6092 0.0494 0.6959 0.0349 0.1355 0.1355 

10 

Exact 3D (a) 0.0066 0.7624 - 0.5308 0.0292 0.2713 0.2712 

Reddy (1984) 0.0065 0.6865 0.0380 0.5211 0.0266 0.1386 0.1386 

Mindlin (1951) 0.0061 0.6802 0.0357 0.4868 0.0250 0.1091 0.1091 

Kirchhoff (1850) 0.0061 0.5065 0.0357 0.4868 0.0250 - - 

Present 0.0065 0.6865 0.0380 0.5209 0.0266 0.1382 0.1382 

20 

Exact 3D (a) 0.0062 0.5717 - 0.4979 0.0260 0.2781 0.2781 

Reddy (1984) 0.0062 0.5517 0.0363 0.4954 0.0254 0.1390 0.1390 

Mindlin (1951) 0.0061 0.5500 0.0357 0.4868 0.0250 0.1091 0.1091 

Kirchhoff (1850) 0.0061 0.5065 0.0357 0.4868 0.0250 - - 

Present 0.0062 0.5516 0.0363 0.4954 0.0254 0.1386 0.1386 

100 

Exact 3D (a) 0.0061 0.5091 - 0.4872 0.0250 0.2803 0.2803 

Reddy (1984) 0.0061 0.5083 0.0358 0.4872 0.0250 0.1391 0.1391 

Mindlin (1951) 0.0061 0.5083 0.0357 0.4868 0.0250 0.1091 0.1091 

Kirchhoff (1850) 0.0061 0.5065 0.0357 0.4868 0.0250 - - 

Present 0.0061 0.5083 0.0358 0.4872 0.0250 0.1387 0.1387 

(a) Results taken from reference of Zenkour (2007) 

Table 3 Comparison of non-dimensional displacements and stresses for eight-layer (0°/90°)4 cross-ply laminated 

plate under sinusoidal load, (b=a, Material 1) 

a/h Theory 𝑢̄ (−ℎ/2) 𝑤̄ (0) 𝜎̄𝑥 (ℎ/2) 𝜎̄𝑦 (ℎ/2) 𝜏̄𝑥𝑦 (−ℎ/2) 𝜏̄𝑥𝑧 (0) 𝜏̄𝑦𝑧  (0) 

4 

Exact 3D (a) 0.0081 1.7903 - 0.6867 0.0347 0.2220 0.2266 

Reddy (1984) 0.0088 1.5168 0.0417 0.6996 0.0311 0.1335 0.1335 

Mindlin (1951) 0.0062 1.5335 0.0296 0.4950 0.0221 0.1091 0.1091 

Kirchhoff (1850) 0.0062 0.4479 0.0296 0.4950 0.0221 - - 

Present 0.0088 1.5173 0.0417 0.6986 0.0311 0.1332 0.1332 

10 

Exact 3D (a) 0.0066 0.6698 - 0.5247 0.0244 0.2430 0.2433 

Reddy (1984) 0.0066 0.6229 0.0316 0.5285 0.0236 0.1366 0.1366 

Mindlin (1951) 0.0062 0.6216 0.0296 0.4950 0.0221 0.1091 0.1091 

Kirchhoff (1850) 0.0062 0.4479 0.0296 0.4950 0.0221 - - 

Present 0.0066 0.6229 0.0316 0.5283 0.0236 0.1362 0.1362 

20 

Exact 3D (a) 0.0063 0.5037 - 0.5024 0.0227 0.2467 0.2467 

Reddy (1984) 0.0063 0.4918 0.0301 0.5034 0.0225 0.1371 0.1371 

Mindlin (1951) 0.0062 0.4913 0.0296 0.4950 0.0221 0.1091 0.1091 

Kirchhoff (1850) 0.0062 0.4479 0.0296 0.4950 0.0221 - - 

Present 0.0063 0.4918 0.0301 0.5033 0.0225 0.1367 0.1367 

100 

Exact 3D (a) 0.0062 0.4504 - 0.4956 0.0214 0.2481 0.2481 

Reddy (1984) 0.0062 0.4496 0.0297 0.4953 0.0221 0.1372 0.1372 

Mindlin (1951) 0.0062 0.4496 0.0296 0.4950 0.0221 0.1091 0.1091 

Kirchhoff (1850) 0.0062 0.4479 0.0296 0.4950 0.0221 - - 

Present 0.0062 0.4496 0.0297 0.4953 0.0221 0.1368 0.1368 

(a) Results taken from reference of Zenkour (2007) 
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Material 2 (Srinivas 1973) 
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Material 3 (Noor 1973) 
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For the simplicity, the results obtained for displacements, 

stresses and fundamental frequencies are presented in the 

following non-dimensional forms 
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Sandwich plates 
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Table 4 Comparison of non-dimensional transverse maximum displacement and stresses of symmetric (0°/𝐶𝑜𝑟𝑒/
0°) sandwich square plate under uniform load (a/h=10, Material 2) 

R Theory 𝑤̄(0) 𝜎̄𝑥
1(−ℎ/2) 𝜎̄𝑥

2(−2ℎ/5) 𝜎̄𝑦
1(−ℎ/2) 𝜎̄𝑦

2(−2ℎ/5) 𝜏̄𝑥𝑧(0) 

5 

Exact 3D (b) 258.970 60.353 46.623 38.491 30.097 4.364 

Pandya and Kant HSDT (1988) 258.740 62.380 46.910 38.930 30.330 3.089 

Pandya and Kant FSDT (1988) 236.100 61.870 49.500 36.650 29.320 3.313 

Kirchhoff CPT (1850) 216.940 61.141 48.623 36.622 29.297 4.590 

Ferreira et al. HSDT (2003) 257.110 60.366 47.003 38.456 30.242 4.548 

Xiang et al. (Levinson) (2009) 253.724 59.950 46.655 38.191 30.018 3.637 

Xiang et al. (Touratier) (2009) 253.989 60.123 47.097 38.249 30.187 3.707 

Xiang et al. (Karama) (2009) 253.638 60.124 46.703 38.242 30.020 3.764 

Mantari et al. HSDT (2011) 256.706 60.525 46.969 38.493 30.207 5.135 

Present 250.856 61.861 48.660 37.113 29.124 3.486 

10 

Exact 3D (b) 159.380 65.332 48.857 43.566 33.413 4.096 

Pandya and Kant HSDT (1988) 152.330 64.650 51.310 42.830 33.970 3.147 

Pandya and Kant FSDT (1988) 131.095 67.800 54.240 40.100 32.080 3.152 

Kirchhoff CPT (1850) 118.870 65.332 48.857 40.099 32.079 4.367 

Ferreira et al. HSDT (2003) 154.658 65.381 49.973 43.240 33.637 3.528 

Xiang et al. (Levinson) (2009) 152.664 65.008 49.684 42.945 33.394 3.450 

Xiang et al. (Touratier) (2009) 153.139 65.050 50.206 43.015 33.653 3.641 

Xiang et al. (Karama) (2009) 153.357 65.100 49.499 43.059 33.379 3.843 

Mantari et al. HSDT (2011) 155.498 65.542 49.708 43.385 33.591 4.814 

Present 149.146 68.074 52.951 40.869 31.665 3.162 

15 

Exact 3D (b) 121.720 66.787 48.299 46.424 34.955 3.964 

Pandya and Kant HSDT (1988) 110.430 66.620 51.970 44.920 35.410 3.035 

Pandya and Kant FSDT (1988) 90.850 70.040 56.030 41.390 33.110 3.091 

Kirchhoff CPT (1850) 81.768 69.135 55.308 41.410 33.128 4.283 

Ferreira et al. HSDT (2003) 114.644 66.920 50.323 45.623 35.170 3.021 

Xiang et al. (Levinson) (2009) 113.088 66.539 50.043 45.293 34.903 3.254 

Xiang et al. (Touratier) (2009) 113.964 66.544 50.679 45.431 35.278 3.472 

Xiang et al. (Karama) (2009) 114.585 66.621 49.663 45.546 34.919 3.706 

Mantari et al. HSDT (2011) 116.609 67.043 49.741 45.953 35.149 4.581 

Present 109.669 70.605 54.392 42.414 32.503 2.916 

(b) Results taken from reference of Srinivas (1973) 
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Fig. 2 Effect of side-to-thickness ratio (a/h) on non-

dimensional transverse displacement (𝑤̄) of a two-layer 

(0°/90°) cross-ply laminated square plate under sinusoidal 

load 
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Fig. 4 Variation of in-plane displacement (𝑢̄) through the 

thickness of two-layer (0°/90°) cross-ply laminated 

composite square plate under sinusoidal load (a/h = 4) 

 

 

4.1 Bending analysis of antisymmetric cross-ply 
laminated composite plates 

 
The first problem is carried out for simply supported 

multilayered (0°/90°)n antisymmetric cross-ply laminated 

composite square plate under sinusoidal load. The number 

of layers is varied from 2 to 8 with the same thickness and 

made up of Material 1 defined by Eq. (27). The numerical 

results of non-dimensional displacements and stresses for 

different values of side-to-thickness ratio (a/h=4, 10, 20, 100) 

are presented in Tables 1-3, respectively. These results are 

compared with the corresponding results of three-

dimensional elasticity solutions provided by Zenkour (2007), 

CPT of Kirchhoff, FSDT of Mindlin (1951) with a 

correction factor k=5/6 and HSDT of Reddy (1984). 

Examination of Tables 1-3 reveals that the numerical results 

of non-dimensional displacements and stresses obtained by 

using the present formulations are in excellent agreement 

with those calculated according to Reddy's theory whereas 

the transverse maximum displacement and in-plane shear 

stress may be identical to those of the exact 3D solution in 

the case of moderately thick laminated plates. It can be seen 

that the in-plane and transverse displacements 𝑢̅, 𝑤̅ are 

decreased with increased in thickness ratio (a/h) for all 

lamination schemes (i.e., (0°/90°), (0°/90°)2, (0°/90°)4); it  
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Fig. 3 Effect of side-to-thickness ratio (a/h) on non-

dimensional transverse displacement (𝑤̄) of a two-layer 

(0°/90°) cross-ply laminated square plate under uniform 

load. 
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Fig. 5 Variation of in-plane normal stress (𝜎̄𝑥) through the 

thickness of two-layer (0°/90°) cross-ply laminated 

composite square plate under sinusoidal load (a/h = 4) 

 

 

means that the effect of transverse shear deformation is more 

pronounced in thick laminated plate not in thin laminated 

plate. It is also observed that the results for the non-

dimensional in-plane normal stresses 𝜎𝑥 , 𝜎𝑦 and in-plane 

shear stress 𝜏𝑥̅𝑦  decrease with increasing value of 

thickness ratio (a/h), moreover the CPT and FSDT 

underestimate these stresses compared to those obtained by 

the present generalized theory and HSDT of Reddy for all 

thickness ratios. However, all theories agree well with each 

other for thin laminated plates.  

Figs. 2 and 3 show the effect of side-to-thickness ratio 

(a/h) on non-dimensional transverse displacement 𝑤̅ of a 

two-layer (0°/90°) cross-ply laminated square plate under 

sinusoidal and uniform loads, respectively. It can be seen an 

excellent agreement between the present theory and HSDT 

of Reddy for both loading cases. It is also pointed out from 

Figs. 2 and 3 that the increase in the thickness ratio has a 

significant effect on the decrease of the transverse 

displacement. The graphical results obtained by using the 

present theory and Reddy's theory, which corresponds to the 

variations of in-plane displacement 𝑢̄, in-plane stresses 

𝜎̄𝑥 ,  𝜏̄𝑥𝑦 and transverse shear stress 𝜏̄𝑥𝑧 through the 

thickness of two-layer (0°/90°) cross-ply laminated 

composite square plate under sinusoidal load are also  
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Fig. 6 Variation of in-plane shear stress (𝜏̄𝑥𝑦) through the 

thickness of two-layer (0°/90°) cross-ply laminated 

composite square plate under sinusoidal load (a/h = 4) 

 

 

 

plotted in Figs. 4 through 7 from which it is observed that 

the results obtained by the proposed model have good 

accuracy with Reddy’s theory. 

 

4.2 Bending analysis of three-layer symmetric 
sandwich (0°/Core/0°) plates 

 
For this problem, efficiency of proposed theory is 

checked for the bending response of a simply supported 

moderately thick (a/h=10) sandwich square plate under 

uniform load. In this analysis, the symmetric sandwich plate 

is constituted by the orthotropic properties given by 
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Fig. 7 Variation of transverse shear stress (𝜏̄𝑥𝑧) through the 

thickness of two-layer (0°/90°) cross-ply laminated 

composite square plate under sinusoidal load (a/h = 4) 

 

 

 

relations (28) and is composed of two outside layers (skins) 

of thickness h1=h3=0.1h and one middle layer (core) of 

thickness h2=0.8h. Thus, the skin orthotropic properties are 

assumed as ‘R’ times the orthotropic properties of core, i.e., 

R is a factor that defines the degree of anisotropy in a 

sandwich laminate. Numerical results of non-dimensional 

displacements and stresses for three factor values (R=5, 10, 

15) are depicted in Table 4 and compared with the following 

theories: exact 3D elasticity solution of Srinivas (1973), 

finite element evaluations of Pandya and Kant (1988) which 

have been determined based on a higher-order displacement 

model, HSDT solution with multiquadrics method reported  

Table 5 Comparison of non-dimensional transverse displacement of cross-ply laminated spherical shells (0°/90°) 

under sinusoidal load, (b=a, R1=R2=R, Material 1) 

R/a Theory 
𝑎

ℎ
= 10 

𝑎

ℎ
= 100 

5 

Reddy and Liu FSDT (1985) 11.4290 1.1948 

Reddy and Liu HSDT (1985) 11.1660 1.1937 

Mantari et al. HSDT (2011) 11.1080 1.1940 

Present 11.1542 1.1935 

10 

Reddy and Liu FSDT (1985) 12.1230 3.5760 

Reddy and Liu HSDT (1985) 11.8960 3.5733 

Mantari et al. HSDT (2011) 11.8296 3.5751 

Present 11.8945 3.5729 

20 

Reddy and Liu FSDT (1985) 12.3090 7.1270 

Reddy and Liu HSDT (1985) 12.0940 7.1236 

Mantari et al. HSDT (2011) 12.0249 7.1295 

Present 12.0952 7.1232 

50 

Reddy and Liu FSDT (1985) 12.3620 9.8717 

Reddy and Liu HSDT (1985) 12.1500 9.8692 

Mantari et al. HSDT (2011) 12.0807 9.8800 

Present 12.1526 9.8690 

100 

Reddy and Liu FSDT (1985) 12.3700 10.4460 

Reddy and Liu HSDT (1985) 12.1580 10.4440 

Mantari et al. HSDT (2011) 12.0887 10.4562 

Present 12.1609 10.4442 

Plate 

Reddy and Liu FSDT (1985) 12.3730 10.6530 

Reddy and Liu HSDT (1985) 12.1610 10.6510 

Mantari et al. HSDT (2011) 12.0914 10.6635 

Present 12.1636 10.6511 
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by Ferreira et al. (2003). The present theory is also 

compared with the various shear deformation theories used 

by Xiang et al. (2009), new HSDT developed by Mantari et 

al. (2011) and CPT. According to the Table 4, it can be seen 

again that the present computations are in good 

concordance with the analytical results reported by Xiang et 

al. (2009). In this analysis, CPT and FSDT are reflected by 

 

 

 

high percentage error in the results of moderately thick 

square sandwich. On the other hand, it can be pointed out 

that the increase of R values can reduce the transverse 

maximum displacement of the symmetric sandwich plate. 

 

4.3 Bending analysis of two-layer antisymmetric 
cross-ply laminated spherical shells 

Table 6 Comparison of non-dimensional transverse displacement of cross-ply laminated spherical shells (0°/90°) 

under uniform load, (b=a, R1=R2=R, Material 1) 

𝑅 𝑎⁄  Theory 𝑎 ℎ⁄ = 10 𝑎 ℎ⁄ = 100 

5 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

19.9440 

17.5660 

17.4886 

17.5557 

1.7535 

1.7519 

1.7523 

1.7517 

10 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

19.0650 

18.7440 

18.6543 

18.7511 

5.5428 

5.5388 

5.5414 

5.5383 

20 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

19.3650 

19.0640 

18.9699 

19.0752 

11.2730 

11.2680 

11.2775 

11.2676 

50 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

19.4520 

19.1550 

19.0601 

19.1681 

15.7140 

15.7110 

15.7281 

15.7108 

100 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

19.4640 

19.1680 

19.0731 

19.1813 

16.6450 

16.6420 

16.6611 

16.6419 

Plate 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

19.4690 

19.1720 

19.0774 

19.1858 

16.9800 

16.9770 

16.9968 

16.9769 

Table 7 Comparison of non-dimensional transverse displacement of cross-ply laminated spherical shells (0°/90°) 

under point load, (b=a, R1=R2=R, Material 1) 

𝑅 𝑎⁄  Theory 𝑎 ℎ⁄ = 10 𝑎 ℎ⁄ = 100 

5 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

7.1015 

5.8953 

5.7174 

5.8890 

- 

- 

- 

0.8219 

10 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

7.3836 

6.1913 

6.0098 

6.1894 

- 

- 

- 

1.8358 

20 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

7.4692 

6.2714 

6.0888 

6.2708 

- 

- 

- 

3.2779 

50 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

7.4909 

6.2943 

6.1115 

6.2941 

- 

- 

- 

4.3831 

100 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

7.4940 

6.2976 

6.1147 

6.2974 

- 

- 

- 

4.6142 

Plate 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

7.4853 

6.2987 

6.1158 

6.2984 

- 

- 

- 

4.6973 
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In this problem, the proposed theory is applied for 

bending analysis of two-layer antisymmetric cross-ply 

laminated spherical shells under sinusoidal, uniform and 

point loads, respectively. For this section, both layers have 

the same thickness and are made up of the same material 

properties defined by Eq. (27). Tables 5-7 show the 

comparison of non-dimensional transverse displacements 

for various values of curvature ratios (R/a=5, 10, 20, 50, 

100). The obtained results are compared with those 

predicted by the FSDT and HSDT derived from Reddy and 

 

 

Liu (1985) and the new HSDT shell models developed by 

Mantari et al. (2011) based on a new displacement field 

with five unknown functions. It can be observed that, the 

transverse displacements obtained by present refined theory 

(RHSDT) and Reddy’s theory (HSDT) is in good agreement 

with each other for all curvature ratios (R/a). In addition, it 

can be found from Tables 5-7 that the transverse 

displacements of cross-ply laminated spherical shells are 

decreased with the increase in the thickness ratio (a/h) 

values and decrease in the curvature ratios (R/a) for the  

Table 8 Comparison of non-dimensional fundamental frequencies (𝜔̄) of multilayered (0°/90°)𝑛antisymmetric 

cross-ply laminated composite square plates, (a/h=5, Material 3) 

𝐸1/𝐸2 Theory 
Lamination scheme 

(0 /90)1 (0 /90)2
 

(0 /90)3
 

(0 /90)5
 

3 

Exact 3D (c) 6.2578 6.5455 6.6100 6.6458 

Sayyad and Ghugal (2017) 6.2190 6.5012 6.5567 6.5854 

Thai and Kim (RPT1) (2010) 6.2169 6.5008 6.5558 6.5842 

Thai and Kim (RPT2) (2010) 6.2167 6.5008 6.5558 6.5842 

Reddy (1984) 6.2169 6.5008 6.5558 6.5842 

Mindlin (1951) 6.2085 6.5043 6.5569 6.5837 

Kirchhoff (1850) 6.7705 7.1690 7.2415 7.2415 

Present 6.2168 6.5008 6.5558 6.5842 

10
 

Exact 3D (c) 6.9845 8.1445 8.4143 8.5625 

Sayyad and Ghugal (2017) 6.9967 8.1929 8.4065 8.5156 

Thai and Kim (RPT1) (2010) 6.9887 8.1954 8.4052 8.5126 

Thai and Kim (RPT2) (2010) 6.9836 8.1949 8.4052 8.5126 

Reddy (1984) 6.9887 8.1954 8.4052 8.5126 

Mindlin (1951) 6.9392 8.2246 8.4183 8.5132 

Kirchhoff (1850) 7.7420 9.7192 10.053 10.053 

Present 6.9881 8.1958 8.4053 8.5126 

20
 

Exact 3D (c) 7.6745 9.4055 9.8398 10.0843 

Sayyad and Ghugal (2017) 7.8385 9.6205 9.9210 10.0740 

Thai and Kim (RPT1) (2010) 7.8210 9.6265 9.9181 10.0674 

Thai and Kim (RPT2) (2010) 7.8011 9.6252 9.9181 10.0671 

Reddy (1984) 7.8210 9.6265 9.9181 10.0614 

Mindlin (1951) 7.7060 9.6885 9.9427 10.0638 

Kirchhoff (1850) 8.8555 12.476 13.058 13.0585 

Present 7.8197 9.6272 9.9181 10.0671 

30
 

Exact 3D (c) 8.1763 10.1650 10.6958 11.0027 

Sayyad and Ghugal (2017) 8.5320 10.5268 10.8603 11.0309 

Thai and Kim (RPT1) (2010) 8.5050 10.5348 10.8547 11.0197 

Thai and Kim (RPT2) (2010) 8.4646 10.5334 10.8547 11.0186 

Reddy (1984) 8.5050 10.5348 10.8547 11.0197 

Mindlin (1951) 8.3211 10.6198 10.8828 11.0058 

Kirchhoff (1850) 9.8337 14.7250 15.4907 15.4907 

Present 8.5028 10.5358 10.8546 11.0191 

40 

Exact 3D (c) 8.5625 10.6789 11.2728 11.6245 

Sayyad and Ghugal (2017) 9.1246 11.1628 11.5100 11.6893 

Thai and Kim (RPT1) (2010) 9.0871 11.1716 11.5012 11.6730 

Thai and Kim (RPT2) (2010) 9.0227 11.1705 11.5009 11.6705 

Reddy (1984) 9.0871 11.1716 11.5012 11.6730 

Mindlin (1951) 8.8383 11.2708 11.5264 11.6444 

Kirchhoff (1850) 10.721 16.6725 17.5897 17.5897 

Present 9.0841 11.1728 11.5010 11.6721 

(c) Results taken from reference of Noor and Burton (1990) 
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Table 9 Comparison of non-dimensional fundamental 

frequencies (𝜔̄)  of cross-ply cylindrical shells (0°/90°), 

Material 1 

𝑅 𝑎⁄  Theory 𝑎 ℎ⁄ = 10 𝑎 ℎ⁄ = 100 

5 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

8.9082 

9.0230 

9.1254 

9.0957 

16.6680 

16.6900 

16.7030 

16.7037 

10 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

8.8879 

8.9790 

9.0453 

9.0144 

11.8310 

11.8400 

11.8440 

11.8440 

20 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

8.8900 

8.9720 

9.0207 

8.9895 

10.2650 

10.2700 

10.2707 

10.2705 

50 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

8.8951 

8.9730 

9.0109 

8.9797 

9.7816 

9.7830 

9.7843 

9.7840 

100 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

8.8974 

8.9750 

9.0085 

8.9773 

9.7108 

9.7120 

9.7127 

9.7123 

Plate 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

8.8998 

8.9760 

9.0065 

8.9753 

9.6873 

9.6880 

9.6886 

9.6882 

 

 

different loading cases. However, the difference between the 

solution predicted by FSDT and HSDT is more pronounced, 

especially in the case of the point load at the center, as 

pointed out by Reddy and Liu (1985). 

 

4.4 Free vibration analysis of antisymmetric (0°/90°)n 
cross-ply laminated plates 

 

In order to illustrate the accuracy of the present theory, 

the fundamental natural frequencies of multilayered 

(0°/90°)n antisymmetric cross-ply laminated square plates 

with simply supported boundary conditions are also 

calculated by using the generalized formulation of the 

proposed model. It is considered that the number of layers 

is varied from 2 to 10 with the same thickness and made up 

of Material 3 defined by Eq. (29). Table 8 shows the 

numerical results of non-dimensional fundamental natural 

frequencies for various values of modular ratios (𝐸1/𝐸2 =
3, 10, 20, 30, 40)  and are obtained for the fundamental 

flexural mode (𝑚 = 𝑛 = 1). 
The results of this problem are compared with those 

achieved by exact elasticity solution given by Noor and 

Burton (1990), four variable trigonometric shear 

deformation theory developed by Sayyad and Ghugal 

(2017), two variable refined plate theory (RPT) presented 

by Thai and Kim (2010), HSDT of Reddy (1984), FSDT and 

CPT. It can be seen that the present model shows the best 

accuracy and agree well with those reported by Reddy 

(1984) based on HSDT and to those cited by Thai and Kim 

(2010) using a two variable refined plate theory. However, 

the CPT overestimates the natural frequencies as compared 

to the results of other theories due to neglect of transverse  

Table 10 Comparison of non-dimensional fundamental 

frequencies (𝜔̄)  of cross-ply spherical shells (0°/90°), 

Material 1 

𝑅 𝑎⁄  Theory 𝑎 ℎ⁄ = 10 𝑎 ℎ⁄ = 100 

5 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

9.2309 

9.3370 

9.3654 

9.3408 

28.8250 

28.8400 

28.8391 

28.8412 

10 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

8.9841 

9.0680 

9.0980 

9.0685 

16.7060 

16.7100 

16.7121 

16.7128 

20 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

8.9212 

8.9990 

9.0295 

8.9987 

11.8410 

11.8400 

11.8442 

11.8442 

50 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

8.9034 

8.9800 

9.0101 

8.9790 

10.0630 

10.0600 

10.0647 

10.0644 

100 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

8.9009 

8.9770 

9.0074 

8.9762 

9.7826 

9.7840 

9.7840 

9.7836 

Plate 

Reddy and Liu FSDT (1985) 

Reddy and Liu HSDT (1985) 

Mantari et al. HSDT (2011) 

Present 

8.8998 

8.9760 

9.0065 

8.9753 

9.6873 

9.6880 

9.6886 

9.6882 

 

 

shear strains. It is also apparent that the natural frequencies 

are increasing with the increase of the number of layers (see 

Table 8).  

 

4.5 Free vibration analysis of cross-ply laminated 
cylindrical and spherical shells 

 
The last problem is performed for free vibration analysis 

of two-layer (0°/90°) antisymmetric cross-ply laminated 

cylindrical and spherical shells to investigate the accuracy 

and applicability of the present theory. For this section, the 

material properties of each layer are given by Eq. (27).  

Numerical results of non-dimensional fundamental natural 

frequencies with respect to the several values of curvature 

ratios (𝑅/𝑎 = 5, 10, 20, 50, 100) are listed in Tables 9 and 

10. It can be seen again that the present analytical method 

gives more accurate results in predicting the natural 

frequencies for cross-ply laminated cylindrical and spherical 

shells when compared to HSDTs provided by Reddy and Liu 

(1985) and Mantari et al. (2011). in addition, the 

fundamental frequencies follow a decreasing trend for the 

decrease in the thickness ratio (a/h) values and increase in 

the curvature ratios (R/a). However, in the both cases 

treated in this example for the free vibration analysis of 

cross-ply laminated shells, it should be clearly pointed out 

that the FSDT underestimates the natural frequency as 

compared to the results of the other HSDTs. 

 

 

5. Conclusions 
 

In this study, the bending and free vibration analysis of 
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simply supported laminated composite and sandwich plates 

and shells is presented by using a generalized and simple 

refined higher-order shear deformation theory with four 

unknown variables. The present generalized displacement 

model was developed based on an undetermined integral 

component and hyperbolic shape function to include the 

effects of the transverse shear stresses through the 

plate/shell thickness without requiring the shear correction 

factor. The governing equations and its boundary conditions 

are derived by applying the dynamic version of the 

principle of virtual work and the analytical solutions of 

displacements, stresses and fundamental natural frequencies 

were obtained using the Navier’s solution procedure. The 

effect of some parameters such as the side-to-thickness ratio 

and the curvature ratios is discussed by presenting several 

problems and comparing them with the previously 

published results. From this study, it is found that the 

present model is in excellent agreement while predicting the 

bending and free vibration analysis of laminated composite 

and sandwich plates and shells. Consequently, it is 

concluded that the proposed computational method can be 

applied for the bending analysis of thick laminated plates 

and shells with other boundary conditions and for different 

fiber orientations. An improvement of the present 

formulation will be considered in the future work to 

consider other type of materials (Sofiyev et al. 2008, 

Setoodeh et al. 2011, Sedighi and Shirazi 2012, Iurlaro et 

al. 2013, Sedighi et al. 2012, 2013, Avcar 2014, Cerracchio 

et al. 2015, Benferhat et al. 2016, Daouadji 2017, Lal et al. 

2017, Ebrahimi and Barati 2017c, Ayat et al. 2018, 

Belmahi, et al. 2018, Ebrahimi and Barati 2018, Dihaj et al. 

2018, Avcar and Mohammed 2018, Hamidi et al. 2018, Lal 

and Markad 2018, Faleh et al. 2018, Panjehpour et al. 2018, 

Bensattalah et al. 2018, 2019, Abrishambaf et al. 2019, 

Rajabi and Mohammadimehr 2019, Avcar 2019, Fadoun 

2019, Selmi 2019, Tabrizi et al. 2019, Madenci 2019, Barati 

et al. 2019, Al-Maliki et al. 2019, Belmahi et al. 2019, 

Eltaher et al. 2019a, b, Fládr et al. 2019, Hadji et al. 2019, 

Kossakowski and Uzarska 2019, López-Chavarría et al. 

2019, Nikkhoo et al. 2019, Sahouane et al. 2019, Shokrieh 

and Kondori 2020, Singh and Kumari 2020, Faleh et al. 

2020, Ghannadpour and Mehrparvar 2020, Al-Maliki et al. 

2020, Ghadimi 2020, Forsat et al. 2020). 
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