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1. Introduction  
 

Micro/nano electromechanical systems (MEMS/NEMS) 

have attracted many researchers in recent years due to their 

manipulative properties which increases the chance of their 

application in new classes of high-technology smart electro-

mechanical tools. These arrangements can involve various 

structures, such as composite reinforcements, piezo-

magneto-electric skins, elastic foundations, porous 

materials, etc. The beam structures are somewhat simplest 

mechanical structures capable of forming single-layer or 

multi-layer macro, micro and nano devices to demonstrate 

desired functions. 

To study the size effects on the vibration behavior of 

small-scale structures including micro/nano sandwich 

beams, many non-classical theories have been suggested 

through years such as modified couple stress, nonlocal 

elasticity, strain gradient, modified strain gradient and 

nonlocal strain gradient theories. Here is a review on some 

papers which have particularly utilized nonlocal strain 

gradient theory to perform their analysis. Xiaobai et al. 

(2017) presented bending, buckling and vibration analysis 

of an axially functionally graded Euler-Bernoulli beam 

using nonlocal strain gradient theory (NSGT). In their 

paper, it is concluded that by considering uniformly 

distributed loads, the maximum deflection with increasing 
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of material length scale parameter decreases because the 

structure becomes stiffer. Heydari (2018) released his work 

about vibration and buckling of nanoscale beams chased by 

a higher order deformation theory. He derived the equations 

of motion using Eringen's nonlocal theorem and considered 

accurate position of neutral surface in his formulation. This 

work introduced new method according to various 

transform and ways to solve coupled partial differential 

equations of motion with no simplifications. Free vibration 

analysis of Euler-Bernoulli nanobeams was conducted by 

Apuzzo et al. (2018)  using nonlocal strain gradient theory. 

In their work, axial and flexural frequencies are investigated 

for cantilever and fully-clamped nano-beams and influence 

of nonlocal and strain gradient parameters on fundamental 

frequencies are studied. Mohammadimehr and Alimirzaei 

(2016) presented nonlinear static and vibration analysis of 

Euler-Bernoulli composite beam model reinforced by 

functionally graded single walled carbon nanotubes with 

initial geometrical imperfection using finite element 

method. Also, Ebrahimi and Barati (2017) considered 

damping vibration characteristics of hygro-thermally 

affected functionally graded viscoelastic nanobeam. 

According to results of their paper, the damping ratio (ξ) 

increases with increasing of nonlocal parameter on the 

viscoelastic foundation. The governing equations of 

nonlocal strain gradient viscoelastic are obtained by using 

Hamilton’s principle for different boundary conditions. A 

size-dependent sinusoidal shear deformation beam model 

and the free vibration of nanobeams according to the 

nonlocal strain gradient theory is presented by Lu et al. 

(2017a) that they tried to prove stiff-softening and stiff-
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Abstract.  The aim of this research is to investigate free vibration of a novel five layer Timoshenko microbeam which consists 

of a transversely flexible porous core made of Al-foam, two graphen platelets (GPL) nanocomposite reinforced layers to 

enhance the mechanical behavior of the structure as well as two piezo-magneto-electric face sheets layers. This microbeam is 

subjected to a thermal load and resting on Pasternak’s foundation. To accomplish the analysis, constitutive equations of each 

layer are derived by means of nonlocal strain gradient theory (NSGT) to capture size dependent effects. Then, the Hamilton’s 

principle is employed to obtain the equations of motion for five layer Timoshenko microbeam. They are subsequently solved 

analytically by applying Navier’s method so that discretized governing equations are determined in form of dynamic matrix 

giving the possibility to gain the natural frequencies of the Timoshenko microbeam. Eventually, after a validation study, the 

numerical results are presented to study and discuss the influences of various parameters such as nonlocal parameter, strain 

gradient parameter, aspect ratio, porosity, various volume fraction and distributions of graphene platelets, temperature change 

and elastic foundation coefficients on natural frequencies of the sandwich microbeam. 
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hardening effects therein. In their article, the governing 

equations and different boundary conditions are derived by 

Hamilton's principle and Navier's method is used to find 

natural frequencies of simply supported nanobeams. Rajabi 

and Mohammadimehr (2019) studied bending analysis of a 

micro sandwich skew plate using extended Kantorovich 

method based on Eshelby-Mori-Tanaka approach. Further, 

published papers witnessing the recent attitude towards 

micro/nanobeams analysis through NSGT are those of Liu 

et al. (2019a), Khaniki et al. (2018), Li et al. (2016), Lu et 

al. (2017b), Sahmani et al. (2018c), Şimşek (2019), Xu et 

al. (2017). 

The natural composite fillers like sisal fiber (Kumar and 

Hariharan 2019), BaTiO3@ZnO (Wang et al. 2019) or 

artificial ones like carbon nanotubes/belts (Chan et al. 2019, 

Mohammadimehr and Mostafavifar 2016, Tahouneh 2018), 

graphene platelets (Javani et al. 2019) are used as 

reinforcement materials that lead to enhance electro-

thermo-mechanical performance of structures. Arefi et al. 

(2018a) investigated free vibration behavior of polymer 

composite nanoplates resting on a Pasternak foundation. In 

their work, four different FG reinforcement patterns are 

studied and by using the Halpin–Tsai and the rule of 

mixture, influence of elastic modulus, the Poisson's ratio 

and the density of composite nanoplates are investigated. 

Free and forced vibration of a nanoshell reinforced by 

graphene platelets (GPLs) was studied by Pourjabari et al. 

(2019). In their paper, three various porosity distributions 

are analyzed and the novelty of that work is the impact of 

porosity, GPLRC and MSGT of the nanostructure. 

Ganapathi et al. (2019) examined free vibration and 

dynamic response of graphene reinforced porous 

nanocomposite curved beams based on trigonometric shear 

deformation theory with various types of distributions for 

porosity. Sobhy (2018) investigated the magneto-electro-

thermal bending of doubly-curved shallow shells reinforced 

by functionally graded graphene platelets surrounded by 

two piezo-electro-magnetic face sheets with various 

boundary conditions. From the obtained results, it is 

concluded that the increase in the GPLs weight fraction and 

decrease in temperature grow the stiffness of structure. 

Mohammadimehr et al. (2016) depicted size-dependent 

effect on biaxial and shear nonlinear buckling analysis of 

nonlocal isotropic and orthotropic micro-plate based on 

surface stress and modified couple stress theories using 

differential quadrature method. Kiani and Mirzaei (2019) 

attempted to excel the researches about graphene platelets 

reinforcement. Their study stiffened composite laminar 

plates with thermally influenced nonlinear buckling/post-

buckling deformation. Also, an analysis of functionally 

graded porous micro/nano-beams reinforced with graphene 

was carried out by Sahmani et al. (2018b) with employing a 

new model for nonlinear bending and the nonlocal strain 

gradient theory in the third-order shear model for three 

different porosity distributions along the thickness of 

structure. In addition, nonlinear free vibration of multilayer 

functionally graded (FG) porous nanocomposite beams that 

are made of metal foams and reinforced by GPLs was 

studied by Chen et al. (2017). Free vibration analysis of a 

functionally graded graphene reinforced porous 

nanocomposite cylindrical shell was executed by Dong et 

al. (2018) for three kinds of the GPL patterns and four kinds 

of the porosity distributions. In conclusion section of this 

study, frequencies of forward and backward and critical 

spinning speeds for the first order shear deformation theory 

and the Hamilton's principle are analyzed.  Buckling and 

free vibration of sandwich porous Timoshenko beams with 

functionally graded (FG) materials were comprehensively 

discussed by Kitipornchai et al. (2017) through the 

incorporation of Halpin-Tsai model and Ritz solution 

approach. Yang et al. (2018a) presented buckling and free 

vibration analyses of functionally graded graphene 

reinforced porous nanocomposite plates with the help of 

Chebyshev-Ritz solution method. Moradi-Dastjerdi and 

Bendinan (2019) performed a research about the effect of 

graphene platelets nanocomposite reinforcement on static 

and vibrational manner of an axisymmetric cylindrical 

structure with considerable thickness by application of 

Halpin-Tsai function. They established that the constitutive 

materials are temperature dependent. They used a weak 

form mesh free procedure to extract governing equations. 

Mohammadimehr et al. (2017a) considered nonlinear 

vibration analysis of functionally graded carbon nanotube 

reinforced composite for sandwich Timoshenko beam based 

on modified couple stress theory subjected to longitudinal 

magnetic field using generalized differential quadrature 

method. Based on modified strain gradient theory, 

Mohammadimehr et al. (2017b) analyzed dynamic stability 

of sinusoidal viscoelastic piezoelectric polymeric 

functionally graded single-walled carbon nanotubes 

reinforced nanocomposite plate by considering surface 

stress and agglomeration effects under hydro-thermo-

electro-magneto-mechanical loadings. In another research, 

Yang et al. (2017) presented 3D buckling of FG circular 

and annular plates reinforced by GPLs in thermal 

environment and solved it analytically by employing Mian 

and Spencer method. Although, there are already many 

published articles related to graphene reinforced structures 

dealing with various mechanical phenomena, like those of 

Barati et al. (2017), Ebrahimi et al. (2018), Mirjavadi et al. 

(2019), Reddy et al. (2018), Sahmani et al. (2018a). Dong 

et al. (2018) studied linear and nonlinear free vibration and 

dynamic responses of functionally graded graphene 

platelets reinforced cylindrical shells. Moreover, Dong et al. 

(2019) presented analytical study of graphene platelets 

reinforced spinning cylindrical shells. In the other work, 

Dong et al. (2020a) analyzed active vibration control of a 

graphene platelets reinforced cylindrical shell with 

piezoelectric layers. Also, Dong et al. (2020b) worked a 

research to understand nonlinear resonance behavior of 

functionally graded graphene platelets cylindrical shells 

with considering thermal load. Based on linear quadratic 

regulator (LQR) method, Akhavan Alavi et al. (2019) 

presented active control of micro Reddy beam integrated 

with functionally graded nanocomposite sensor and 

actuator. Ghorbanpour Arani et al. (2016) illustrated surface 

stress and agglomeration effects on nonlocal biaxial 

buckling polymeric nanocomposite plate reinforced by CNT 

using various approaches. 

To study the porosity effect, Kaddari et al. (2020) 
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studied the influence of porosities, aspect ratio and the 

foundation parameters on bending and vibration of porous 

FG plate according to a new quasi-3D model. Addou et al. 

(2019) investigated four various patterns of porosity and for 

evaluation the effect of gradient index, porosity and 

stiffness parameters, mode numbers of FG plates by using a 

simple quasi-3D hyperbolic theory. As well as other 

researcher referred to this new structure such as Medani et 

al. (2019) and Berghouti et al. (2019). Ghorbanpour Arani 

et al. (2018) presented a study about rectangular porous 

plate resting on a Pasternak foundation using Reddy’s third-

order shear deformation theory. In addition, Ghorbanpour 

Arani et al. (2017) examined free vibration of rectangular 

plate with porous materials and Reddy’s theory was utilized 

in their paper. Also, Ghorbanpour Arani et al. (2019) 

studied free vibration of sandwich micro-beam by adopting 

the Euler-Bernoulli beam theory and modified strain 

gradient theory. 

In addition to GPL reinforcement, the technology of 

piezo-electric, piezo-magnetic as well as piezo-magneto-

electric materials have given a new opportunity to convert 

mechanical deflection to digital signals and vice versa 

which can be taken for granted in mechanical displacement 

sensing (Yang et al. 2018b), energy harvesting (Liu et al. 

2019b, Kim et al. 2018), and piezoelectric transducers (Qin 

et al. 2019). To achieve this, theoretical studies are required 

for their characterization. Singh et al. (2019) performed a 

research to understand how a moving load may impact 

resultant stress components and electric displacements in an 

irregular transversely isotropic FGPM. To study 

piezoelectric sandwich nanoplates, Zeng et al. (2019) 

presented the nonlinear vibration of a certain piezoelectric 

nanoplate with porous core under electrical load. The 

effects of applied voltage to the piezoelectric layer, 

distribution and coefficient of porosity on vibration analysis 

of the sandwich nanoplate were illustrated. Xiong and Tian 

(2017) analyzed the reaction of FG piezoelectric plates to 

external time-variant thermal load through the incorporation 

of finite element methods. In an article by Mahesh et al. 

(2019), frequency response of hydrothermally affected 

skew magneto-electro-elastic plates was concerned. They 

suggested Reddy's shear deformation theory for 

displacement field and adopted Hamilton's energy method 

for their modeling. Furthermore, Farajpour et al. (2019) 

presented a study over the nonlinear vibration and 

electromagnetic of magneto-electro-elastic nanofilms under 

both external electrical voltage and applied magnetic field. 

The frequency ratio predicted by the nonlocal plate model 

was greater than that by the classical theory which showed 

higher positive initial displacements along in-plane 

directions leading to higher nonlinear buckling voltages. A 

hyperbolic shear deformation model was conducted by 

Shokravi (2019) to examine buckling behavior of a 

multilayer beam with piezoelectricity effects. They utilized 

differential quadrature (DQ) method to find the dynamic 

instability region. In another work, free vibration of 

piezoelectric hollow circular FG-single walled boron nitride 

nanotubes (SWBNNTs) reinforced nanocomposite plate 

under action of thermal loadings was analyzed by 

Mohammadimehr et al. (2018) using modified couple stress 

theory. Bending analysis of a functionally graded shear and 

normal deformable sandwich nanoplate with piezoelectric 

face sheets resting on silica aerogel was proposed by 

Ghorbanpour Arani et al. (2019) who have studied free 

vibration of the configuration as well by means of nonlocal 

theory (Ghorbanpour Arani et al. (2018)). A porous 

sandwich Timoshenko beam with one-dimensional carbon 

nanotube (CNT) reinforced piezo-magneto-electric face 

sheets made of temperature-dependent materials was 

modeled and examined by Bamdad et al. (2019). Also, 

Amir et al. (2018) analyzed the vibration of a porous 

rectangular plate which was located between two piezo-

electro-magnetic layers based on nonlocal elasticity theory. 

It was observed that by increasing the electric and magnetic 

potentials, natural frequency decreases and increases, 

respectively. Moreover, magneto-electro-hygro-thermal 

buckling of piezoelectric nanoplates was analyzed by 

Karimiasl et al. (2019). They showed that by increasing 

length scale parameter, natural frequency increases. 

Another study on piezoelectricity was done by Marzbanrad 

et al. (2017) presenting vibration analysis of an elastically 

restrained configuration subjected to magneto-thermo-

electrical field. They discussed the effect of nonlocal 

parameter, piezoelectric voltage and magnetic field and 

length of nanobeam on natural frequencies. Jandaghian et 

al. (2016) studied the free vibration analysis of magneto-

electro-thermo-elastic (METE) nanobeams resting on a 

Pasternak foundation based on nonlocal theory and 

Timoshenko beam theory. Sheng et al. (2013) extended the 

nonlinear vibration control of cylindrical shells with thin 

piezoelectric layers based on Hamilton’s principle and Von 

Kármán nonlinear theory. In that work, it is obvious that 

piezoelectric layers can considerably improve the damping 

effect of FG cylindrical shells. Among other investigations, 

Karroubi and Irani-Rahaghi (2019) presented the free 

vibration analysis of a rotating cylindrical shell with two 

piezoelectric layers. Ansari et al. (2015) studied a 

geometrically nonlinear beam with different boundary 

conditions which were solved numerically. In another work, 

Baroudi and Najar (2019) conducted an analysis on 

flexoelectric nanobeams including static and dynamic 

behaviors after extracting governing equations using 

Hamilton’s principle based on Von Karman nonlinear strain 

field. A number of further reports dealing with piezo-

magneto-electricity in mechanics are provided by Arefi et 

al. (2016, 2018, 2019b), Hajmohammad et al. (2018), 

Rostami et al. (2019). 

There are some published papers related to first-order 

shear deformation theory (FSDT), higher-order shear 

deformation theory (HSDT), the elastic foundation, 

nonlocal strain gradient theory and nonlocal elasticity 

theory and micro-beams that referred to this paper. By using 

a simple first-order shear deformation theory (SFSDT), 

Draiche et al. (2019) studied the static analysis of 

reinforced composite plates. Their results with the 

conventional FSDT have been compared. Also, Balubaid et 

al. (2019) investigated the different influencing of the 

vibrational behavior such as the small scale effect, 

geometry ratio, material index and aspect ratio according to 

the nonlocal two variables integral. The effect of the 
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variation of the volume fraction, the power index, Winkler 

spring constant on the fundamental frequency, center 

deflection, normal and shear stress of FG-beam resting on 

the elastic foundation was investigated by Chaabane et al. 

(2019). Hussain et al. (2019) analyzed the vibrational 

frequency of single walled carbon nanotubes (SWCNTs) 

and by increasing the nonlocal parameter decreases the 

frequencies based on nonlocal elasticity theory. Different 

numerical results to show the effect of the variation of the 

volume fraction, the power index, the slenderness ratio and 

the influence of Winkler spring constant on the fundamental 

frequency, center deflection, normal and shear stress of FG-

beam was presented by Tlidji et al. (2019). Karami et al. 

(2019) examined buckling based on nonlocal strain gradient 

theory for various boundary conditions using Galerkin’s 

approach. The bending and buckling of nanobeams based 

on nonlocal strain gradient theory was proposed by Adda 

Bedia et al. (2019). 
Thermal effects and porosity are two other assumptions 

of the present work, which can be found among a huge 
number of old and new researches as parts of their analyses. 
In addition to the works mentioned above which contain 
these two phenomena, Akgoz et al. (2018) depicted thermo-

elastic vibrational response of microbeams laying on 
Pasternak’s elastic foundation using modified strain 
gradient theory (MSGT) by considering various beam 
models. Critical temperature and natural frequencies were 
reported numerically. A functionally graded nanobeam in 
thermal environment was the case of Ebrahimi et al. (2015) 

who employed a semi analytical differential transform 
method for the first time (as they have claimed) and 
nonlocal elasticity theory to present numerical results. 

The novelty of this research can be stated as the 

combination of aforementioned materials that it yields 

construction of advices with new performances to fit for the 

application of interest. It should be remarked that within the 

numerical results, the effect of temperature is also 

investigated by assuming temperature-dependent materials 

and also by considering the effects of applied electric and 

magnetic potentials, nonlocal parameter, strain gradient 

parameter, porosity, volume fraction of graphene platelets 

which can be considered as a novelty. A sandwich 

Timoshenko beam with a porous transversely flexible core 

offering a low weight is taken into consideration. The core 

is embedded in two skins reinforced by GPL nanofillers. 

The resultant configuration is surrounded by BiTiO3-

CoFe2O4 piezo-magneto-electric face sheets able to sense 

mechanical deformations. The five-layers is laid on 

Pasternak’s foundation and hinged at both ends. As the 

structure is in a thermal environment, a temperature change 

is induced through the thickness of every layer which is 

supposed to be distributed uniformly. Such a configuration 

is not studied yet and thus is a novel one. In addition to, the 

novelty of the developed mathematical model is the 

application of nonlocal strain gradient theory to develop the 

governing equations with the aid of Hamilton’s principle. 

The governing equations are solved by Navier's method 

using trigonometric series. Finally, a comprehensive 

parametric analysis is reported to figure out how various 

parameters of the system influence its natural frequencies. 

The examined and discussed parameters include distribution 

 

Fig. 1 A schematic view of the five-layers sandwich 

microbeam 

 

 

pattern of graphene and porosity, temperature change, 

porosity coefficient, graphene volume fraction, elastic 

foundation parameters, wave number, initial applied electric 

and magnetic potentials and various aspect ratios (such as 

slenderness, thickness of one layer to thickness of another, 

etc.). A novel example is proposed in current paper as an 

attempt to be a benchmark for future technological efforts. 

 

 

2. Formulation 
 

A sandwich structure with considering piezoelectric and 

magnetic layers is used as sensor in industrial tools such as 

aerospace bodies to control vibrations by changing the 

potential. The use of graphene platelets nanocomposite 

layers can help these structures to show more efficient 

application due to their light weight and high strength that is 

a good capability for aerospace and many other industries. 

Control process is not the goal of this paper, but the effects 

of applied electric and magnetic potential on the natural 

frequency is studied. 

The study case of the current work is a sandwich 

microbeam as depicted in Fig. 1. It consists of a 

transversely flexible porous foam core covered by GPL 

facesheets and they are bonded with piezo-magneto-electric 

face sheets layers. 

Here is a list of the basic assumptions that are made for 

the current formulations. 

- The beam structure is modeled based on Timoshenko's 

theory. 

- The beam is at micro scale. 

- The stress-strain relations are found through nonlocal 

strain gradient theory. 

- The beam consists of five perfectly bonded layers. 

- The vibrations are assumed to be linear. 

- The beam is simply supported, i.e., hinged at its 

endings. 

- The core is transversely flexible and has some pores. 

- The temperature of the beam is assumed to change 

with a uniform distribution along the thickness in one 

case. Also, in another case, it is assumed that the 

material properties are dependent to temperature. 

- The two graphene reinforced layers are established to 

stiffen the structure. 

- The structure rests on a two-variable elastic 

foundation, one as Winkler coefficient and one as shear 

layer coefficient. 
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Table 1 Mechanical properties of Al-FCSB 

𝐸𝐶
0 (𝐺𝑃𝑎) 𝜈𝐶

0 𝜌𝐶
0 (𝑘𝑔 𝑚3⁄ ) 𝛼𝑐 (10

−6𝐾−1) 

0.6 0.3 540 20 

 

 

Fig. 2 A schematic view of distribution of porosity in the 

core 

 

 

2.1 Characterization of transversely flexible foam core 
 

With the assumption of transversely flexibility, in-plane 

strain and consequently stress (i.e., yz plane) can be 

neglected due to such a low Young’s modulus. Moreover, 

despite of being desirably light, these materials offer a good 

mechanical behavior in combination with common 

composite reinforcements, either mixed or bonded as covers 

(Adewale et al. 2019, Sadighi et al. 2011). 

Among the available foam materials, Al-FCSB is 

selected in this work to shape up the core of the sandwich 

microbeam. Mechanical properties are presented in Table 1 

(Mohammadimehr et al. 2017). 

 

2.2 Characterization of porosity in transversely 
flexible core 
 

To study effect of porosity appeared in the core, three 

common distribution patterns can be considered as depicted 

in Fig. 2. 

Pattern 1 suggests a uniform distribution along the 

thickness. Patterns 2, 3 illustrate non-uniform distributions. 

Although Pattern 2 assumes a symmetric distribution with 

no porosity on the top and bottom surfaces, pattern 3 

assumes different amount of porosity on the top and bottom 

surfaces. Mathematical model of porous core is written as 

follows (Bamdad et al. 2019). 

𝐸𝑐(𝑧) = 𝐸 𝑐
0(1 − 𝑒0

 

 
𝜆) (1a) 

𝜌
𝑐
(𝑧) = 𝜌 

𝑐
0(1 − (1 −√1 − 𝑒0

 

 
)𝜆) (1b) 

𝜈𝑐(𝑧) = 0.221Λ + 𝜈 𝑐
0(0.342Λ2 − 1.21Λ + 1) (1c) 

Λ = 1 − (𝜌𝑐(𝑧) 𝜌
 
𝑐
0⁄ )
 
 (1d) 

where 𝜆  is defined according to desirable distribution 

pattern. 

𝜆(𝑧) =
1

𝑒0
 −

1

𝑒0
 (
2

𝜋
 √1 − 𝑒0

 
 
−
2

𝜋
+ 1)

2

 Pattern 1 (2a) 

λ(z) = cos(𝜋𝑧 ℎ𝑐⁄ ) Pattern 2 (2a) 
 

 

Fig. 3 A various distribution patterns of graphene platelets 

through polymer matrix in GPL covers 

 

 

λ(z) = cos(𝜋𝑧 ℎ𝑐⁄ + 𝜋 4⁄ )  Pattern 3 (2a) 

in which 𝑒0 is coefficient of porosity and can be written as 

𝑒0 = 1 − 𝐸2 𝐸1⁄  (3) 

𝐸1  and 𝐸2  denote maximum and minimum Young’s 

moduli of the porous core, respectively. It can be concluded 

that range of 𝑒0 is between 0 (no porosity) to less than 1 

(almost no foam). 

 
2.3 Characterization of GPL reinforced layers 

 

The core is covered by GPL sheets from top and bottom. 

The volume fraction of GPL nanofillers can be expressed as 

(Kitipornchai et al. 2017, Yang et al. 2018) 

𝑉𝐺𝑃𝐿 =
𝑊𝐺𝑃𝐿

𝑊𝐺𝑃𝐿 + (𝜌𝐺𝑃𝐿 𝜌
𝑚

⁄ )(1 − 𝑊𝐺𝑃𝐿)
 (4) 

pattern of mixing graphene nanofillers within the polymer 

matrix of GPL covers. Three distribution patterns are 

recommended in Fig. 3 which can be modeled as a function 

of GPL covers thickness as the following relations. 

According to the Fig. 3(a), a uniform distribution along 

the thickness for GPL can be modeled as 

𝑊𝐺𝑃𝐿 = 𝜗1𝑊𝐺𝑃𝐿
0      for both GPL covers (5) 

According to the Fig. 3(b), a linear distribution for 

graphene’s weight fraction along the thickness of GPL 

covers is expressed as  

𝑊𝐺𝑃𝐿 =

{
 
 

 
 𝜗2𝑊𝐺𝑃𝐿

0 (
𝑧 − ℎ𝑐 2⁄

ℎ𝑔
)    for the top GPL cover

𝜗2𝑊𝐺𝑃𝐿
0 (

−𝑧 − ℎ𝑐 2⁄

ℎ𝑔
)    for the bottom GPL cover

 (6) 

Parabolic pattern for weight fraction of nanofillers is 

depicted in Fig. 3(c) that this distribution offers maximum 

weight fractions at the upper and the lower surface of top 

GPL cover and zero in the mid-level of it; however, for the 

bottom GPL cover, it is the reverse. This pattern is modeled 

as 

𝑊𝐺𝑃𝐿 =

{
  
 

  
 
𝜗3𝑊𝐺𝑃𝐿

0 (
𝑧 − (ℎ𝑐 + ℎ𝑔) 2⁄

ℎ𝑔
2

)

2

the top GPL cover

𝜗3𝑊𝐺𝑃𝐿
0 (

𝑧 + (ℎ𝑐 + ℎ𝑔) 2⁄

ℎ𝑔/2
)

2

the bottom GPL cover

 (7) 
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Table 2 GPL indices and weight fraction characteristics 

𝑊𝐺𝑃𝐿
0 = 0% 𝑊𝐺𝑃𝐿

0 = 0.33% 𝑊𝐺𝑃𝐿
0 = 1% 

0 1/3 1 

0 2/3 2 

0 1 3 

 

 

𝑊𝐺𝑃𝐿
0  in Eqs. (5)-(7) is a characteristic value for GPL’s 

weight fraction and determines total percentile content of 

GPL nanofillers. 𝜗1 , 𝜗2 𝑎𝑛𝑑 𝜗3 denote the weight fraction 

indices. These parameters are chosen from Table 2. 

After specifying volume fraction using Eq. (4), the 

mechanical properties of GPL covers can be obtained in the 

following way. Young’s modulus of GPL covers 

considering Halpin-Tsai model (Halpin et al. 1976) can be 

presented as follows. 

Eg =
3

8
(
1 + ξ

𝐿
 

 
Ξ𝐿𝑉𝐺𝑃𝐿

1 − Ξ𝐿𝑉𝐺𝑃𝐿
)𝐸𝑀 +

5

8
(
1 + ξ

𝑏
 Ξ𝑏 

𝑉𝐺𝑃𝐿

1 − Ξ𝑏𝑉𝐺𝑃𝐿
)𝐸𝑀 (8a) 

Ξ𝐿 =
𝐸𝐺𝑃𝐿 𝐸𝑀⁄ − 1 

 

𝐸𝐺𝑃𝐿 𝐸𝑀⁄ + ξ
𝐿
   

 (8b) 

Ξ𝑏 =
𝐸𝐺𝑃𝐿 𝐸𝑀⁄ − 1 

 

𝐸𝐺𝑃𝐿 𝐸𝑀⁄ + ξ
𝑏
   

 (8c) 

in which, 𝐸𝐺𝑃𝐿  and 𝐸𝑀  are Young’s moduli of GPLs and 

matrix, respectively. ξ
𝐿
 
 and ξ

𝑏
 
 denote geometry ratios of 

GPL covers which are expressed as 

ξ
𝐿
 = 2(𝐿 ℎ𝑔⁄ ) (9a) 

ξ
𝑏
 = 2(𝑏 ℎ𝑔⁄ ) (9b) 

Poison’s ratio of GPL covers can be obtained by means 

of the rule of mixture. 

𝜈𝑔 = 𝜈𝐺𝑃𝐿𝑉𝐺𝑃𝐿 + 𝜈𝑀(1 − 𝑉𝐺𝑃𝐿) (10) 

in which,  𝜈𝐺𝑃𝐿  and 𝜈𝑀  are Poisson ratios of GPL 

nanofillers and matrix, respectively. Mass density of GPL 

covers is expressed as 

𝜌𝑔
 = 𝜌𝐺𝑃𝐿𝑉𝐺𝑃𝐿 + 𝜌𝑀(1 − 𝑉𝐺𝑃𝐿) (11) 

 

where, 𝜌𝐺𝑃𝐿  and 𝜌𝑀  denote mass density of nanofillers 

and polymer matrix, respectively. The thermal expansion 

coefficient of GPL covers can be written as 

𝛼𝑔
 = 𝛼𝐺𝑃𝐿𝑉𝐺𝑃𝐿 + 𝛼𝑀(1 − 𝑉𝐺𝑃𝐿) (12) 

𝛼𝐺𝑃𝐿  and 𝛼𝑀 describe thermal expansion coefficients of 

graphene nanofillers and matrix, respectively. Values of 

properties of graphene nanofillers and polymer matrix used 

to create GPL covers are listed in Table 3. 

 

2.4 Characterization of piezo-magneto-electric face 
sheets 
 

As shown in Fig. 1, three layers (i.e., the core and GPL 

covers) are surrounded by piezo-magneto-electric face 

sheets. 

Table 3 Values of properties of graphene nanofillers and 

polymer matrix 

𝐸𝐺𝑃𝐿 (𝑇𝑃𝑎) 𝜈𝐺𝑃𝐿 𝜌𝐺𝑃𝐿  (10
3 𝑘𝑔 𝑚3⁄ ) 𝛼𝐺𝑃𝐿  (10

−5𝐾−1) 

1.01 0.006 1.06 2.35 

𝐸𝑀 (𝐺𝑃𝑎) 𝜈𝑀 𝜌𝑀 (10
3 𝑘𝑔 𝑚3⁄ ) 𝛼𝑀 (10

−5𝐾−1) 

2.85 0.34 1.2 8.2 

 
 

Basically, equations for piezo-magneto-electric face 

sheets expressed regarding Maxwell’s equations for 

transversely polarized face sheets (Ansari et al. 2015, Arefi 

et al. 2019, Karrubi et al. 2019, Sheng et al. 2013). Electric 

vector and magnetic intensity are introduced as 

{
𝐸
𝐻
}
𝑗
= −𝛻 {

𝜓
𝜙
}
𝑗

   (𝑗 = 𝑡𝑝, 𝑏𝑝) (13) 

where 𝜓𝑗  and 𝜙𝑗  are electric and magnetic potentials, 

respectively and 𝛻 = (
𝜕 

𝜕𝑥
,
𝜕 

𝜕𝑧
). 

The electric and magnetic potentials can be obtained in 

form of linear and cosine functions as 

{
 
 

 
 𝜓𝑗(𝑥, 𝑧, 𝑡) = 2𝜓0

𝑧�̅�

ℎ𝑝
− 𝜓(𝑥, 𝑡)𝑐𝑜𝑠 (

𝜋𝑧�̅�

ℎ𝑝
)

𝜙𝑗(𝑥, 𝑧, 𝑡) = 2𝜙0
𝑧�̅�

ℎ𝑝
− 𝜑(𝑥, 𝑡)𝑐𝑜𝑠 (

𝜋𝑧�̅�

ℎ𝑝
)

 (14) 

in which 𝜓0 and 𝜙0 denote applied electric and magnetic 

potentials, respectively, and  𝜓(𝑥, 𝑡)  and 𝜑(𝑥, 𝑡) denote 

undetermined electric and magnetic potentials, respectively. 

𝑧�̅�𝑝 = 𝑧 −
ℎ𝑐+2ℎ𝑔+ℎ𝑝

2
  and 𝑧�̅�𝑝 = 𝑧 +

ℎ𝑐+2ℎ𝑔+ℎ𝑝

2
 denote z 

axis translated to geometric mid surface of top and bottom 

piezo face sheets, respectively. 

Eq. (14) into Eq. (13) is written as follows 

{
𝐸𝑥
𝐸𝑧
}
𝑗

= − {

𝜕𝜓 

𝜕𝑥
𝜕𝜓 

𝜕𝑧

}

𝑗

=

{
 
 

 
 

𝜕𝜓 

𝜕𝑥
𝑐𝑜𝑠 (

𝜋𝑧�̅�

ℎ𝑝
)

−2
𝜓0
ℎ𝑝
− 𝜓

𝜋

ℎ𝑝
𝑠𝑖𝑛 (

𝜋𝑧�̅�

ℎ𝑝
)
}
 
 

 
 

 (15) 

And also 

 {
𝐻𝑥
𝐻𝑧
}
𝑗

= − {

𝜕Φ 

𝜕𝑥
𝜕Φ 

𝜕𝑧

}

𝑗

=

{
 
 

 
 

𝜕𝜙 

𝜕𝑥
𝑐𝑜𝑠 (

𝜋𝑧�̅�

ℎ𝑝
)

−2
𝜙0
ℎ𝑝
− 𝜑

𝜋 

ℎ𝑝
𝑠𝑖𝑛 (

𝜋𝑧�̅�

ℎ𝑝
)
}
 
 

 
 

 (16) 

Consequently, electric vector and magnetic intensity are 

described by Eqs. (15) and (16), respectively, as 

components in x and z directions. In order to obtain 

properties of piezo-magneto-electric face sheets to consist 

with Timoshenko beam model, the presented relation for 

property coefficients (Jandaghian et al. 2016) are utilized 

here to find those taking place in the present work through 

the following relations. 

𝑄11𝑝 = 𝐶11 − 𝐶13
2 𝐶33⁄ ;   𝑄22𝑝 = 𝐶44; 

𝑒113 = 𝑒31 − 𝐶13
 𝑒33 𝐶33⁄  

𝑒311 = 𝑒113 = 𝑒31 − 𝐶13
 𝑒33 𝐶33⁄    ;    𝑒131  

= 𝑒15;    𝑞113 = 𝑞31 − 𝐶13
 𝑞33 𝐶33⁄  
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𝑞311 = 𝑞113 = 𝑞31 − 𝐶13
 𝑞33 𝐶33⁄ ;   𝑞131  

= 𝑞15   ;    𝜂11 = 𝑠11;  𝜂33 = 𝑠33 + 𝑒33
2 𝐶33⁄  

𝑔11 = 𝑑11   ;    𝑔33 = 𝑑33 + 𝑞33
 𝑒33 𝐶33⁄ ;   𝛽11 

= µ11;    𝛽33 = µ33 + 𝑞33
2 𝐶33⁄  

𝜌𝑝 = 𝜌   ;    𝛼𝑝 =
𝜆1 − 𝐶13

 𝜆3 𝐶33⁄

𝐶11 − 𝐶13
2 𝐶33⁄

 

(17) 

The left side of relations in Eq. (17) are involved 

parameters in current paper, while the right side parameters 

are those used in Jandaghian et al. (2016). 

By substituting given values in Jandaghian et al. (2016) 

into Eq. (17), customized coefficients can be determined as 

in Table 4. 

It should be noted that 𝛼𝑝 (thermal expansion 

coefficient of piezo face sheets) is calculated in terms of the 

thermal moduli (Jandaghian et al. 2016, Sankar et al. 2002). 

 

2.5 Governing equations for the sandwich microbeam 
 

Assuming perfect bonding at the interfaces of the 

current sandwich microbeam, the linear displacement fields 

for all five layers can be expressed within the framework of 

Timoshenko beam model as Bamdad et al. (2019). 

𝑈(𝑥, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) + 𝑧𝜃(𝑥, 𝑡) (18a) 

𝑊(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡) (18b) 

where 𝑢  and 𝑤  denote the axial and transverse 

displacements respectively and 𝜃 is rotation of the cross 

section about y-axis.  

The normal and shear strains for Timoshenko micro 

beam are obtained using Eqs. (18) as follows. 

𝜀𝑥𝑥 =
𝜕𝑢 
𝜕𝑥

+ 𝑧
𝜕𝜃 
𝜕𝑥

 (19a) 

2𝜀𝑥𝑧 = 𝛶𝑥𝑧 = 𝜃 +
𝜕𝑤 
𝜕𝑥

 (19b) 

In order to capture size effects including stiff-softening 

and stiff-hardening, nonlocal strain gradient theory (NSGT) 

is proposed to obtain constitutive equations of the layers 

(Arefi et al. 2019, Bamdad et al. 2019, Lu et al. 2017a). 

For the transversely flexible porous foam core, 

constitutive relations based on NSGT are as 

(1 − 𝜖𝛻2) {
𝑡𝑥𝑥
𝑡𝑥𝑧
} = (1 − 𝜚𝛻2) [

𝑄11𝑐 0
0 𝑘𝑠𝑄22𝑐

] {
𝜀𝑥𝑥
𝛶𝑥𝑧
} (20) 

in which, 𝜖 = (𝑒0𝑎)
2 and 𝜚 = 𝑙2  represent the nonlocal 

parameter (𝑒0𝑎)
 and the strain gradient parameter (l), 

respectively. 𝑡𝑥𝑥 and 𝑡𝑥𝑧 are the total stress components 

which are defined in terms of classical stress and the higher 

order stress as the following form. 

{
𝑡𝑥𝑥
𝑡𝑥𝑧
} = {

𝜎𝑥𝑥 − 𝛻𝜎𝑥𝑥
(1)

𝜎𝑥𝑧 − 𝛻𝜎𝑥𝑧
(1)
} (21) 

where in Eq. (20), 𝛻2 =
𝜕2 

𝜕𝑥2
 is Laplacian operator, 𝑘𝑠 is 

the shear strain correction factor (5/6 for rectangular 

Timoshenko beam model), 𝑄11𝑐 and 𝑄22𝑐 denote elastic 

constants of the core and are described as functions of z  

Table 4 Material properties of piezo-magneto electric face 

sheets (BiTiO3-CoFe2O4) 

Property coefficients    

Elastic (GPa) Q11p=154.81 Q22p=44.2  

Piezo-electric (C/m2) e113=-7.54 e311=-7.54 e131=5.8 

Piezo-magnetic (N/Am) q113=89.23 q311=89.23 q131=275 

Dielectric (10-9 C/Vm) η11=5.64 η33=6.75  

Magneto-electric (10-12 Ns/VC) g11=5.367 g33=17802.64  

Magnetic permeability 

(10-6 Ns2/C2) 
β11=-297 β33=84.07  

Mass density (103 kg/m3) ρp=5.55   

Thermal expansion (10-6 K-1) αp=1.38   

 

 

direction as follows. 

𝑄11𝑐 =
𝐸𝑐(𝑧)

1 − 𝜈𝑐
2(𝑧)

 (22a) 

𝑄22𝑐 =
𝐸𝑐(𝑧)

2(1 + 𝜈𝑐(𝑧))
 (22b) 

For the GPL reinforced covers, constitutive equations 

are expressed as 

(1 − 𝜖𝛻2) {
𝑡𝑥𝑥
𝑡𝑥𝑧
} = (1 − 𝜚𝛻2) [

𝑄11𝑔 0

0 𝑘𝑠𝑄22𝑔
] {
𝜀𝑥𝑥
𝛶𝑥𝑧
} (23) 

where, 𝑄11𝑔 and 𝑄22𝑔 are given as 

𝑄11𝑔 =
𝐸𝑔(𝑧)

1 − 𝜈𝑔
2(𝑧)

 (24a) 

𝑄22𝑔 =
𝐸𝑔(𝑧)

2 (1 + 𝜈𝑔(𝑧))
 (24b) 

Constitutive equations for the piezo-magneto-electric 

face sheets may seem different from those of the core and 

GPL covers due to involving magnetic-field-magnetic-

intensity as well as electric-displacement-electric-vector 

relations. These relations can be proposed as follows 

(Ansari et al. 2015, Arefi et al. 2019, Bamdad et al. 2019, 

Karrubi et al. 2019, Lu et al. 2017a). 

(1 − 𝜖𝛻2) {
𝑡𝑥𝑥
𝑡𝑥𝑧
} = (1 − 𝜚𝛻2) ([

𝑄11𝑝 0

0 𝑘𝑠𝑄22𝑝
] {
𝜀𝑥𝑥
𝛶𝑥𝑧
} 

− [
0 𝑒113
𝑒131 0

] {
𝐸𝑥
𝐸𝑧
} − [

0 𝑞113
𝑞131 0

] {
𝐻𝑥
𝐻𝑧
}) 

(25a) 

(1 − 𝜖𝛻2) {
𝐷𝑥
𝐷𝑧
} = (1 − 𝜚𝛻2) ([

0 𝑒131
𝑒311 0

] {
𝜀𝑥𝑥
𝛶𝑥𝑧
} 

+[
𝜂11 0
0 𝜂33

] {
𝐸𝑥
𝐸𝑧
} + [

𝑔11 0
0 𝑔33

] {
𝐻𝑥
𝐻𝑧
}) 

(25b) 

(1 − 𝜖𝛻2) {
𝐵𝑥
𝐵𝑧
} = (1 − 𝜚𝛻2) ([

0 𝑞131
𝑞311 0

] {
𝜀𝑥𝑥
𝛶𝑥𝑧
} 

+[
𝑔11 0
0 𝑔33

] {
𝐸𝑥
𝐸𝑧
} + [

𝛽11 0
0 𝛽33

] {
𝐻𝑥
𝐻𝑧
}) 

(25c) 
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𝐷𝑥  and 𝐷𝑧  are electric displacements in x and z 

directions, respectively. 𝐵𝑥  and 𝐵𝑧 denote components of 

magnetic field in x and z directions, respectively. 

The total strain energy of the sandwich microbeam can 

be formed as the sum of strain energy stored in the face 

sheets, GPL covers and the core and also energies caused 

by electric and magnetic fields in piezo-magneto-electric 

face sheets. 

Π𝑝 =
1

2
∫(𝑡𝑖𝑗

𝑟𝜀𝑖𝑗
𝑟 − 𝐷𝑥

𝑗𝐸𝑥
𝑗 − 𝐷𝑧

𝑗𝐸𝑧
𝑗 − 𝐵𝑥

𝑗𝐻𝑥
𝑗 −

𝐵𝑧
𝑗𝐻𝑧

𝑗)𝑑𝐴𝑑𝑧𝑟  (𝑟 = 𝑐, 𝑡𝑔, 𝑏𝑔, 𝑡𝑝, 𝑏𝑝; 𝑗 = 𝑡𝑝, 𝑏𝑝) 

(26) 

By entering Eqs. (15), (16) and (19) into Eq. (26) and 

then taking variations, variation of potential energy can be 

defined as  

𝛿Π𝑝 = −∬[ (𝑁𝑥𝑥,𝑥
  𝛿𝑢 + (𝑀𝑥𝑥,𝑥 −𝑁𝑥𝑧)𝛿𝜃 +

𝑁𝑥𝑧,𝑥𝛿𝑤 − (𝐶𝑥,𝑥 + 𝐶𝑧)𝛿𝜓  −(𝐹𝑥,𝑥 + 𝐹𝑧)𝛿𝜑]𝑑𝑥𝑑𝑦  
(27) 

where 

{𝑁𝑥𝑥 , 𝑀𝑥𝑥 , 𝑁𝑥𝑧} =∑{𝑁𝑥𝑥
𝑟 , 𝑀𝑥𝑥

𝑟 , 𝑁𝑥𝑧
𝑟} (28) 

and 

{𝑁𝑥𝑥
𝑟 , 𝑀𝑥𝑥

𝑟 , 𝑁𝑥𝑧
𝑟 = ∫{𝑡𝑥𝑥 ,𝑡𝑥𝑥 𝑧, 𝑡𝑥𝑧 }𝑑𝑧𝑟  (29) 

Resultants 𝐶𝑥 , 𝐶𝑧, 𝐹𝑥and 𝐹𝑧  which are associated with 

energies of piezo face sheets can be written as 

{𝐶𝑥, 𝐶𝑧 , 𝐹𝑥, 𝐹𝑧} =∑{𝐶𝑥
𝑗 , 𝐶𝑧

𝑗 , 𝐹𝑥
𝑗 , 𝐹𝑧

𝑗} (30) 

where, 

{𝐶𝑥
𝑗, 𝐹𝑥

𝑗} = ∫{𝐷𝑥 ,𝐵𝑥 }𝑐𝑜𝑠 (
𝜋𝑧�̅�

ℎ𝑝
)𝑑𝑧𝑗 (31a) 

{𝐶𝑧
𝑗, 𝐹𝑧

𝑗} = ∫{𝐷𝑧  , 𝐵𝑧 }
𝜋 

ℎ𝑝
𝑠𝑖𝑛 (

𝜋𝑧�̅�

ℎ𝑝
)𝑑𝑧𝑗 (31b) 

The kinetic energy for each layer can be given by 

Π𝑘 =
1

2
∫𝜌𝑟(�̇�

 2 + �̇�  2)𝑑𝐴𝑑𝑧𝑟  (32) 

in which 𝜌𝑟 indicates mass density of each layer. �̇� and 

�̇�   are given by 

�̇� = �̇�(𝑥, 𝑡) + 𝑧�̇�(𝑥, 𝑡) (33) 

�̇�  = �̇�(𝑥, 𝑡) (34) 

Inserting Eqs. (33) and (34) into Eq. (32) yields 

Π𝑘 =
1

2
∬  (𝐼1 �̇�

2 + 𝐼3�̇�
2 + 𝐼1�̇�

2 + 2𝐼2𝑢 ̇ �̇�)𝑑𝑥𝑑𝑦  (35) 

in which, 𝐼1 , 𝐼2 and 𝐼3 denote the sum of cross section 

moments of each layer in the following form. 

{𝐼1, 𝐼2, 𝐼3} =∑{𝐼1
𝑟 , 𝐼2

𝑟 , 𝐼3
𝑟} (36a) 

{𝐼1
𝑟 , 𝐼2

𝑟 , 𝐼3
𝑟} = ∫𝜌𝑟{1, 𝑧, 𝑧

2}𝑑𝑧𝑟  (36b) 

To substitute the total kinetic energy into Hamilton’s 

principle, its variation is derived as 

𝛿Π𝑘 = −∬ [(𝐼1 �̈� + 𝐼2𝜃)̈𝛿𝑢 + (𝐼1𝑤)̈ 𝛿𝑤 + (𝐼3�̈�

+ 𝐼2�̈� )𝛿𝜃 ]𝑑𝑥𝑑𝑦  
(37) 

Variation of work done by thermal environmental, applied 

electric potential and magnetic potential can be modeled as 

(Akgöz et al. 2018, Ebrahimi et al. 2015, Wang et al. 

2019b). 

𝛿Π𝑤 = −∬(𝑁𝑇 + 𝑁𝐸+𝑁𝑀)𝑤,𝑥𝑥 𝛿𝑤𝑑𝑥𝑑𝑦 (38) 

where, 𝑁𝑇 is sum of thermal resultants of each layer and 

can be written as the following form 

𝑁𝑇 =∑∫𝑄11𝑟 𝛼𝑟∆𝑇𝑑𝑧𝑟  (39) 

in which, ∆𝑇  denotes temperature change. Note that 

temperature change can be assumed distributed either 

uniformly along z-direction or non-uniformly. In this paper, 

uniform distribution is taken into consideration. 

Also, 𝑁𝐸  and 𝑁𝑀  denote piezoelectric and 

piezomagnetic resultants, respectively, as follows. 

𝑁𝐸 = −
2

ℎ𝑝
∫𝑒113𝜓0𝑑𝑧𝑗   ;   𝑁

𝑀 = −
2

ℎ𝑝
∫𝑞113 𝜙0𝑑𝑧𝑗 (40) 

Variation of work done by Pasternak’s foundation can 

be obtained by Mohammadimehr et al. (2010) 

𝛿Π𝑤𝐹 =∬(−𝐾1𝑤 + 𝐾2𝑤,𝑥𝑥 )𝛿𝑤 𝑑𝑥𝑑𝑦 (41) 

in which, 𝐾1  and 𝐾2  are Winkler and shear layer 

coefficients, respectively.  

Finally, substituting of Eqs. (27), (37), (38) and (41) 

into Hamilton’s principle∫ 𝛿(Π𝑘 − Π𝑝 + Π𝑤 + Π𝑤𝐹) 𝑑𝑡 =

0, leads to obtain the equations of motion in terms of forces 

and moments resultants. 

𝛿𝑢 :  𝑁𝑥𝑥,𝑥 = 𝐼1�̈� + 𝐼2�̈� (42a) 

𝜃 : 𝑀𝑥𝑥,𝑥 − 𝑁𝑥𝑧 = 𝐼2�̈� + 𝐼3�̈� (42b) 

𝛿𝑤 :  𝑁𝑥𝑧,𝑥 − (𝑁
𝑇 +𝑁𝐸 +𝑁𝑀)𝑤,𝑥𝑥  

−𝐾1𝑤 + 𝐾2𝑤,𝑥𝑥 = 𝐼1�̈� 
(42c) 

𝛿𝜓 : 𝐶𝑥,𝑥 + 𝐶𝑧 = 0 (42d) 

𝛿 𝜑 :  𝐹𝑥,𝑥 + 𝐹𝑧 = 0 (42e) 

To obtain explicit governing equations, Eqs. (15), (16) 

and (19) are substituted into Eqs. (25), then combined with 

Eqs. (28)-(31). After all, they are integrated into Eq. (42) to 

result in the following governing equations. 

𝐼1(�̈� − 𝜖�̈�,𝑥𝑥) + 𝐼2(�̈� − 𝜖�̈�,𝑥𝑥) − 𝐴11(𝑢,𝑥𝑥 − 𝜚𝑢,𝑥𝑥𝑥𝑥) 

−𝐵11(𝜃,𝑥𝑥 − 𝜚𝜃,𝑥𝑥𝑥𝑥) − 𝐺𝑒(𝜓,𝑥 − 𝜚𝜓,𝑥𝑥𝑥) 

−𝐺𝑚(𝜑,𝑥 − 𝜚𝜑,𝑥𝑥𝑥) = 0 

(43a) 
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𝐼1(�̈� − 𝜖�̈�,𝑥𝑥) + (𝑁
𝑇 + 𝑁𝐸 + 𝑁𝑀)(𝑤,𝑥𝑥 −

𝜖𝑤,𝑥𝑥𝑥𝑥) + 𝐾1(𝑤 − 𝜖𝑤,𝑥𝑥) − 𝐾2(𝑤,𝑥𝑥 − 𝜖𝑤,𝑥𝑥𝑥𝑥) 

−𝐴22(𝜃,𝑥 − 𝜚𝜃,𝑥𝑥𝑥) − 𝐴22(𝑤,𝑥𝑥 − 𝜚𝑤,𝑥𝑥𝑥𝑥) +

𝑂𝑒(𝜓,𝑥𝑥 − 𝜚𝜓,𝑥𝑥𝑥𝑥) + 𝑂𝑚(𝜑,𝑥𝑥 − 𝜚𝜑,𝑥𝑥𝑥𝑥) = 0 

(43b) 

𝐼2(�̈� − 𝜖�̈�,𝑥𝑥) + 𝐼3(�̈� − 𝜖�̈�,𝑥𝑥) − 𝐵11(𝑢,𝑥𝑥 −

𝜚𝑢,𝑥𝑥𝑥𝑥) − (𝐴22 − 𝑃11)(𝜃,𝑥𝑥 − 𝜚𝜃,𝑥𝑥𝑥𝑥) +𝐴22(𝑤,𝑥 −

𝜚𝑤,𝑥𝑥𝑥) − (𝑂𝑒 + 𝑆𝑒)(𝜓,𝑥 − 𝜚𝜓,𝑥𝑥𝑥) − (𝑂𝑚 +

𝑆𝑚)(𝜑,𝑥 − 𝜚𝜑,𝑥𝑥𝑥) = 0 

(43c) 

𝑇𝑧(𝑢,𝑥 − 𝜚𝑢,𝑥𝑥𝑥  ) + (𝑂𝑒 + 𝑇�̅�)(𝜃,𝑥 − 𝜚𝜃,𝑥𝑥𝑥) +

𝑂𝑒(𝑤,𝑥𝑥 − 𝜚𝑤,𝑥𝑥𝑥𝑥) +𝑋𝑚(𝜓,𝑥𝑥 − 𝜚𝜓,𝑥𝑥𝑥𝑥) −

𝑌𝑚(𝜓 − 𝜚𝜓,𝑥𝑥) +𝑋𝑒(𝜑,𝑥𝑥 − 𝜚𝜑,𝑥𝑥𝑥) − 𝑌𝑒(𝜑 −

𝜚𝜑,𝑥𝑥) = 0 

(43d) 

𝑅𝑧(𝑢,𝑥 − 𝜚𝑢,𝑥𝑥𝑥) + (𝑂𝑚 + �̅�𝑧)(𝜃,𝑥 − 𝜚𝜃,𝑥𝑥𝑥) +

𝑂𝑚(𝑤,𝑥𝑥 − 𝜚𝑤,𝑥𝑥𝑥𝑥) +𝑋𝑒(𝜓,𝑥𝑥 − 𝜚𝜓,𝑥𝑥𝑥𝑥) 

−𝑌𝑒(𝜓 − 𝜚𝜓,𝑥𝑥) + �̅�𝑚(𝜑,𝑥𝑥 − 𝜚𝜑,𝑥𝑥𝑥𝑥) − �̅�𝑚(𝜑 −

𝜚𝜑,𝑥𝑥) = 0 

(43e) 

All coefficient 𝐴11, 𝐵11 , 𝐴22, 𝑃11 , 𝐺𝑒 , 𝐺𝑚 , 𝑂𝑒 , 𝑂𝑚 , 

𝑆𝑒 , 𝑆𝑚 , 𝑇𝑧 , �̅�𝑧 , 𝑅𝑧 , �̅�𝑧 , 𝑋𝑒 , 𝑋𝑚 , �̅�𝑒 , �̅�𝑚 , 𝑌𝑒 , 𝑌𝑚 , �̅�𝑒 , 

�̅�𝑚 are expressed in Appendix A. 

 

 

3. Free vibration analysis 
 

3.1 Solution procedure 
 
Since the governing equations of motion (defined as Eq. 

(43)) are in form of coupled system of partial differential 

equations, Navier’s method is conducted to discretize them. 

It is a popular analytical method that assumes the response 

to be trigonometric that is usually used for simple boundary 

conditions. 

According to boundary conditions associated with the 

simply supported sandwich microbeam and using the 

procedure of References (Ansari et al. 2015, Karrubi et al. 

2019), the Navier’s type solution can be suggested as 

following series.  

𝑢(𝑥, 𝑡) =∑𝑢𝑛 𝑐𝑜𝑠(𝜁𝑛𝑥)𝑒
𝑖𝜔𝑡  (44a) 

𝑤(𝑥, 𝑡) =∑𝑤𝑛 𝑠𝑖𝑛(𝜁𝑛𝑥) 𝑒
𝑖𝜔𝑡 (44b) 

𝜃(𝑥, 𝑡) = ∑𝜃𝑛 𝑐𝑜𝑠(𝜁𝑛𝑥)𝑒
𝑖𝜔𝑡 (44c) 

𝜓(𝑥, 𝑡) = ∑𝜓𝑛 𝑠𝑖𝑛(𝜁𝑛𝑥)𝑒
𝑖𝜔𝑡 (44d) 

𝜑(𝑥, 𝑡) =∑𝜑𝑛 𝑠𝑖𝑛(𝜁𝑛𝑥)𝑒
𝑖𝜔𝑡 (44e) 

in which 𝜁𝑛 = 𝑛𝜋 𝐿⁄  and 𝑛  denote mode number. 

Substituting the Navier’s solution as in Eq. (44) into Eq. 

(43) yields ODEs as discretized governing equations of the 

sandwich microbeam 

[𝑀]{�̈�} + [𝐾]{𝜒} = 0 (45a) 

{𝜒} = {𝑢𝑛 , 𝑤𝑛 , 𝜃𝑛 , 𝜓𝑛 , 𝜑𝑛}
𝑇 , {�̈�} = −𝜔2{𝜒} (45b) 

[𝑀]

=

[
 
 
 
 
 
𝐼1(1 + 𝜖𝜁𝑛

2) 0 𝐼2(1 + 𝜖𝜁𝑛
2) 0 0

0 𝐼1(1 + 𝜖𝜁𝑛
2) 0 0 0

𝐼2(1 + 𝜖𝜁𝑛
2) 0 𝐼3(1 + 𝜖𝜁𝑛

2) 0 0

0 0 0 0 0
0 0 0 0 0]

 
 
 
 
 

 (45c) 

[𝐾] =

[
 
 
 
 
𝐾11 𝐾12 𝐾13 𝐾14 𝐾15
𝐾21 𝐾22 𝐾23 𝐾24 𝐾25
𝐾31 𝐾32 𝐾33 𝐾34 𝐾35
𝐾41 𝐾42 𝐾43 𝐾44 𝐾45
𝐾51 𝐾51 𝐾53 𝐾54 𝐾55]

 
 
 
 

 (45d) 

where, 𝐾𝑖𝑗  arrays are defined in Appendix B. 

The equations in the 4th and 5th rows can be solved in 

terms of displacement unknowns as follows 

𝜑𝑛 = 𝑎1𝑢𝑛 + 𝑎2𝑤𝑛 + 𝑎3𝜃𝑛 (46a) 

𝜓𝑛 = 𝑎4𝑢𝑛 + 𝑎5𝑤𝑛 + 𝑎6𝜃𝑛 (46b) 

Coefficients 𝑎𝑖 in Eq. (46) are described in Appendix 

C. 

Replacing Eq. (46) into Eq. (45) yields the following 

equations describing free vibration of the sandwich 

microbeam. 

[𝑀′]{�̈�} + [𝐾′]{𝜒} = 0 (47a) 

[𝑀′] = [

𝐼1(1 + 𝜖𝜁𝑛
2) 0 𝐼2(1 + 𝜖𝜁𝑛

2)

0 𝐼1(1 + 𝜖𝜁𝑛
2) 0

𝐼2(1 + 𝜖𝜁𝑛
2) 0 𝐼3(1 + 𝜖𝜁𝑛

2)

] (47b) 

[𝐾′] = [

𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

] (47c) 

𝑏11 = 𝐾11 + 𝐾14𝑎4 + 𝐾15𝑎1 (48a) 

𝑏12 = 𝐾12 + 𝐾14𝑎5 + 𝐾15𝑎2 (48b) 

𝑏13 = 𝐾13 + 𝐾14𝑎6 + 𝐾15𝑎3 (48c) 

𝑏21 = 𝐾21 + 𝐾24𝑎5 + 𝐾25𝑎1 (48d) 

𝑏22 = 𝐾22 + 𝐾24𝑎5 + 𝐾25𝑎2 (48e) 

𝑏23 = 𝐾23 + 𝐾24𝑎6 + 𝐾25𝑎3 (48f) 

𝑏31 = 𝐾31 + 𝐾34 𝑎4 + 𝐾35𝑎1 (48g) 

𝑏32 = 𝐾32 + 𝐾34𝑎5 + 𝐾35𝑎2 (48h) 

𝑏33 = 𝐾33 + 𝐾34𝑎6 + 𝐾35𝑎3 (48i) 

Note that by evaluating 𝑏𝑖𝑗  arrays as in Eq. (48), it will 

be realized that [𝐾′] is a symmetric matrix. 

Eventually, the natural frequencies of the sandwich 

microbeam can be obtained by inserting matrices [𝑀′] and 

[𝐾′] defined in Eq. (47) into the following equations. 
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Table 5 Geometry and material property parameters of the 

core for the verification study 

𝐸𝑐𝑜𝑟𝑒 (𝐺𝑃𝑎) 𝜈𝑐𝑜𝑟𝑒  𝜌𝑐𝑜𝑟𝑒 (10
3 𝑘𝑔 𝑚3⁄ ) 

390 0.24 3.96 

𝐿 (𝑛𝑚) 𝑏 (𝑛𝑚)   

10,000 1,000  

 

 

Δ = [𝑀′]−1[𝐾′] (49a) 

𝜔𝑛 = √𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠(Δ) (49b) 

in which Δ and 𝜔𝑛 indicate dynamic matrix and the nth 

natural frequency of the sandwich microbeam, respectively. 

The following free vibration analysis is presented based 

on the formulation of Eqs. (1)-(49). Also, to consider the 

effect of temperature-dependent properties, an additional 

diagram will be illustrated. It is estimated according to the 

following functions for 𝐸𝑀 , 𝛼𝑀  and 𝐸 𝑐
0 

(Mohammadimehr and Mostafavifar 2016). 

𝐸𝑀 = 3.52 − 0.0034∆𝑇 (𝐺𝑃𝑎) (50a) 

𝛼𝑀 = 45(1 + 0.0005∆𝑇) × 10
−6 (𝐾−1) (50b) 

𝐸 𝑐
0 = −0.2398668972 × 10−10∆𝑇8 

+0.8099071975 × 10−8∆𝑇7 + 2.610124694∆𝑇 

−0.1126364748 × 10−5∆𝑇6 −
0.8110540539∆𝑇2 + 0.00008247684020∆𝑇5 +
0.07399495300∆𝑇3 − 0.003359420587∆𝑇4 +

101.1755000 (𝑀𝑃𝑎)  

(50c) 

 

3.2 Verification 

 

As there are no available papers in the literature that 

consider all assumptions taken in this research 

simultaneously, an example which has investigated free 

vibration analysis of a Timoshenko microbeam via nonlocal 

theory is selected for a comparison study to check validity 

and accuracy of the present work. 

Although the microbeam studied in Rahmani et al. 

(2014) is a single layer beam without any thermo-magneto-

electric loads and porosity, it is the most consistent paper 

with the current one in mutual basic assumptions. 

Owing to aforementioned differences between the two 

papers, the following assumptions are taken so that they 

become comparable. 

- Thickness of GPL reinforced covers as well as piezo-

magneto-electric face sheets are supposed 

approximately zero i.e., ℎ𝑔 = ℎ𝑝 = 10
−4ℎ𝑐. 

- Temperature change ∆T is equated to 10-4 (K) as if it is 

negligible. 

- Coefficients of the Pasternak’s foundation are assumed 

as 𝐾1 = 10−3 (𝑁 𝑚⁄ ),  𝐾2 = 10
−3(𝑁𝑚). 

- Porosity coefficient 𝑒0 is set 10-9. 

- Strain gradient parameter l is assumed zero in order to 

model nonlocal theory (neglecting strain gradient). 

Other parameters are considered as listed in Table 5. 

The fundamental natural frequency in Rahmani et al.  

Table 6 Comparison of dimensionless fundamental natural 

frequency 

𝐿/ℎ𝑐 𝜖 = 𝑒0𝑎 = (𝜇𝑚
2) Rahmani et al. (2014) Present % Diff 

20 

0 9.830 10.124 2.991 

1 9.378 9.658 2.991 

2 8.983 9.252 2.992 

3 8.634 8.892 2.992 

4 8.323 8.572 2.992 

5 8.043 8.284 2.992 

50 

0 9.863 10.159 3.002 

1 9.410 9.692 3.002 

2 9.014 9.284 3.001 

3 8.664 8.924 3.002 

4 8.352 8.602 3.001 

5 8.071 8.313 3.001 

100 

0 9.868 10.162 2.984 

1 9.414 9.695 2.984 

2 9.018 9.287 2.984 

3 8.668 8.926 2.984 

4 8.356 8.605 2.984 

5 8.075 8.316 2.984 

% Diff = 100 (value of present work – value of Ref.) / (value of 

Ref.) 

 

 

(2014) is formulated in the following dimensionless form 

𝜛1 = 𝜔1𝐿
2√𝜌𝑐𝑜𝑟𝑒𝐴 𝐸𝑐𝑜𝑟𝑒𝐼⁄  (51) 

in which, 𝜔1 indicates fundamental frequency expressed 

as in Eq. (49), 𝐴 and 𝐼 are area of beam’s cross section 

and second inertia of its area, respectively (𝐴 = 𝑏ℎ, 𝐼 =
𝑏ℎ3/12). 

Using Eq. (49) and taking into account the above 

assumptions, first dimensionless natural frequency can be 

validated as reported in Table 6 for various slenderness 

ratios in terms of nonlocal parameter. As it can be observed, 

the results of the present work are in good agreement with 

those of Rahmani et al. (2014) with a maximum difference 

of approximately 3 percent which is quite negligible since 

GPL covers, piezo-magneto-electric face sheets and 

Pasternak’s foundation are not entirely removed, also 

thermal and porosity coefficients are not set exactly zero, 

but approximations are considered. 

 

3.3 Numerical results 

 

Hereafter, the numerical vibration analysis of thermal 

Timoshenko sandwich microbeam consisted of transversely 

flexible porous foam core and graphene reinforced nano-

composite covers and piezo-magneto-electric face sheets 

resting on Pasternak’s foundation is presented. The 

influence of various parameters of the system including 

geometry parameters in form of non-dimensional ratios, 

nonlocal strain gradient theory, distribution patters of GPL 

nanofillers as well as porosity, volume fraction of graphene 

nanofillers, porosity coefficient, elastic foundation,  
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Fig. 4 Fundamental natural frequency vs. porosity 

coefficient for uniform, symmetric, asymmetric distribution 

patterns 

 

 

temperature change and also different mode numbers which 

are illustrated one by one, either individually or 

simultaneously by means of tables or figures. The input data 

are considered as 𝐿 = 10 𝜇𝑚, 𝑏 = 10 𝑛𝑚, 𝐿 ℎ𝑐⁄ =
50,  ℎ𝑝 ℎ𝑐⁄ = 0.1, ℎ𝑝 ℎ𝑔⁄ = 1 3⁄ , 𝑒0𝑎 ℎ𝑝⁄ = 1 10⁄ , 𝑙 𝑒0𝑎⁄ =

1, 𝐾1 = 200(𝑁 𝑚⁄ ), 𝐾2 = 20(𝑁𝑚), Δ𝑇 = 10(℃), 𝑒0 =
0.5,  𝑤𝐺𝑃𝐿

0 = 1%, 𝑛 = 1  and distribution patterns for 

porosity and GPLs are both uniform. 

In Fig. 4, the effect of porosity distribution of the core 

on the fundamental natural frequency is investigated. For 

this purpose, three types of various distributions are 

considered i.e., uniform, symmetric and asymmetric. Also, 

𝑒0 is the porosity coefficient that varies between 0 and 0.9. 

By increasing 𝑒0 , the natural frequency for all three 

distributions increases because porous coefficient can 

decrease the mass density as well as the beam’s structural 

stiffness, while the reduction for the mass density is higher 

than the stiffness of micro beam. It is seen from this figure 

that the uniform pattern gives the maximum changes; while 

for asymmetric distribution it is minimum. Also, for high 

porosity coefficients, the type of distribution is more 

important. The percentage of natural frequency increase for 

uniform distribution is 11.650%, for symmetric 8.137% and 

for asymmetric 5.552%. 

The effect of different weight percentages with respect 

to ratio of ℎ𝑔/ℎ𝑐  is investigated in Figs. 5(a)-(c) for 

uniform, linear and parabolic GPL distribution patterns, 

respectively. The natural frequency increases with 

increasing the thickness ratio since increasing thickness of 

graphene layer reinforces and consequently stiffens the 

structure. For the same reason, natural frequency increases 

with rising of GPL's weight percentage. On the other hands, 

increasing weight percentage of GPL leads to increase the 

stiffness of microbeam and then the natural frequency 

enhances. At low amounts of thickness ratio, the 

frequencies remain almost constant. Moreover, in all cases 

of distribution pattern, the largest frequency is gained when 

the weight percentage is 1% and the smallest is gained 

when it is 0%, because they mean highest and lowest 

reinforcement, respectively. It is seen that comparing the 

three figures demonstrates that the effect of weight 

 
(a) 

 
(b) 

 
(c) 

Fig. 5 Fundamental frequency vs. hg/hp for various weigh 

percentages, in case of (a) uniform GPL distribution; (b) 

linear GPL distribution; (c) parabolic GPL distribution 

 

 

percentage in parabolic pattern is not as notable as in the 

other ones. 

Table 7 deals with the effect of geometric ratios on the 

natural frequency. As shown, natural frequency decreases 

with an increase in 𝐿/ℎ𝑐 ratio because a longer beam acts 

more flexibly. However, increase in ℎ𝑝/ℎ𝑐 ratio cause the 

growth of the natural frequency. Furthermore, ℎ𝑝 ℎ𝑔⁄ =

1 3⁄  gives the highest natural frequency, which means that 

a greater thickness of the graphene reinforced layers yields 

higher natural frequency. The reason is the fact that thicker 

graphene platelets reinforced layer leads to better 

reinforcement and thus a stiffer structure. 

In Table 8, the effect of GPL and porosity coefficient is 

investigated simultaneously. As the porosity coefficient 

grows, the natural frequency increases. It is expected that  
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Fig. 6 Fundamental frequency vs. temperature change for 

various GPL percentile contents and porosity coefficients 

 

 

Fig. 7 Natural frequencies (MHz) for various GPL 

percentile contents and porosity coefficients 

 

 

the natural frequency increases with increasing of weight 

percentage of graphene platelets as the structure is 

strengthened. 

Fig. 6 shows that when the temperature of the structure 

increases, the natural frequency decreases for the fact that it 

is expected to expand and become softer, meaning more 

 

Table 9 Fundamental natural frequency (MHz) vs. Winkler 

coefficients for various shear layer coefficients 

𝐾1 𝐾2=10 𝐾2=100 𝐾2=500 

0 12.426 25.510 53.449 

101 12.426 25.510 53.449 

102 12.426 25.510 53.449 

103 12.426 25.510 53.449 

106 12.426 25.510 53.449 

109 12.426 25.510 53.449 

1012 14.501 26.583 53.969 

1013 26.706 34.778 58.443 

1014 75.778 78.985 91.895 

1015 195.973 195.972 195.973 

 

 
Fig. 8 Fundamental natural frequency vs. the material 

length scale to nonlocal parameters ratio for various values 

of nonlocal parameters 

 

 

flexible. It can also be concluded that in case of higher GPL 

weight percentage, the temperature change has a sharper 

effect on the natural frequency. But it does not matter 

significantly for the porosity coefficient. 

In Fig. 7, the effect of mode number is investigated. It is  
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Table 7 Fundamental natural frequency (MHz) vs. 𝐿/ℎ𝑐 for various thickness ratios (i.e., ℎ𝑝 ℎ𝑐⁄  and ℎ𝑝 ℎ𝑔⁄ ) 

𝐿 ℎ𝑐𝑐⁄  
ℎ𝑝 ℎ𝑔⁄ =0.5 ℎ𝑝 ℎ𝑔⁄ =1 ℎ𝑝 ℎ𝑔⁄ =3 

ℎ𝑝 ℎ𝑐⁄ =0.1 ℎ𝑝 ℎ𝑐⁄ =0.5 ℎ𝑝 ℎ𝑐⁄ =1 ℎ𝑝 ℎ𝑐⁄ =3 ℎ𝑝 ℎ𝑐⁄ =0.1 ℎ𝑝 ℎ𝑐⁄ =0.5 ℎ𝑝 ℎ𝑐⁄ =1 ℎ𝑝 ℎ𝑐⁄ =3 ℎ𝑝 ℎ𝑐⁄ =0.1 ℎ𝑝 ℎ𝑐⁄ =0.5 ℎ𝑝 ℎ𝑐⁄ =1 ℎ𝑝 ℎ𝑐⁄ =3 

10 44.200 81.501 94.563 115.610 39.736 70.265 89.875 112.005 37.816 60.660 78.879 109.698 

20 25.213 57.779 78.858 98.961 22.323 42.452 61.890 98.082 21.245 34.441 48.666 85.725 

30 18.441 43.069 64.781 93.905 16.887 29.853 45.515 84.169 16.393 23.919 34.336 67.567 

40 15.612 33.975 53.917 88.177 15.015 23.108 35.628 72.298 14.918 18.588 26.448 54.819 

50 14.476 28.020 45.744 82.305 14.569 19.065 29.210 62.677 14.741 15.544 21.582 45.760 

Table 8 Fundamental natural frequency (MHz) vs. hg/hc for GPL percentile contents and porosity coefficients 

hg/hc 
𝑊𝐺𝑃𝐿

0 =0% 𝑊𝐺𝑃𝐿
0 =0.33% 𝑊𝐺𝑃𝐿

0 =1% 

e0 =0.1 e0 =0.5 e0 =0.8 e0=0.1 e0=0.5 e0=0.8 e0=0.1 e0=0.5 e0=0.8 

0.2 14.119 14.425 14.830 14.122 14.429 14.834 14.151 14.458 14.864 

0.4 14.265 14.516 14.842 14.273 14.523 14.850 14.334 14.585 14.913 

0.6 14.665 14.881 15.160 14.676 14.892 15.171 14.766 14.984 15.265 

0.8 15.200 15.393 15.640 15.215 15.407 15.655 15.330 15.525 15.774 

1.0 15.808 15.983 16.207 15.825 16.000 16.225 15.963 16.140 16.367 
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overall seen that the structure has a higher natural frequency 

at higher modes such that the 5th mode is about 5 times 

more that the 1st mode. Also, it clarifies that at any mode, 

the natural frequency increases with an increase in GPL's 

weight percentage or decrease in porosity coefficients, 

which were previously proved in detail for the fundamental 

natural frequency (i.e., the first mode).  

Table 9 examines the effect of the Pasternak elastic 

coefficients in a large range. 𝐾1 is the Winkler coefficient 

and 𝐾2  is the shear layer coefficient. By increasing 𝐾1 

from 0 to 109, this coefficient has no remarkable effect on 

the natural frequency, because in the governing equations 

which carry 𝐾1 , its corresponding terms are negligible 

compared to the other terms except in very large values. But 

after the value of 𝐾1is more 109, it begins to increase the 

natural frequency. Also, it is concluded that with an 

increase in 𝐾2, the natural frequency increases. It seems 

that variation of shear layer coefficient can cause more 

changes in comparison with the Winkler coefficient. On the 

other hands, they both make the structure stiffer and hence 

generate a higher natural frequency. 

Fig. 8 shows the effect of nonlocal parameter 𝑒0𝑎 and 

strain gradient parameter 𝑙 in a dimensionless form. As 

𝑙/𝑒0𝑎 increases, the natural frequency rises. That happens 

since increase in 𝑙/𝑒0𝑎 means increase in 𝑙 or decrease in 

𝑒0𝑎 ; the first one implies more stiff-hardening and the 

second one implies less stiff-softening; so they both result 

in growth of natural frequency. It is noted that 𝑒0𝑎/𝑙=1 

means = 𝜚 , so the terms (1 − 𝜖∇2) and (1 − 𝜚∇2) are 

simplified from constitutive equations. As a result, value of 

𝑒0𝑎 does not change frequency. 

Fig. 9 shows the mode shape of the microbeam along its 

 

 
(a) 

 
(b) 

Fig. 10 Fundamental natural frequency vs. 𝐿/ℎ𝑐  for 

various values of (a) 𝜓0; (b) 𝜙0 

 

 

length for 𝑛=1, 2, 3, 4. It is obvious that with each increase 

in the mode number (𝑛), the number of peaks and nodes 

increases of one.  

Fig. 10 shows the effect of applied electric potential 

(Fig. 10(a)) and magnetic potential (Fig. 10(b)) in terms of  

 

  

 

 (a) (b)  

 

  

 

 (c) (d)  

Fig. 9 Mode shape of the microbeam for (a) n=1; (b) n=2; (c) n=3; (d) n=4 
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Fig. 11 Fundamental natural frequency vs. ∆𝑇 for various 

values of porosity coefficient based on Eq. (50) 

 

 

𝐿/ℎ𝑐  ratio. As it shows, when 𝜓0 = 0 , the natural 

frequency increases with 𝐿/ℎ𝑐 , but when 𝜓0 =
200,−200, it decreases. Moreover, when 𝜙0 = 0, natural 

frequency increases with 𝐿/ℎ𝑐, but it is the reverse when 

𝜙0 = 100,−100. It is seen that with considering 𝜓0 and 

𝜙0 , the microbeam becomes softer, thus the natural 

frequency decreases.  

As the mentioned before, the effect of temperature 

change on natural frequency is analyzed assuming that the 

materials are temperature dependent based on Eq. (50). Fig. 

11 demonstrates for various porosity coefficients based on 

temperature-dependent properties. It is seen that 

fundamental frequency decreases with temperature change 

for all of the porosity coefficients. On the other hands, with 

increasing of temperature change, the stiffness of 

microbeam decreases. 

 

 

4. Conclusions 
 

In this research, five layers Timoshenko microbeam 

including a transversely flexible porous foam core covered 

by GPL nanocomposite reinforced sheets and piezo-

magneto-electric face sheets in uniform thermal 

environment resting on a Pasternak foundation is 

investigated. The linear constitutive equations are employed 

based on nonlocal strain gradient theory. Also, the 

Hamilton's principle is used to derive the governing 

equations which are then solved by Navier's technique. The 

discovered results dealing with frequency analysis can be 

summarized as the following headlines which can hopefully 

aid specialists for the future nanotechnology explorations 

and inventions, especially for resonance characterizations 

that demonstrates the application of this paper.  

 • Among the three proposed patterns for porosity 

throughout the thickness of the core, uniform and 

asymmetric patterns result in highest and lowest natural 

frequencies, respectively. Also, it is demonstrated the 

highest and lowest sensitivity towards value of porosity, 

respectively. 

• Comparing the effects of three patterns suggested for 

distribution of GPL nanofillers through the thickness of 

GPL reinforced covers, linear pattern offers safer 

structure, especially when mixing more graphene 

nanofillers; on the other hand, uniform pattern is the 

least helpful one. 

• It is demonstrated the highest and lowest sensitivity 

towards value of porosity, respectively. 

• Although increasing the thickness of any layer makes 

the structure heavier, thicker GPL layer can intensify the 

natural frequency because of enhancing the stiffness. 

• Designers may be able to perform a safer construction 

by considering a thinner foam core compared to other 

layers.  

• Thickness of piezo-magneto-electric face sheets is 

moderately more effective than that of the core, while it 

is totally the reverse in comparison with that of GPL 

covers. 

• A slenderer microbeam serves a more probable 

resonance as it approaches a wire. 

• The microbeam acts more flexible in higher 

temperatures which means less natural frequency is 

gained. Generally, the role of temperature might be 

bolder by having less porosity but more graphene 

nanofillers. It is worth mentioning that all of natural 

frequencies (i.e., corresponding with any mode number) 

follow the same trend. 

• It can be generally claimed that raising the both 

coefficients of Pasternak foundation (i.e., shear layer 

and Winkler springs) yields higher natural frequencies 

because the microstructure becomes stiffer, but the 

influence of shear layer is more significant than Winkler 

foundation. Getting deeper into the results will prove the 

fact that as the intensity of one of these two parameters 

increases, the sensitivity of natural frequency to the 

other one decreases. 

• It is seen that with considering 𝜓0  and 𝜙0 , the 

microbeam becomes softer, thus the natural frequency 

decreases. 

It is seen that fundamental frequency decreases with 

temperature change for all the porosity coefficients. On the 

other hands, with increasing of temperature change, the 

stiffness of microbeam decreases. 
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Appendix A 
 

{𝐴11, 𝐵11, 𝑃11} = ∑∫𝑄11𝑟 {1, 𝑧, 𝑧
2}𝑑𝑧𝑟 

𝐴22 = ∑𝑘𝑠 ∫ 𝑄22𝑟 𝑑𝑧𝑟     (𝑟 = 𝑐, 𝑡𝑔, 𝑏𝑔, 𝑡𝑝, 𝑏𝑝) 
{𝐺𝑒 , 𝐺𝑚, 𝑆𝑒 , 𝑆𝑚} =

∑
𝜋
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∫  {𝑒113, 𝑞113, 𝑧𝑒113, 𝑧𝑞113}𝑠𝑖𝑛 (

𝜋�̅�𝑗

ℎ𝑝
) 𝑑𝑧𝑗 

{𝑂𝑒 , 𝑂𝑚} =∑∫{𝑒131, 𝑞131}𝑐𝑜𝑠 (
𝜋𝑧�̅�

ℎ𝑝
)𝑑𝑧𝑗 

{𝑇𝑧 , �̅�𝑧} = ∑
𝜋

ℎ𝑝
∫𝑒311{1, 𝑧}𝑠𝑖𝑛 (

𝜋𝑧�̅�

ℎ𝑝
)𝑑𝑧𝑗   

{𝑅𝑧, �̅�𝑧} =∑
𝜋

ℎ𝑝
∫𝑞311{1, 𝑧}𝑠𝑖𝑛 (

𝜋𝑧�̅�

ℎ𝑝
)𝑑𝑧𝑗   

{𝑋𝑒 , 𝑋𝑚, �̅�𝑚} = ∑∫{𝑔11, 𝜂11, 𝛽11}𝑐𝑜𝑠
2 (
𝜋𝑧�̅�

ℎ𝑝
)𝑑𝑧𝑗 

{𝑌𝑒 , 𝑌𝑚 , �̅�𝑚}

=∑(
𝜋

ℎ𝑝
)

2

∫{𝑔33, 𝜂33, 𝛽33}𝑠𝑖𝑛
2 (
𝜋𝑧�̅�

ℎ𝑝
)𝑑𝑧𝑗    (𝑗 = 𝑡𝑝, 𝑏𝑝) 

−
ℎ𝑐
2
< 𝑧𝑐 <

ℎ𝑐
2

 

ℎ𝑐
2
< 𝑧𝑡𝑔 <

ℎ𝑐
2
+ ℎ𝑔 

−
ℎ𝑐
2
− ℎ𝑔 < 𝑧𝑏𝑔 < −

ℎ𝑐
2

 

ℎ𝑐
2
+ ℎ𝑔 < 𝑧𝑡𝑝 <

ℎ𝑐
2
+ ℎ𝑔 + ℎ𝑝 

−
ℎ𝑐
2
− ℎ𝑔 − ℎ𝑝 < 𝑧𝑏𝑝 < −

ℎ𝑐
2
− ℎ𝑔 

 
 
Appendix B 
 

𝐾11 = 𝐴11(𝜁𝑛
2 + 𝜚𝜁𝑛

4) 

𝐾12 = 0 

𝐾13=𝐵11(𝜁𝑛
2 + 𝜚𝜁𝑛

4) 

𝐾14 =−𝐺𝑒(𝜁𝑛
 + 𝜚𝜁𝑛

3) 

𝐾15 =−𝐺𝑚(𝜁𝑛
 + 𝜚𝜁𝑛

3) 

𝐾21 = 0 

𝐾22 = −(𝑁
𝑇 + 𝑁𝐸 + 𝑁𝑀)(𝜁𝑛

 + 𝜖𝜁𝑛
4) + 𝐾1 (1

 + 𝜖𝜁𝑛
2) 

+𝐾2 (𝜁𝑛
2 + 𝜖𝜁𝑛

4) + 𝐴22 (𝜁𝑛
2 + 𝜖𝜁𝑛

4) 

𝐾23 = 𝐴22 (𝜁𝑛
 + 𝜚𝜁𝑛

3) 

𝐾24 = −𝑂𝑒 (𝜁𝑛
2 + 𝜚𝜁𝑛

4) 

𝐾25 = −𝑂𝑚  (𝜁𝑛
2 + 𝜚𝜁𝑛

4) 

𝐾31 = 𝐵11 (𝜁𝑛
4 + 𝜚𝜁𝑛

4) 

𝐾32 = 𝐴22 (𝜁𝑛
 + 𝜚𝜁𝑛

3) 
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𝐾33 = 𝑃11 (𝜁𝑛
4 + 𝜚𝜁𝑛

4) + 𝐴22 (1 + 𝜚𝜁𝑛
2) 

𝐾34 = −(𝑂𝑒 + 𝑆𝑒)(𝜁𝑛
 + 𝜚𝜁𝑛

3) 

𝐾35 = −(𝑂𝑚 + 𝑆𝑚)(𝜁𝑛
 + 𝜚𝜁𝑛

3) 

𝐾41 = −𝑇𝑧 (𝜁𝑛
 + 𝜚𝜁𝑛

3) 

𝐾42 = −𝑂𝑒 (𝜁𝑛
2 + 𝜚𝜁𝑛

4) 

𝐾43 = −(𝑂𝑒 + �̅�𝑧 )(𝜁𝑛
 + 𝜚𝜁𝑛

3) 

𝐾44 = −𝑋𝑚 (𝜁𝑛
2 + 𝜚𝜁𝑛

4) 

𝐾45 = −𝑋𝑒  (𝜁𝑛
2 + 𝜚𝜁𝑛

4) − 𝑌𝑒(1 + 𝜚𝜁𝑛
2 ) 

𝐾51 = −𝑅𝑧 (𝜁𝑛
  + 𝜚𝜁𝑛

3) 

𝐾52 = −𝑂𝑚 (𝜁𝑛
2  + 𝜚𝜁𝑛

4) 

𝐾53 = −(𝑂𝑚+�̅�𝑧) (𝜁𝑛
   + 𝜚𝜁𝑛

3) 

𝐾54 = −𝑋𝑒  (𝜁𝑛
2 + 𝜚𝜁𝑛

4) − 𝑌𝑒(1 + 𝜚𝜁𝑛
2 ) 

𝐾55 = −�̅�𝑚 (𝜁𝑛
2 + 𝜚𝜁𝑛

4) − �̅�𝑚(1 + 𝜚𝜁𝑛
2 ) 

 
 
Appendix C 
 

𝑎1 = (
𝐾54

𝐾45𝐾54 − 𝐾44𝐾55
) (
𝐾44
𝐾54

𝐾51 − 𝐾41) 

𝑎2 = (
𝐾54

𝐾45𝐾54 − 𝐾44𝐾55
) (
𝐾44
𝐾54

𝐾52 − 𝐾42) 

𝑎3 = (
𝐾54

𝐾45𝐾54 − 𝐾44𝐾55
) (
𝐾44
𝐾54

𝐾53 − 𝐾43) 

𝑎4 = −
𝐾55𝑎1 + 𝐾51

𝐾54
 

𝑎5 = −
𝐾55𝑎2 + 𝐾52

𝐾54
 

𝑎6 = −
𝐾55𝑎3 + 𝐾53

𝐾54
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