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Abstract. This paper investigates the size dependent effect on the vibration analysis of a porous nanocomposite viscoelastic
plate reinforced by functionally graded-single walled carbon nanotubes (FG-SWCNTSs) by considering nonlocal strain gradient
theory. Therefore, using energy method and Hamilton’s principle, the equations of motion are derived. In this article, the effects
of nonlocal parameter, aspect ratio, strain gradient parameter, volume fraction of carbon nanotubes (CNTs), damping coefficient,
porosity coefficient, and temperature change on the natural frequency are perused. The innovation of this paper is to compare the
effectiveness of each mentioned parameters individually on the free vibrations of this plate and to represent the appropriate value
for each parameter to achieve an ideal nanocomposite plate that minimizes vibration. The results are verified with those
referenced in the paper. The results illustrate that the effect of damping coefficient on the increase of natural frequency is
significantly higher than the other parameters effect, and the effects of the strain gradient parameter and nonlocal parameter on
the natural frequency increase are less than damping coefficient effect, respectively. Furthermore, the results indicate that the
natural frequency decreases with a rise in the nonlocal parameter, aspect ratio and temperature change. Also, the natural
frequency increases with a rise in the strain gradient parameter and CNTs volume fraction. This study can be used for optimizing
the industrial and medical designs, such as automotive industry, acrospace engineering and water purification system, by
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considering ideal properties for the nanocomposite plate.

Keywords:
Hamilton’s principle; viscoelasticity

vibration analysis; porous materials; nanocomposite; carbon nanotube; nonlocal strain gradient theory;

1. Introduction

Nanoscience has extensive applications in different
fields of nanotechnology. For instance, it can be used in
these branches: cements in buildings, water purification,
new fuels for energy production, materials with new
properties for aeronautics and etcetera. Carbon nanotubes
(CNTs) are recognized as one of the most important
constituents of composite structures in nanotechnology. For
further investigation, CNTs are assumed as very strong and
stiff from the point of view of tensile strength and elastic
modulus. Due to these special properties, CNTs were used
widely in order to strengthen the composites. In addition to
CNTs, porous materials also improve the properties of
composites. Nowadays, the use of lightweight materials
especially porous materials is taken into consideration
owing to be cost-effectively, structure weight reduction,
recycling potential and special heat transfer potential.

Various theories can be used to study the properties and
behavior of porous and CNTs-reinforced composites,
including nonlocal strain gradient theory. Among the
researches using nonlocal strain gradient theory, these
studies can be noted: Malikan et al. (2018a) investigated the
damped forced vibration analysis of single-walled carbon
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nanotubes (SWCNTS) resting on viscoelastic foundation in
thermal environment using nonlocal strain gradient theory.
The equilibrium equations are formulated by the new shear
deformation beam theory which is accompanied with
higher-order nonlocal strain gradient theory. Arefi et al.
(2019) discussed bending analysis of a sandwich porous
nanoplate in order to study the size dependent effect via
nonlocal strain gradient theory. The results represented that
non-dimensional displacement of nanoplate increases with
the increase of nonlocal parameter. She et al. (2018b)
through nonlocal strain gradient theory, proposed nonlinear
bending and vibration analysis of functionally graded (FG)
porous tubes. Malikan (2020) using strain gradient elasticity
theory, predicted theoretically static stability response of a
curved carbon nanotube under an elastoplastic behavior. He
illustrated that the variation of nonlocal and strain gradient
parameters lead to softening and hardening into both
elasticity —and  plasticity  regions.  Rajabi  and
Mohammadimehr (2019) considered bending analysis of a
micro sandwich skew plate using extended Kantorovich
method based on Eshelby-Mori-Tanaka approach. Gao et
al. (2019) studied the nonlinear vibration of beams
subjected to different types of functionally graded (FG)
distribution using nonlocal strain gradient theory. Ebrahimi
et al. (2019b) investigated wave propagation-thermal
characteristics of a size-dependent graphene nanoplatelet-
reinforced composite (GNPRC) porous cylindrical
nanoshell using nonlocal strain gradient theory. They
analyzed the effects of small scale. Moreover, in their

ISSN: 1598-8198 (Print), 1598-818X (Online)


https://www-scopus-com.ezproxy.utp.edu.co/authid/detail.uri?origin=AuthorProfile&authorId=55322283200&zone=
https://www-scopus-com.ezproxy.utp.edu.co/authid/detail.uri?origin=AuthorProfile&authorId=35783228600&zone=
https://www-scopus-com.ezproxy.utp.edu.co/record/display.uri?eid=2-s2.0-85066332998&origin=resultslist&sort=plf-f&src=s&sid=15564606067d5a5187021921b36fc4bc&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2835783228600%29&relpos=27&citeCnt=14&searchTerm=
https://www-scopus-com.ezproxy.utp.edu.co/record/display.uri?eid=2-s2.0-85066332998&origin=resultslist&sort=plf-f&src=s&sid=15564606067d5a5187021921b36fc4bc&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2835783228600%29&relpos=27&citeCnt=14&searchTerm=
https://www-scopus-com.ezproxy.utp.edu.co/record/display.uri?eid=2-s2.0-85066332998&origin=resultslist&sort=plf-f&src=s&sid=15564606067d5a5187021921b36fc4bc&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2835783228600%29&relpos=27&citeCnt=14&searchTerm=

32 Pegah Khazaei and Mehdi Mohammadimehr

research, Hamilton’s principle is used to evolve the
governing equations. Also (Lu et al. 2019, Ebrahimi and
Barati 2018, Ebrahimi and Dabbagh 2017) have done
research based on nonlocal strain gradient theory.

Many studies as the present article through Hamilton’s
principle and energy method have obtained equations of
motion in order to peruse vibration, bending and buckling
analysis of nanocomposites with various properties. Thai
and Choi (2013) inquired the effect of the strain gradient
parameter on the bending, buckling, and vibration responses
of FG Kirchhoff and Mindlin plates using Hamilton’s
principle based on a modified couple stress theory. Also
Mohammadimehr et al. (2018a) investigated the free
vibration and buckling analyses of double-bonded micro
composite sandwich reinforced by CNTs and boron nitride
nanotubes (BNNTS) using most general strain gradient
theory (MGSGT), sinusoidal shear deformation theory
(SSDT) and also by employing Hamilton’s principle and
energy method in order to obtain the equations of motion,.
Moreover, (Jafarian Arani and Kolahchi 2016,
Mohammadimehr et al. 2016c, Ebrahimi and Dabbagh
2019, Bousahla et al. 2020, Moradi Dastjerdi et al. 2017)
have gained equations of motion via Hamilton’s principle
and energy method. AkhavanAlavi et al. (2019) presented
active control of micro Reddy beam integrated with
functionally graded nanocomposite sensor and actuator
based on linear quadratic regulator (LQR) method.

Among vibration analysis in view of various types of
plate  theories, these articles are noteworthy:
Mohammadimehr et al. (2016b) inquired bending, buckling
and vibration analysis of a microcomposite plate reinforced
by FG-SWCNT via modified strain gradient theory
(MSGT), third-order shear deformation theory (TSDT).
Furthermore, Ebrahimi and Shafiei (2017) using Reddy's
higher-order shear deformation plate theory, studied the
small scale effect on the vibration behavior of orthotropic
single layered graphene sheets. The results revealed that the
nonlocal effect increases as the size of the graphene sheet is
decreased. It is also found that the frequency ratios decrease
with an increase in vibration modes. Also, Zenkour and
Alghanmi (2019) via four-unknown shear deformation
theory, brought up the stress analysis of a FG plate
integrated  with  piezoelectric  faces.  Furthermore,
Mohammadimehr et al. (2015) proposed free vibration of
viscoelastic double-bonded polymeric nanocomposite plates
reinforced by FG-SWCNTSs using MSGT, sinusoidal shear
deformation theory and meshless method. Also Ebrahimi
and Farazmandnia (2017) for free vibration analysis of
functionally graded carbon nanotube-reinforced composite
(FG-CNTRC) sandwich, proposed a higher-order shear
deformation beam theory (HSBT). They derived the
governing equations and boundary conditions by using
Hamilton's principle and the Navier solution procedure is
used to achieve the natural frequencies of the sandwich
beam. Numerical results indicated that volume fraction of
CNT, has considerable effects on the natural frequencies. It
is found that the natural frequencies of the sandwich beam
decrease with an increase in temperature change and vice
versa for the volume fraction of CNT. In addition, (Mousavi
et al. 2019, Ghorbanpour-Arani and Jalaei 2017, Rezaei et

al. 2017, Van Do et al. 2017, Mohammadimehr and
Alimirzaei 2016) can be pointed out as investigations which
have used different theories for vibration, bending and
buckling analysis.

To illustrate the effects of nonlocal and strain gradient
parameters and size effects. Ebrahimi et al. (2019a) using
nonlocal elasticity theory and modified couple stress theory,
captured the size effects for analyzing the static stability
and natural frequencies of FG nanobeams. Their results
demonstrated that effect of nonlocal parameter on
frequencies of nonlocal couple stress FG nanobeams
depends on the value of slenderness ratio. Malikan and
Eremeyev (2020b) by considering the surface, nonlocal and
small size influences, perused the post-critical stability
response of a truncated conical carbon nanotube by taking
the nonlinear Winkler elastic substrate. Their results
demonstrated that clamped-simply-supported (CS) and
simply supported (SS) boundary conditions are influenced
by the surface effect more than other ones. Thai and Kim
(2013) perused the effects of small scale on the responses of
microplates. Their results demonstrated that the inclusion of
small scale effects results in an increase in plate stiffness
and it causes a reduction in deflection and an increase in
frequency. Ghorbanpour Arani et al. (2016) illustrated
surface stress and agglomeration effects on nonlocal biaxial
buckling polymeric nanocomposite plate reinforced by CNT
using various approaches. Further, the effects of boundary
conditions, small scale and aspect ratio on the critical
buckling load of SWCNTs were analyzed by Ansari et al.
(2015). Mohammadimehr et al. (2017a, b) considered
nonlinear vibration analysis of FG-CNTRC sandwich
Timoshenko beam based on modified couple stress theory
and dynamic stability of modified strain gradient theory
sinusoidal viscoelastic piezoelectric polymeric functionally
graded single-walled carbon nanotubes reinforced
nanocomposite plate, respectively. Akbarzadeh Khorshidi
(2018) presented the material length scale parameter used in
couple stress theory and proved that this parameter cannot
be a material constant and its value depends on the different
physical and natural conditions. Kim et al. (2019) have also
done research in this case. They presented numerical results
of bending, free vibration, and buckling of a FG porous
microplates to determine the effects of microstructure-
dependent size effects using the modified couple stress
theory. They illustrated that the strain gradient parameter
can capture microstructure size effects (stiffening effects).

In case of viscoelasticity, Li et al. (2016) using nonlocal
strain gradient theory, perused the wave propagation in
viscoelastic SWCNTs under magnetic field. It can be
comprehended from results that the size-dependent effects
on the phase velocity is significant at high wave numbers
however, it can be ignored at low wave numbers. Also the
damping ratio considering surface effect is larger than that
without considering surface effect. Furthermore, Malikan
and Eremeyev (2020a) incorporated viscoelasticity into a
piezoelectric—flexoelectric ~ Euler—Bernoulli  nanobeam,
while Kelvin-Voigt linear viscoelastic coupling was applied
to the dynamic analysis. They measured the natural
frequencies in nanoscale by using the nonlocal strain
gradient elasticity model. The results reveal that by
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increasing the inner viscoelastic values, the role of
flexoelectricity becomes greater and also by increasing the
values of strain gradient parameter, the inner viscoelastic
impact becomes greater. Mohammadimehr et al. (2016d)
depicted size-dependent effect on biaxial and shear
nonlinear buckling analysis of nonlocal isotropic and
orthotropic micro-plate based on surface stress and
modified couple stress theories using differential quadrature
method. Also Malikan et al. (2019) using modified
Timoshenko’s beam theory and a nonlocal strain gradient
model, investigated vibrational behavior of a carbon
nanotube in the presence of internal and external
viscoelasticity. They demonstrated that the external
damping increases the damping rate of the system, while the
internal damping reduces the amplitudes of the motion.

Many scholars have done research on porous materials
as Rezaei and Saidi (2015). They inquired the free vibration
analysis for thick rectangular porous plate. The results
revealed that the natural frequency of fluid free plates
decreases as the plate’s porosity increases. Malikan et al.
(2018c) investigated the buckling of rectangular
functionally graded porous nanoplates based on three-
dimensional elasticity. Their results illustrated that even
porosity makes the plate softer and results of uneven
porosity are so close to the prefect material which leads to
this considerable conclusion that porosity as an uneven
distribution cannot be an important factor in static stability
analyses. Also Yang et al. (2018) perused the buckling and
free vibration behaviors of FG porous nanocomposite plates
reinforced with graphene platelets (GPLs). They indicated
that by increasing the porosity coefficient, the uniaxial,
biaxial and shear buckling loads and also the fundamental
natural frequencies of the proposed plates, decrease. Dinh
Duc et al. (2018) by considering two types of porosity
including evenly distributed porosities (Porosity-1) and
unevenly distributed porosities (Porosity-11) to study the
nonlinear dynamic response of porous functionally graded
material (FGM) plates on the elastic foundation based on
the first order shear deformation theory. Their results
indicated that the value of the natural frequency of FGM
plates in the case Porosity-I is lower than that in Porosity-II
phase. Moreover, Ebrahimi and Barati (2017) presented the
size-dependent and porosity-dependent vibrational behavior
of magneto-electro-elastic functionally graded (MEE-FG)
nanoscale beams. They considered Eringen’s nonlocal
elasticity theory to capture the small size effects. Their
results illustrated that the nonlocal parameter yields in
reduction in both rigidity of the beam and natural
frequencies. Besides, (Amir et al. 2019, She et al. 20183,
Addou et al. 2019, Kaddari et al. 2020) have carried out
some investigations into porous materials.

Among the studies in the field of various FG
distributions, Mohammadimehr et al. (2016c) revealed that
the FG-X and FG-O patterns of SWCNTSs cause the highest
and lowest dimensionless buckling loads and vice versa for
deflection. In addition, Ebrahimi et al. (2019c) inferred that
reinforcing the plate with X-type distribution leads to a
higher range of the dimensionless natural frequencies
followed by U, V and O types in thermal vibration analysis
of embedded graphene oxide powder reinforced
nanocomposite plates.

Furthermore, to study the piezoelectric properties of
composites, these probes can be taken into account:
Ghorbanpour Arani et al. (2016) by assuming four different
types of FG distribution patterns of SWCNTs
reinforcements, investigated the nonlocal wave propagation
analysis of embedded nanocomposite  polymeric
piezoelectric micro plates reinforced by SWCNTSs. Their
investigation can be used for optimum design of smart
composite plates as micro-electro-magneto-mechanical
sensors.  Also Arefi et al. (2018) proposed the free
vibration analysis of a piezoelectric curved sandwich
nanobeam with FG carbon nanotube reinforcement
composites face-sheets. Moreover, Zhang et al. (2018)
proposed semi-analytical solutions for vibration analysis of
nonlocal piezoelectric  Kirchhoff plates resting on
viscoelastic foundation. Their results indicated that by
raising the external electric voltage, the natural frequencies
of plates with various boundary conditions decrease and the
effect of external electric voltage becomes significant as the
nonlocal parameter is applied. Further, (Gholami and
Ansari 2017, Tanzadeh and Amoushahi 2019) have done
researches in case of piezoelectric nanocomposites.

According to the aforesaid researches, vibration analysis
of the nanocomposite plate have been developed and
investigated by some researchers, but no literature has been
reported for vibration analysis of porous nanocomposite
viscoelastic plate reinforced by FG-SWCNTs based on a
nonlocal strain gradient theory. On the other hands, despite
the fact that many researchers have been done in case of
nonlocal strain gradient theory and vibration analysis of the
nanocomposite plate which composed by CNTs as above-
mentioned studies, what distinguishes this paper from other
articles is that by studying the effect of different properties
on the vibrations of this system, one can achieve a set of
ideal properties that dramatically reduce the vibrations of
the system which is very significant in optimizing the
design. This paper considers simultaneously diverse
properties for FG-SWCNTs-reinforced nanocomposite plate
such as: porosity, piezoelectric and viscoelastic features and
with the help of nonlocal strain gradient theory and energy
method that is novelty of this research. Also, vibration
analysis is performed on a nanocomposite plate with the
specified properties. For this purpose, the effects of
nonlocal parameter, aspect ratio, strain gradient parameter,
volume fraction of CNTs, damping coefficient, porosity
coefficient, temperature change and various FG-SWCNTSs
distribution patterns on the natural frequency have been
investigated.

2. Geometry of porous nanocomposite viscoelastic
plate reinforced by FG-SWCNTs

Consider a porous nanocomposite viscoelastic and
piezoelectric rectangular plate of length a, width b and total
thickness h and composed of FG-SWCNTSs as shown in Fig.
1.

Fig. 2 shows the various distribution patterns (uniform
distribution (UD), FG-X, FG-O and FG-V) of the FG-
SWCNTSs along the thickness direction. Eq. (1) illustrates
the volume fraction Venrof various SWCNTSs distributions
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Fig. 1 A schematic view of porous nanocomposite viscoelastic and piezoelectric plate reinforced by carbon nanotubes
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Fig. 2 (a) A schematic view of UD CNTSs distribution. (b) A schematic view of FG-X CNTs distribution. (c) A schematic
view of FG-O CNTs distribution. (c) A schematic view of FG-V CNTs distribution

as follows (Mohammadimehr et al. 2016b):

*

Vi (UD CNTRC),

(1+ 2Tz)vm (FG -V CNTRC),

Ve (2) = 2z]\ . 1
o 2[1—|h—|}/cm (FG -0 CNTRC), @
|2z] .
V,=25-Vg,  (FG-X CNTRC),
where

V4 * — WCNT ,
CNT Wy +(pCNT /pm)_(pCNT /pm )WCNT )

in which p" and p” are the densities of SWCNTs and
Polyvinylidene fluoride (PVDF) nanoplate matrix,
respectively and Wenr is the mass fraction of nanotube.
Vent(z) and v, are the various distributions of CNT

including UD, FG-V, FG-O, FG-X and volume fraction of
CNT, respectively.

3. Material properties
3.1 The extended rule of mixture approach

In order to predict the mechanical-moisture-thermal
properties of nanocomposite plate reinforced by SWCNTs,
the extended rule of mixture (ERM) approach has been
used. According to this approach, mentioned properties are
acquired from the following equations (Mohammadimehr et
al. 2016b)

Eu=mVenr ElclNT +V,E,,

M _Vewr Vo
E. En E, 3)
s Voo Vo

G, G 'G,’

m

where ESNT, ESVT and GS'T present Young’s modulus

in various directions and shear modulus of SWCNTSs,
respectively and En, and Gn are the Young’s modulus and
shear modulus related to PVDF matrix, respectively. #;
(i=1,2,3) is CNT efficiency parameter which specified by
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Table 1 CNT efficiency parameters (Mohammadimehr et al.
2018)

*

Vet 0.11 0.14 0.17

m 0.149 0.150 0.149

72 0.934 0.941 1.381

73 0.934 0.941 1.381
Table 2 Mechanical properties of SWCNTs with

venr=0.175 (Mohammadimehr et al. 2018)
Temperature (To)(x) 300 400 500

E" (TPa) 5.6466 5.5308 5.4744
ESN (TPa) 7.0800 6.9348 6.8641
G5 (TPa) 1.9445 1.9643 1.9644

Table 3 Properties of SWCNTs and PVDF nanoplate matrix
(Mohammadimehr et al. 2018, (Mohammadimehr et al.
2016¢, Ghorbanpour Arani et al. 2016)

PVDF nanoplate matrix SWCNTSs
v, =0.18
vV, =0.89
B kg ) Uy =0.175
=1780
Pom ( Z8 Ve =0.11

Oonce =14oo(k%3)

{Em =(3.51-0.0047T ) (GPa)

T =T,+AT (K)
G, ——En __ (GPa)
2(1+v,)

molecular dynamic (MD) simulation. In fact, CNT
efficiency parameters are the transformation forces between
carbon nanotubes and matrix. Vi is volume fractions of
PVDF nanoplate matrix. The relation between volume
fractions of CNT and PVDF nanoplate matrix is defined by
Alibeigloo (2013)

Vour V=1 4)

Also, the Poisson’s ratio along the thickness direction
and density of the composite plate are given by the
following equations (Ghorbanpour Arani et al. 2016)
+V, 0", (5)

_\J* ,CNT
U, —VCNTU

PN o 7V 0", (6)

where v™ and v“M are Poisson’s ratio of PVDF nanoplate
matrix and SWCNTSs, respectively.

The values of properties of SWCNTs and PVDF
nanoplate matrix and CNT efficiency parameters are
depicted in Tables 1-3.

3.2 Density and elasticity modulus of FG-SWCNTs-
reinforced porous nanocomposite plate

The distribution of porosity along the thickness of plate
in the porous nanocomposites is changeable therefore,
density and elasticity modulus of FG-SWCNTs-reinforced
porous nanocomposite plate are functions of the Z and they

are obtained by following equations (Mohammadimehr et
al. 2018, Mohammadimehr et al. 2016b, Rezaei and Saidi
2015)

Vs h
E,(z)=E, (1-ecos(%(z+5)n,

T h
E,(z)=E, [LECOS[E(HE)D’

€, (1)=C, [1-ecos(%(z+%)]]. ")

pz)= p(l-e’cos(% (z+%)D,
g'=1-l-e,

in which, e is porosity coefficient and the values of E11, Ez,
G12 and p are embedded using Egs. (3), (6).

4. Problem formulation

For the sake of obtaining the governing motion
equations from Hamilton’s principle, energy method is
used. For this purpose, displacement fields, strain-
displacement equations of classical plate theory (CPT) and
stress-strain equations of porous nanocomposite viscoelastic
and piezoelectric plate composed of FG-SWCNTs are
considered.

4.1 Nonlocal strain gradient theory for porous
nanocomposite viscoelastic and piezoelectric plate
reinforced by FG-SWCNTs

In this study, the nonlocal strain gradient theory is used
because the structural dimensions are values between
micrometer and nanometer. The viscoelastic property of
the nanocomposite plate is also considered for vibration
analysis of this system. The constitutive equations of FG-
SWCNTSs-reinforced porous nanocomposite viscoelastic
and piezoelectric plate are as follows (Lim et al. 2015,
Malikan et al. 2020, Malikan and Nguyen 2018, Malikan et
al. 2018b)

(17(e0a)2 VZ)O'XX :(17/;zv2)[1+ 7, g](Qngﬂ +Qué,, )—€xE,
(1—(e0a)2 vz)gw =(1- gZVZ)(M—Td gj(Qngxx +Qy6,, )—€xE,, (8)
(1—(e0a)2 Vz)rxy :(1—,€2V2)(1+ 7 g]Q%yxy,

where ¢, epa and 7, are strain gradient parameter, nonlocal
parameter and damping coefficient, respectively. (o, o),
Toy, (&xvr &), 7 Ez @nd ejj are normal stresses, shear stress,
normal strains, shear strain, electric field in z direction and
piezoelectric coefficient, respectively. Also, Qjis elasticity
parameters that is presented in Eq. (14).

Also for the piezoelectric property of this plate, the
electric displacement-electric field relation is considered as
follows (Mohammadimehr et al. 2016a, Ghorbanpour Arani
et al. 2016)
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(1-(ea) v*)D, =(1-£V*) &iE,,
(1-(e) V*)D, =(1-1*V*) &,E, )
(1 (e0a)’ VZ)D = (1= 7V) @ust +Ens8y +EEL ),

in which Dj, Ei and ¢&; are electric displacement, electric
field, and dielectric coefficient, respectively. Due to
Gholami and Ansari (2017), electric-field equations are as
follows

E=-Vo,
d):—cos(/f'z)gﬁE (X,Y)+272Var 0
RN
= cos(B'z)—=,
oD o¢,
E, =——=cos(fz)—=,
oy oy (1)
oD ). , 2V
E, ——E——ﬂ sin(f'z )¢ — h
B'="A

where @ and Ve are electric potential and external electric
voltage, respectively.
Egs. (10), (11) can be expressed as follows

O-X X

(1-(ea)' v*){ o, :(1—£2V2)(1+Td gj

Qu Qn 0 ||&,
Q, Qp O :l Eyy (12)
0 0 Qg Yay
es | |Ey |
- 0 ey |NE,
0 E

13

0 0 0]le,| [&, 0 07[E, (13
(0 0 O, ¢+ 0 & 0}E,D,

€ €3 0 Vxy 0 0 533 EZ

E (z v,E. (z
Q@)=L g ) - LB @)
1-v,0, 1-v,0,

E. ) (14)
QZZ(Z): ! 1 QGG(Z):Exy(Z)!

1_U12’)21

in which es1, e, &1, &2 and &s values are listed in Table 4
(Ghorbanpour Arani et al. 2016). Also, Qj is elasticity
parameters and Ex(z), Ey(z) and Exy(z) are elasticity modulus

of FG-SWCNTs-reinforced porous nanocomposite plate
(Eq. (7)). Moreover, vi> is Poisson’s ratio which was
defined in Eq. (5).

4.2 displacement fields and strain-displacement
relations

The displacement fields for classical plate theory with
Cartesian coordinates in X, y and z directions which can be
represented by ui(Xy,z,t), ux(x,y,zt) and us(x,y,zt)
respectively, can be written as follows (Thai and Choi
2013)

ow (x,y,t)
OX ’
ow (x,y,t)

u,(x,y,z,t)=vy(x,y,t)-z ————=, 15
(x,y,z,1) =v,(x,y,t) Y (15)

U (X,y,z,t)=uy(x,y,t) -z

us(x,y,z,t)=w(x,y,t),

in which uo(x,y,t), vo(x,y,t) and w(x,y,t) are the axial and
transverse displacements of the mid-plane along the
coordinate directions; while ui(x,y,z,t), u2(x,y,z,t) and
us(x,y,z,t) denote the axial and transverse displacements
along the whole domain.

According to Eq. (15) the strain-displacement relations
of the CPT are as follows (Thai and Choi 2013)

ou, _ou, _ ow

gxx L
OX  OX ox?
du, _ov, oW
Syy —Z 2
ER oy
0up QU Uy Vo o ow

yxy:_—i__: A~ AL
oy  ox oy o X oy

(16)

4.3 Governing equations of motion

In this paper, energy method and Hamilton’s principle
are used to obtain governing equations of motion. In the
energy method, the total potential energy [] is obtained
from the strain energy U, kinetic energy K and energy due
to the external loads Q and is defined as follows
(Mohammadimehr et al. 2016a, Ghorbanpour Arani et al.
2016)

[m=K -U +Q), a7
U :%j (O—xxgxx +O—yy€yy +Txy7xy _DxEx _DyEy _DZEZ)dv’
l 22 22 12
K =Efvp(z)(ulw2+u3)dv, (18)
lba
Q:—E-HFwdxdy,
ow
F=N, Gz*N yO(a 2)+q(x y.t), (19)

where q(x,y,t) is transverse load per length and Ny, Ny, are
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biaxial forces. Also, U, K, and Q are the strain energy,
kinetic energy and energy due to the external loads,
respectively. Rectangular plates are usually exposed to
axial forces, so the tensions caused by this force and its
effect on the frequency should be taken into account.

Considering Hamilton’s principle Eqg. (20) (Thai and
Choi 2013), the Eq. (18) transforms into Eq. (21)

5[ (K -U —Q)dt =[ (5K —(8U +a0)it =0, (20)

4
2

6U = f f/l(axxﬁsxx + 0y 88y + Ty Vxy
AYv—=
2

—D,8E, — D,SE, — D,0E,)dzdA,
A
2 0 0 0 5]
o= [ P0G ) 3 6 + e ) 3 Gu) - 21)

d d
+ a (u3) a (5u3))dsz,

b ra
60 = —f f Féwdxdy.
0 Yo

Given the following assumptions (stress resultant), the
equations of motion are obtained.

N X GXX M X O-xx
N, =J o, @z, <M, :j o, (2dz,
N X TX M X z-)(
Yy y_ y Yy (22)
D« D,
By :I Dy sz ’
D. D,
| 0 :Ip(Z)Z Wz . (23)

By inserting Egs. (8), (9), (11), (22), (23) in the
principle of Hamilton’s Eq. (20) and finally, the four
equations of motion are obtained by separating the
coefficients for each independent variable and zeroing the
du, ov, ow and ¢ coefficients.

2
:Il 63\N2_|08U20+6NX+5NW :0’ (24)
ox ot ot oX oy

ou

g 0w e0v, N, 0N,

5\/ 2 2
oy ot a’ oy ox

=0, (25)

P 0w L 2w " 3uq
Wil axzaer T Byzacr | oxat?
A , %W

— Y (U
ayatz | otz

9*M, 9*M, _9°M,, 9%w
- +2 N, <ﬁ
2

dx? + dy? dxdy +
a°w
L +Ny°(W) +q(x,y,t) =0,

(26)

54, :an +aDy +aDz
oX oy oz

-0, @7)

In order to complete the governing equations of motion,
first, by substituting strain-displacement Eq. (16) and
electric-field Eq. (11) in the stress-strain Eq. (8), stress-
displacement relations are obtained (see Eq. (28)).

Also by inserting strain-displacement Eqg. (16) and
electric-field Eq. (11) into Eg. (9), the electric
displacement-electric field equation is completed (see Eg.

(29)).
o (1— (eoa)zvz)axx = (1 - [272) (1 + %)
E, ou 22w\ VE,  [dv a*w
@ 0 =
(o e )
o 2,
—es (—/3 sin(B'z) ¢s — 7)
0(1—(8 a)sz)a - 1_€2|72
a\ [ VE a0 azyy ( E 3 0? (28)
1+7 _) ﬁﬂ—z ad + 2 ﬂ_z >
( 29t)\1—v2\ ax ox%)  1-v?\ 0y dy*
) ) 2V,
—es; <—3 sin(B z) pg — 7E>
o (1 - (eg@)?7 D)1y = (1 - £72)

(1+ O)E 6u0+6vo 5 0%w
fage) "o\ 5y T ax ~ ““axay)’

. 0¢g
(1= (e@)*7)D, = (1= E72)z, cos(6) % )

(1= (e,@)*V?)D, = (1 — £272)&,, (cos(/;'z) aai;f)
ou, 62w>

(1= (ep)*V®)D, = (1 — £*7?)(es, <ﬁ —757

(6170 62w>
+e3,

(29)

oy "oy
, , 2V,
+&33 (_ﬂ sin(B z) pp — 7E>)

Now by using following assumptions (Eg. (30)) into
Egs. (28), (29) and replacing them into Eq. (22), stress
resultants are obtained which are given in Appendix A

AV =[E, 29,
()
(i) — )

A, _IEV(z)Z dz,
(i) — ()
Ay _IEXy(Z)z dz,
_ : (30)

B® :J.z Oz,
C®=[zWsin(p2 )dz,
D® =[z"cos(B7)dz, i =012,
Finally, the governing equations of motion are
completed by substituting the equations of Appendix A in
Egs. (24)-(27).

5. Analytical solutions

Vibration solutions for a simply supported rectangular
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FG-SWCNTs-reinforced plate under a transverse load
q(x.y,t) and superficial (axial) forces: Nx;=yiNer, Nyo=p2Ner
and Ny,=0, have been solved through Navier's approach.

This solution satisfies the equations of mation and boundary
conditions by the following relations (Thai and Choi 2013)

u(x,y,t)=>>U,_ cosaxsinpBy e'“,

m=1n=1
v(x,y,t)=> >V,  sinaxcospy e,

(312)
w(x,y,t)=>">W_ sinaxsin gy e'“,

m=1ln=1

b (x,y,t)ziid)mn sinax sin By e'*,

m=1ln=1

where o is frequency, i =v-1, ¢ =m 2=, ﬂ:mg and
a
{Umn, Vinn, Win, @mn}are coefficients.
According to Mohammadimehr et al. (2018b) for
closed-circuit boundary conditions of piezoelectric
materials, we have

fe (x =0,y 1) =0,

g (x =a,y 1) =0,

¢ (x,y =0t)=0,

# (x,y =b,t)=0.

Thus, based on the closed-circuit boundary conditions,

the relation (31a) is suggested that is satisfied the electric
boundary conditions.

Substitute Eq. (31a) into the equations of motion, the

analytical solutions of the CPT can be acquired from the
following equations

(31b)

x
a| [ [ I
x| [-IMT[K] =[M][cT||Z[
o [7[-m K] (w2
at
kll klZ k13 k14
K — k21 k22 k23 k24 ’
k31 k32 k33 k34
I(41 k42 k43 k44
Cll ClZ C13 Cl4
C — CZl CZZ CZS C24 , (33)
CSl C32 C33 C34
C41 C42 c43 C44
mll m12 m13 m14
M — m21 m22 m23 m24 ,
m31 m32 m33 m34
m m m m

41

N
S

43

where K is the stiffness matrix, C is the damping matrix,

Table 4 Piezoelectric properties of PVDF (Ghorbanpour
Arani et al. 2016)

ea1 (C/m?)  es2 (C/m?)
-0.13 -0.145

& (F/m)
1.1068e-8

&2 (FIm)
1.1067e-8

&s3 (F/m)
1.1067e-8

Table 5 Comparison of nondimensional natural frequency
of a homogenous simply supported square plate with
various values of aspect ratio

7 a’/h Thai and Choi 2013 Present work Diff (%)

Fundamenta| 5 5.9671 5.9671 0
natural 10 6.1103 6.1103 0
frequency 20 6.1477 6.1477 0
s d | 5 14.2717 14.2717 0
econd natural 15.0936 15.0036 0

frequency
15.3223 15.3223 0

and M is the mass matrix. The entries of these matrices are
shown in Appendix B.

6. Numerical results and discussion

Table 4 shows the piezoelectric properties of PVDF
presented by Ghorbanpour Arani et al. (2016). Before
investigating the numerical results of the vibration analysis,
results validation is necessary. First of all the porosity
coefficient is assumed zero (homogeneous plate e=0) due to
unavailability of the FG-SWCNTSs-reinforced microplate
results in this article. Tabulated results are summarized in
Table 5 which illustrates the comparison of non-
dimensional natural frequencies with those reported by Thai
and Choi 2013 for a homogenous simply supported square
plate. This comparison indicates that present work is
consistent with the results of Thai and Choi (2013) with
following properties (Thai and Choi 2013, Rezaei and Saidi

2015)
En=Ey| 1 T L
@ = Eo| 1-ecos Z(Z-'-E) ,
~ " - 4 (34)
pey = po| 1-€cos( =@+ ) ).
e=1—-V1—e¢,
E, = 14.4GPa, e =0, a=h, =0,
— — — -6
E, = 1.44GPa, q, = 1N, £A=17.6 X10"°m, (35)

Kg Kg
po = 12200 a5 P1= 1220$, v =0.38.

Since this case isn’t piezoelectric and it’s without
damping coefficient, the analytical solutions of the CPT can
be obtained from the following equation (Mohammadimehr
et al. 2016b)

ki Ky, kg m, my, Mgy
2

Ky Ky Ky |—@|my, my, my

Ky kg Kg My My My,
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Table 6 Natural frequency o of a simply supported FG-
SWCNTs-reinforced plate with various values of porosity
coefficient (107 rad/s)

Fundamental
natural frequency ¢/ e=0 e=0.2 e=0.5 e=0.9
a/h
0 3.7377 3.6295 3.4072 2.7468
0.2 3.7524 3.6438 3.4206  2.7577
10 0.5 3.8288 3.7180 3.4902 2.8138
0.8 3.9668 3.8519 3.6160 2.9152
1 40900 3.9716 3.7283  3.0057
0 10995 1.0635 1.0065 0.9562
0.2 1.1006 1.0645 1.0075 0.9571
20 0.5 1.1063 1.0700 1.0127 0.9621
0.8 1.1168 1.0802 1.0223 0.9712
1 11263 10894 1.0310 0.9795
0 0.7330 0.7090 0.6710 0.6374
0.2 0.7333 0.7093 0.6713 0.6378
30 0.5 0.7350 0.7195 0.6728 0.6392
0.8 0.7381 0.7140 0.6757 0.6420
1 0.7410 0.7167 0.6783 0.6444
0 05498 0.5317 05032 0.4781
0.2 05499 05319 05034 0.4782
40 0.5 05506 05326 05040 0.4788
0.8 05519 0.5338 05052  0.4800
1 05531 05350 0.5063 0.4810

Second natural
frequency t/h e=0 e=0.2 e=0.5 e=0.9

a/h
0 6.5629 6.3479 6.0080 5.7099
0.2 6.6273 6.4103 6.0670 5.7660
10 0.5 6.9560 6.7281 6.3678 6.0519
0.8 75282 7.2817 6.8917  6.5498
1 8.0203 7.7577 7.3423 6.9780
0 32814 3.1739 3.0039 2.8540
0.2 3.2895 31818 3.0113 2.8611
20 0.5 3.3316 3.2225 3.0498  2.8977
0.8 3.4085 3.2969 3.1202 2.9646
1 34780 3.3640 3.1838  3.0250
0 21876 21160 2.0025 1.9025
0.2 21900 2.1183 2.0047 1.9046
30 0.5 22026 21304 20162 19115
0.8 2.2257 2.1528 2.0374 1.9356
1 22468 2.1732 2.0567  1.95400
0 1.6407 1.5870 1.5020 1.4268
0.2 1.6417 1.5879 1.5028 1.4277
40 0.5 1.6470 1.5931 1.5077 1.4323
0.8 1.6568 1.6025 1.5166 1.4409
1 1.6658 1.6112 1.5249 1.4487
U.., 0
Van (=1 0 - (36)
Wmn an

The nondimensional frequency @ is acquired from
following equations (Thai and Choi 2013)
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Fig. 3 Effect of porosity coefficient on the fundamental and
second natural frequency of a simply supported FG-
SWCNTSs-reinforced plate with £/A

6.1 Vibration analysis of the FG-SWCNTSs-reinforced
porous nanocomposite viscoelastic and piezoelectric
rectangular plate

Assume a simply supported square FG-SWCNTs-
reinforced plate with the following material properties

A=34 nm, T=300 K, q,=1000 N,

epa =05 nm, AT =25,
Tg = 001, V*CNT = 011,
a=b, e=0, 0.2, 0.5, 0.9.

In Table 6, fundamental and second natural frequency of
the porous nanocomposite viscoelastic and piezoelectric
plate reinforced by FG-SWCNTSs are tabulated with various
values of porosity coefficient for different strain gradient
parameter and aspect ratio values. It is observed that with
increasing porosity and aspect ratio, natural frequency
decreases and by increasing strain gradient parameter,
natural frequency increases.

The effect of porosity coefficient with respect to aspect
ratio a/h on the dimensional and nondimensional natural
frequency of a simply supported FG-SWCNTSs-reinforced
plate is shown in Figs. 3 and 4, respectively. It is also
depicted from these figures, as porosity coefficient
increases, stiffness of porous nanocomposite plate reduces
and therefore dimensional and nondimensional natural
frequency decrease. It is seen from Figs. 3 and 4 that with
increasing of porosity coefficient, the nanocomposite plate
becomes softer. Also, by increasing the value of aspect
ratio, dimensional natural frequency decreases and
nondimensional natural frequency increases. The physical
reason for the break in results of fundamental natural
frequency in Fig. 4 is that for lower aspect ratio (a/h<17), it
is better to use first order shear deformation theory and for
higher aspect ratio (a/h>=17), the results for classical plate
theory is good; while we consider for all ranges classical
plate theory.

{= 4, (38)
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supported FG-SWCNTs-reinforced plate with ¢/A
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Table 7 Natural frequency o of a simply supported FG-
SWCNTs-reinforced plate with various values nonlocal
parameter with h=20 nm and e=0.5 (108 rad/s)

Fundamental

natural frequency ¢/  eoa=0 ea=0.5 epa=1l eoa=1l5 eoa=2
4(]—“'] nm nm nm nm

0 5.7922 5.7919 5.7908 5.7890 5.7865

10 0.5 5.9334 5.1933 5.9320 5.9301 5.9276

1 6.3382 6.3378 6.3366 6.3347 6.3319

0 1.7110 1.7110 1.7109 1.7108 1.7106

20 0.5 1.7216 1.7215 1.7215 1.7213 1.7211

1 17528 1.7527 1.7526 1.7525 1.7523

0 1.1407 1.1407 1.1407 1.1406 1.1406

30 0.5 1.1438 1.1438 1.1438 1.1437 1.1437

1 1.1531 1.1531 1.1531 1.1531 1.1531

0 0.8555 0.8555 0.8555 0.8555 0.8555

40 0.5 0.8568 0.8568 0.8568 0.8568 0.8568

1 0.8608 0.8608 0.8608 0.8607 0.8607

Se?%ni::(t:ural Uh esa=0 e0a=0.5 epa=l eoa=15 eoa=2
—q—La/h nm nm nm nm

0 10.213610.212010.2073 10.1994 10.1884

10 0.5 10.825310.823610.8186 10.8103 10.7986

1 12.481812.479912.4741 12.4645 12.4510

0 5.1066 5.1064 5.1058 5.1048 5.1034

20 0.5 5.1847 5.1845 5.1839 5.1829 5.1815

1 54124 5.4122 54116 5.4105 5.4091

0 3.4043 3.4043 3.4041 3.4038 3.4034

30 0.5 3.4276 3.4275 3.4273 3.4270 3.4266

1 3.4964 3.4963 3.4961 3.4959 3.4954

0 25532 2.5532 2.5531 2.5530 2.5528

40 0.5 2.5630 2.5630 2.5630 2.5628 2.5627

1 25923 25923 25922 25921 2.5919

In Table 7 fundamental and second natural frequency

are presented with various values of nonlocal parameter for
different strain gradient parameter and aspect ratio values. It
is observed from Table 7 that natural frequency decreases
with an increase in nonlocal parameter and aspect ratio, and

1.7531

1.753

1.7529

1.7528

1.7527
1.7526
1.7525
1.7524
1.7523

1.7522

Fundamental Natural Frequency (rad/s)

1.7521 q

19.998 19.999 20

a/h

(b)
Fig. 5 Effect of nonlocal parameter on natural frequency of
a simply supported FG-SWCNTs-reinforced plate with
h=20 nm, ¢/h and e=0.5: (a) fundamental and second natural
frequency (b) fundamental natural frequency

20.001 20.002

also it increases by increasing strain gradient parameter.

Fig. 5 (a) indicates the effect of nonlocal parameter on
the natural frequency (fundamental and second natural
frequency) of a simply supported square plate reinforced by
FG-SWCNTSs with h=20 nm, £/4 and e=0.5. It can be seen
that natural frequency decreases with an increase in
nonlocal parameter and aspect ratio (see Fig. 5(b)), the
physical reason is that the nanocomposite plate becomes
softer with increasing of nonlocal parameter.

Figs. 6-9 illustrate the effects of strain gradient
parameter ¢ (for different porosity coefficients and a=30h),
damping coefficient z;, volume fraction of CNTs and
temperature T on the fundamental natural frequency,
respectively. It is concluded from Fig. 6 that when I/h is
equal to zero, there is no strain gradient parameter, thus in
this case, the structure is softer than when this ratio is not
equal to zero (I/h£0). On the other hands, considering strain
gradient parameter leads to increase the stiffness of nano
strcucture. With regards to these figures, natural frequency
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decreases by increasing temperature (due to stiffness
reduction) and increases by increasing volume fraction of
CNTs (due to stiffness increase), strain gradient parameter
and damping coefficient. Moreover, by increasing aspect
ratio natural frequency decreases for the specified values of
damping coefficient, volume fraction of CNTs and
temperature (see Figs. 7-9). When the viscoelasticity is
ignored, it is seem that the natural frequency is zero, thus to
provide from the mistake, the authors zoom the Fig. 7(a),
and then plot Fig. 7(b) for z,=0. It is seen that for 7,=0, the
natural frequency is equal 1.7x10° that for different values
of 7, =0.01, 0.1, 1 that range of natural frequency becomes
between 0.8x10° to 6.5x10% thus the order z,=0 is 10°;
while for other value of ,, it is 10°. Thus, when we plot
different values of 7, =0,0.01,0.1,1, it is seem for z, =0, that
the naural frequency is equal to zero; while the value of
natural frequency is 1.7x10°. It is seen from Fig. 8 that with
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an increase in the volume fraction of CNT, the natural
frequency increases, the physical reason is that the
nanocomposite plate becomes stiffer with increasing of
volume fraction of CNT. It is shown from Fig. 9 that an
increase in the temperature leads to decrease natural
frequency due to reducing stiffness of nanocomposite plate.
The physical reason for the break in results of fundamental
natural frequency in Fig. 9 is that for higher temperature
(T=400 K), the nanocomposite (specially polymer resin)
cannot tolerate this temperature.

The effect of damping coefficient on the rise of the
natural frequency is considerably more than the other
parameters effect, and the strain gradient parameter, the
nonlocal parameter and porosity coefficient have a lower
effect on the natural frequency rise than the damping
coefficient, respectively (See Fig. 10).

The Effect of various FG-SWCNTSs distribution patterns

7
45 x10
— % — UD
4 % FG-O
Q FG-X
kel
S35Hh
> \
2
o 3 X
E; \
g T\
w257 X
K] %\
2 2t
z * X
s *
£15F %
) RN
g 1 **)t;;x
2 *¥E% 55
2 **i*@ii‘%:ﬁ:
05 ﬁ*ﬁ#ﬁ#ﬁ**%**j(
0 . . . . . . .
10 15 20 25 30 35 40 45 50
a/h
(@)
7
g 210 . : : ; ;
— % — UD
% FG-0
k.
_ 7 5\& FG-X ||
%) R
i f
> | ¥
C
s | %
o 5 Y
o *y
= *\
4 R 1
© *’;&
pd A
= % i
g *3
» %%
.l *‘*\**ﬁ*
; SR .|
10 15 20 25 30 35 40 45 50
a/h
(b)

Fig. 11 Effect of various FG-SWCNTSs distribution patterns
(UD, FG-X and FG-O) on the natural frequency of a simply
supported FG-SWCNTs-reinforced plate with h=340 nm,
¢=h and e=0.5 (a) for fundamental natural frequency (b) for
second natural frequency

(UD, FG-X and FG-O) on the fundamental and second
natural frequency is shown in Fig. 11. The graphs show that
for both fundamental and second natural frequency, FG-X
distribution pattern have greater effects on the natural
frequency than the other distributions. In addition, UD and
FG-O, respectively, have lower effects than the FG-X on
the natural frequency. It is seen from Fig. 11 that FG-X
distribution results due to the strengthening of the edges
leads to increase the stiffness nanocomposite plate, which
has farthest from the mid-plane. Thus, the natural frequency
increases, the physical reason is that the nanocomposite
plate becomes stiffer with FG-X distribution of CNT.

7. Conclusions

This article considering the nonlocal strain gradient
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theory, perused the size dependent effect on natural
frequencies of a FG-SWCNTSs reinforced viscoelastic and
piezoelectric porous nanocomposite plate. The results
reveal that the effect of damping coefficient on the increase
of the natural frequency is greatly higher than the other
parameters effect, and the strain gradient parameter and the
nonlocal parameter have a lower effect on the natural
frequency increase than the damping coefficient,
respectively. Moreover, it can be comprehended from
results that by increasing porosity or temperature, stiffness
of the nanocomposite structure decreases and as a result
natural frequency decreases and vice versa for increasing
volume fraction. Further, natural frequency decreases with a
raise in the nonlocal parameter and aspect ratio while it
increases with increasing of strain gradient parameter and
damping coefficient. By studying the different distribution
patterns of FG-SWCNTs, one can see that the FG-O
distribution produces less vibration than other distributions,
so that in designs which need to reduce vibrations, this
distribution will be appropriate. Also UD and FG-X,
respectively, have greater effects on the natural frequency
than the FG-O. This study can be used to optimize the
industrial designs due to study the effects of various
properties on the vibrations of the mentioned
nanocomposite plates, one can reduce the vibrations of the
desired structure, which is a very important issue in the
optimizing designs of the automotive industry and
aerospace engineering.
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