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1. Introduction 
 

With the change of architectural traditions, due to its 

high flowability and workability advantage self-compacting 

concrete (SCC) technology gains importance day by day 

because of unusual architectural designs of concrete 

structures. Fresh cementitious materials, as many materials 

in industry or nature, behave as fluids with a yield stress, 

which is the minimum stress for irreversible deformation 

and flow to occur (Roussel 2006). Mechtcherine et al. 

(2014) suggest that building concrete structures efficiently 

and with high quality, the consistency of the fresh concrete 

should comply with the requirements posed by the 

structure’s geometry. Moreover, with SCC many structural 

problems disappeared like an improper filling, segregation, 

mechanical vibration mistakes, etc.  

SCC compacts with its weight this feature provide 

advantages for reducing construction time, labor cost, and 

noise on the construction site (Khatib 2008). In the slump-

cone test, the slump can be deduced by measuring the drop 

from the top of the slumped fresh concrete, and the slump 

flow by measuring the diameter of it (Yeh 2007).The slump 

flow test aims to investigate the filling ability of SCC. It 

measures flow spread and flow time T50. Equipment for the 

slump flow test is based on plate and abrams cone. The base 

plate of size at least 900×900 mm, made of an impermeable 

and rigid material, and clearly marked with circles of 
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Ø200 mm and Ø500 mm at the center. Abrams cone with 

the internal upper/lower diameter equal to 100/200 mm and 

the height of 300 mm (Schutter 2005). The calculation of 

slump flow shown in Eq. (1). 

S=
(dmax+dperp)

2
 (1) 

where 𝑑max the largest diameter of the circular spread of 

the concrete and 𝑑𝑝𝑒𝑟𝑝is the circular spread of the concrete 

at an angle approximately perpendicular to 𝑑max . In 

general, the mathematical models used to describe the 

material behavior of concrete and empirical formulas 

derived from experimental results (Chandwani et al. 2015). 

When the model includes a large amount of independent 

variables, unknown interactions additives, and chemical 

admixtures traditional prediction methods could not provide 

satisfactory results. In addition to these high costs and long 

lead times of experimental is un-solicited status. In non-

linear systems, it’s hard to reveal a mathematical model for 

accurate results quite the opposite that Machine learning 

methods are self-learning algorithms and they can learn and 

produce a model from past data so algorithms can reach 

accurate solutions rapidly. 

Machine learning algorithms are commonly used for 

complex real-world regression and classification problems. 

In many different studies, it is proved that machine learning 

methods outperform traditional methods in terms of 

revealing hidden patterns from datasets. Therefore, this 

paper presents the prediction of slump flow test results of 

concrete via machine learning algorithms, and chosen 

methods are neither used nor compared in any previous 
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Abstract.  Over the years, several machine learning approaches have been proposed and utilized to create a prediction model 

for the high-performance concrete (HPC) slump flow. Despite HPC is a highly complex material, predicting its pattern is a rather 

ambitious process. Hence, choosing and applying the correct method remain a crucial task. Like some other problems, 

prediction of HPC slump flow suffers from abnormal attributes which might both have an influence on prediction accuracy and 

increases variance. In recent years, different studies are proposed to optimize the prediction accuracy for HPC slump flow. 

However, more state-of-the-art regression algorithms can be implemented to create a better model. This study focuses on several 

methods with different mathematical backgrounds to get the best possible results. Four well-known algorithms Support Vector 

Regression, M5P Trees, Random Forest, and MLPReg are implemented with optimum parameters as base learners. Also, 

redundant features are examined to better understand both how ingredients influence on prediction models and whether possible 

to achieve acceptable results with a few components. Based on the findings, the MLPReg algorithm with optimum parameters 

gives better results than others in terms of commonly used statistical error evaluation metrics. Besides, chosen algorithms can 

give rather accurate results using just a few attributes of a slump flow dataset. 
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study. 

 
 
2. Literature review 

 

With the increasing concrete technology, self- 

consolidating concrete brought new concepts like fluidity, 

mobility, and compact ability and encourages architects and 

engineers for designing and building extraordinary 

structures. Due to this change in architectural design style 

slump-flow test of concrete placed in an important position. 

Besides the design methods (Ferrara et al. 2007, Okamura 

and Ouchi 2003, Okamura et al. 2000, Saak et al. 2001, Su 

et al. 2001), additive variations (Busari et al. 2018a, 

Massana et al. 2018, Pelisser et al. 2018, Şahmaran et al. 

2006, Sari et al. 1999, Uysal and Sumer 2011, Uysal and 

Yilmaz 2011) and statistical applications (Busari et al. 

2018b, González-Taboada et al. 2018, Habibi and 

Ghomashi 2018, Roussel 2006, Tregger et al. 2012),  

many researchers used artificial intelligence and machine 

learning methods in predicting the concrete strength and 

slump flow values.  

Domone (1998) compared the slump flow test and flow 

test for measuring fluidity of concrete mixes and he found a 

correlation between the flow and slump flow values. Yeh 

(1999) proved that artificial neural networks (ANN) is more 

accurate than regression algorithms in his study. Dias and 

Pooliyadda (2001) applied the backpropagation neural 

networks method to predict the strength and slump of ready 

mixed concrete. Lee (2003) developed ANN-based I-

PreConS (Intelligent PREdiction system of CONcrete 

Strength) that provides strength information of the concrete. 

Öztaş et al. (2006) developed ANN and regression models 

for the estimation of concrete slump. Yeh (2007) modeled 

slump flow of concrete by using second-order regressions 

and ANN and proved that ANN algorithm is suitable for 

concrete flow predictions and also Jain et al. (2008) and 

Siddique et al. (2011) presented an ANN model for 

prediction of compressive strength of self-compacting 

concrete (SCC) containing bottom ash. Cheng et al. (2012) 

proposed an Artificial Intelligence hybrid system to predict 

HPC compressive strength. Cao et al. (2013) established the 

effectiveness of the support vector machines (SVM) 

algorithm by presenting a successful prediction model for 

the elastic modulus of SCC. Chandwani et al. (2015) 

presented a hybrid model, they used ANN and Genetic 

Algorithms (GA) for predicting slump of Ready Mix 

Concrete (RMC). Aydogmus et al. (2015) used ensemble 

machine learning methods for predicting slump flow of 

high-performance concrete (HPC) they compared simple 

machine learning and ensemble machine learning methods 

and proved that ensemble machine learning algorithms are 

superior to simple machine learning algorithms. Sonebi et 

al. (2016) compared two kernel functions of SVM; 

Polynomial and Radial basis function (RBF) for predicting 

slump flow rate of SCC and they confirmed the SVM RBF 

model is highly precise for prediction concrete properties. 

Mashhadban et al. (2016) suggested particle swarm 

optimization (PSO) based ANN hybrid model for modeling 

mechanical properties in fiber-reinforced SCC.  

Table 1 Descriptive statistics of the dataset 

Name of 

attributes 
Max Min Median 

# Null 

value 

Cement 227.745 137 204.95 0 

Slag 79.023 0 101 0 

Fly ash 146.459 0 163.5 0 

Water 197.305 160 196 0 

SP 8.549 4.4 8.15 0 

Coarse Aggr. 884.158 708 878.5 0 

Fine Aggr. 741.234 640.6 742.85 0 

 
 
3. Methodology 

 

In this study, we use publicly available concrete slump 

flow dataset proposed by Yeh (2007) for our experiment. 

The dataset has 103 instances with seven different numeric 

attributes. Some descriptive statistics of the dataset is given 

in Table 1 below. 

Through our study, we have used and compare four 

different algorithms which are Support Vector Machines 

(SVM) (Cortes and Vapnik 1995), Artificial Neural 

Network (ANN) (Rosenblatt 1958), M5P decision trees 

(Quinlan 1992), and Multilayer Perceptron Regressor 

(MLPR) (Hornik et al. 1989) to explore the better 

prediction model in terms of various evaluation metrics. 

Because the output of a regression model is a continuous 

value, well-known evaluation metrics in machine learning 

domains such as accuracy, precision, recall, etc. are not 

suitable ones. Instead, some statistical metrics are preferred. 

Thus, we have applied four different statistical performance 

metrics which are Correlation coefficient (R), Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), and 

Synthesis Index (SI). The formulations of chosen 

algorithms and evaluation metrics are given in section 3.1 

and 3.2 respectively. 

On the other hand, all algorithms run with k-folds cross-

validation method which is a commonly used technique in 

applied machine learning in order to have a lower biased 

performance. The details of the method are given in through 

Section 3. In the experiment, we have used Weka and 

Python 3.6 Scikit-learn which is a collection of machine 

learning algorithms library for data mining tasks. The 

dataset are normalized during the preprocessing step before 

creating an ultimate prediction model. 

 

3.1 Algorithms 
 

3.1.1 Support Vector Regression (SVR) 
Support vector machines (SVM) is a well-known 

supervised learning algorithm originally proposed by Cortes 

and Vapnik (1995). Initially, the SVM is designed in order 

to solve binary classification problems that can be linearly 

separable. Then, it is extended as Support vector regression 

(SVR) by Vapnik et al. (1997) to handle regression 

problems. 

Assuming we have a training dataset 
{(𝑥1, 𝑦2), … . , (𝑥𝑙 , 𝑦𝑙)}, where each 𝑥𝑖 ∈  𝑅𝑛 , 𝑦𝑖 ∈ 𝑅   the 

decision function is given in Eq. (2) 

f(x)=wφ(x)+b (2) 
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with respect to 𝑤 ∈  𝑅𝑛 , 𝑏 ∈ 𝑅, where 𝜑 denotes a non-

linear transformation from 𝑅𝑛 to high dimensional space. 

The primal optimization problem is given in Eq. (3) 

f min  Rreg(f)=
1

2
‖W‖2+C ∑ S(f(xi)-yi)

l

i=0

 (3) 

where 𝑆(∙)  is a cost function and 𝐶  is a constant 

moreover, vector 𝑤 is given in Eq. (3). 

w= ∑ (αi

l

i=1

-αi
*)φ(xi) (4) 

By substituting Eq. (4) into Eq. (2), the decision 

function can be rewritten as in Eq. (5). 

f(x)= ∑ (αi

l

i=1

-αi
*)(φ(xi)φ(x))+b (5) 

In Eq. (5) the dot product can be replaced with kernel 

function 𝑘(𝑥𝑖 , 𝑥) and Eq. (5) can be rewritten as shown in 

Eq. (6) 

f(x)= ∑ (αi

l

i=1

-αi
*)k(xi,x)+b (6) 

The 𝜀 insensitive loss function is the most widely used 

cost function. The function is given in Eq. (7). 

S(f(x)-y)= {
|f(x)-y|-ε for |f(x)-y|≥ ε

0               , otherwise
 (7) 

where 𝜀 is the width of the regression tube, for a given 

value, the corresponding dual formulation is shown in Eq. 

(8). 

argmaxαi,αi
*  

-
1

2
∑ (αi-

l

i,j=1

αi
*)(αi-αi

*)k(xi,xj)-ε ∑ (αi

l

j=1

-αi
*) 

+ ∑ (αi

l

i,j=1

-αi
*) 

(8) 

subject to:  

∑ αi

l

i=1

-αi
*=0 

C≥αİ≥0 
C≥αi

*≥0 
where 𝛼𝑖 and 𝛼𝑖

∗ are Lagrange multipliers. 

 

3.1.2 Multilayer perceptron regressor (MLPReg) 
Artificial Neural Networks - sometimes also called 

Multilayer perceptron- is emerged from neural structure of 

the brain by Anderson and McNeill (1992). The MLPReg 

consists of a set of connected nodes - called perceptron- 

which nonlinearly maps between input and output vector. 

Connections between perceptron utilized by weights and 

output data are a function of the sum of weighted inputs 

modified by an activation function. The logistic function is 

commonly used activation function due to its easily  

 

Fig. 1 Simple structure of MLP for regression problem 

(Ünlü 2019) 

 

 

computed derivative. Because of the hardness of training 

and optimizing many layers the architecture of an MLPReg 

consists of several layers of neurons that are fully connected 

meaning each node connected to every single node in the 

next layer. The layers between input and output layers are 

called hidden layers. The simple structure of the MLP is 

shown in Fig. 1 below.   

The output of a node is scaled by the connecting weight 

and fed forward to be an input to the nodes in the next layer 

of the network. The MLPReg is optimized by minimizing 

errors with iterated process back and forth which is called 

back-propagation algorithm working based on the error 

correction learning rule that feeds forward to transform 

connection weights to be as an input of the next layer 

(Haykin 1994).  

Through our study, we use a conventional back-

propagation MLPReg. The output of 𝑛𝑡ℎ  neuron in 𝑙𝑡ℎ 

layer is calculated as shown in Eq (9). 

𝑦𝑙
𝑛 = 𝜑 [∑ 𝑤𝑙𝑗

𝑛 (𝑡)𝑦𝑗
𝑛−1(𝑡) + 𝛾𝑙

𝑛

𝑝

𝑗=1

] (9) 

here 𝜑(∙) is the activation function, 𝑤𝑙𝑗
𝑛  is the connection 

weight, 𝑡 is the time index, and 𝛾𝑙
𝑛 = 𝑤𝑙𝑗

𝑛 (𝑡) is weighted. 

For the n-layer network, the synaptic weight is calculated as 

in Eq. (10). 

wji
n(t+1)=wji

n(t)+∆wji
n(t) (10) 

subject to 𝑙 ≤ 𝑛 ≤ 𝑁 and can be revised as given in Eq. 

(11). 

∆wji
n(t)=ελj

n(t)yi
n-1(t) (11) 

Subject to 0 ≤ 𝜀 ≤ 1 

where 𝜀 is the learning rate, and 𝜆𝑗
𝑛(𝑡) ≡ 𝜕𝐸𝑡/𝜕𝑢𝑗

𝑛 is the 

local error gradient. To leverage the back-propagation 
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algorithm, a momentum term 𝛼 is added as shown in Eq. 

(12). 

∆wji
n(t)=ελj

n(t)yi
n-1(t)+α∆wji

n(t-1) (12) 

Subject to 0 ≤ 𝛼 ≤ 1 

For the output layer, the local error gradient is given in 

Eq. (13).  

λj
N(t)=[dj(t)-yj

n(t)]φ[uj
N(t)]≡ej(t)φ[uj

N(t)] (13) 

where 𝑑𝑗(𝑡) is the goal output signal, and 𝜑(∙) is the 

activation function.  

One needs to note that, we must choose appropriate 

activation function for the regression problem (i.e., the 

sigmoid or similar functions are not the suitable ones 

because the output values will be forced to be either zero or 

one). Thus, the neural network for the regression problem 

will be reconstructed as having a single neuron in the output 

layer which will produce a continuous value being linearly 

combination of the weights and inputs values. 

 

3.1.3 M5P decision trees 
Decision trees are widely used in machine learning and 

data analysis domains to visually and explicitly represent 

decision making for both the classification and regression 

problems. A tree model in general consists of branches and 

leaves named as conjunctions and nodes respectively in a 

data science context. It is a kind of a set of decision rules 

(i.e., taking true or false values if the value of nodes is 

greater than a threshold value or vice versa). M5P is a 

reconstructed model of Quinlan's M5 algorithm (Quinlan 

1992) for creating trees of regression models. The main 

logic of the M5P is running a decision tree in conjunction 

with the possibility of linear regression functions at the 

nodes. Thus, M5P can be named as is a binary regression 

tree model where the last nodes utilized a linear regression 

function that can yield a continuous numerical output.  

We can generalize the tree model as two stages. At first 

step, it involves the use of a divergence metric to create a 

decision tree. The branching benchmark for the M5P 

algorithm is the class values that reach a node as the amount 

of the error and the expected reduction in error as a result of 

testing each attribute at that node is calculated (Quinlan, 

1992). The calculation of the Standard Deviation Reduction 

(SDR) is represented as in Eq. (14). 

DR=sd(T)-
∑ |Ti|

n
i=1

|T|
 × sd(T) (14) 

where 𝑇 is a collection of training cases, 𝑇𝑖  is a subset of 

training cases, and 𝑠𝑑 is the standard deviation. 

 

3.1.3 Random Forest trees (RF) 
RF is an ensemble learning algorithm proposed by 

Breiman (2001). The main goal of the algorithm is to 

enhance the classification and regression trees (CART). It 

works based on the aggregation of a large number of 

decision trees with a bagging mechanism. It consists of a set 

of n trees {𝑇1(𝑋), 𝑇2(𝑋) … 𝑇𝑛(𝑋)}, where 𝑋 =
{𝑥1, 𝑥2 … 𝑥𝑚} , is an m-dimensional input vector. The 

ensemble process creates n outputs corresponding each 

tree𝑌1̂ = 𝑇1(𝑋), 𝑌2̂ = 𝑇2(𝑋) … . 𝑌𝑖̂ = 𝑇𝑖(𝑋), where 𝑌𝑖̂  , 𝑖 =

1,2, … . , 𝑛, is the 𝑖𝑡ℎ tree output. To obtain the final output, 

an average of all tree predictions is calculated. For each tree 

construction, it is used as a deterministic algorithm that 

creates a new training set (bootstrap samples) is selected 

with replacement. So, through the selection process while 

some data samples might be reselected and others might be 

left out of the sample which constitutes out-of-bag samples. 

Also, each node of trees only selects a small subset of 

attributes for the split, which yields the advantage of quick 

classification of high dimensional data. Besides the 

advantages, the main limitation of the RF algorithm is a 

large number of trees might make the algorithm slow and 

inefficient for real-time predictions. 

 

3.2 Evaluation metrics 
 

3.2.1 Correlation coefficient (R) 
The Pearson product-moment correlation coefficient 

also known as R is a commonly used statistical measure 

proposed by Lawrence and Lin (1989). The R score aims to 

show how well the predicted values fit the actual output. 

The formulation of R is as in Eq. (15). 

(
𝑛 ∑ 𝑦.𝑦′−(∑ 𝑦 )(∑ 𝑦′)

√𝑛(∑ 𝑦2)−(∑ 𝑦)2−√𝑛(∑ 𝑦′2 
)−(∑ 𝑦′)2

)

2

  (15) 

where y=actual values, y’=predicted value, and n= number 

of instances.  

The value of R must lie between -1 and +1. So that 1 

indicates a perfect fit between actual and predicted output 

with the highest propensity and -1 indicates vice versa. 

 

3.2.2 Root mean squared error (RMSE) 
RMSE is another frequently used statistical metric 

which is a measure of the differences between actual values 

and observed values by an algorithm. The calculation of 

RMSE can be calculated as shown in Eq. (16). 

√
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖

′)2𝑛
𝑖=1   (16) 

 

3.2.3 Mean Absolute Error (MAE) 
Similar to other metrics described above MAE aims to 

summarize and assess the quality of the prediction model by 

converting all errors to positive. As the usual error is 

described the value between actual and predicted output. 

MAE is formulated as in Eq. (17). 

1

𝑛
∑|𝑦 − 𝑦′|

𝑛

𝑖=1

 (17) 

 

3.2.4 Relative absolute error (RAE) 
The absolute error is the magnitude of the difference 

between the ground true output and the predicted one. The 

formulation of the RAE can be calculated based on Eq. 

(18).  

𝑅𝐴𝐸 =
|𝑦′1 − 𝑦1| + ⋯ + |𝑦′ − 𝑦𝑛|

|𝑦1 − 𝑦̅| + ⋯ |𝑦𝑛 − 𝑦̅|
 (18) 
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3.2.5 Root relative squared error (RRSE) 
The RRSE takes the total squared error and normalizes 

it by dividing by the total squared error of the predictor. 

Due to taking the square root of the relative squared error, 

we can reduce the error without changing the dimensions of 

the quantity being predicted. The formulation of RRSE is 

shown in Eq. (19).  

𝑅𝑅𝑆𝐸 = √
(𝑦′1 − 𝑦1)2 + ⋯ + (𝑦′𝑛 − 𝑦𝑛)2

(𝑦1 − 𝑦̅)2 + ⋯ + (𝑦𝑛 − 𝑦̅)2
 (19) 

 

3.2.6 Synthesis Index (SI) 
Finally, we can use SI to obtain a comprehensive 

performance measure which is calculated via four statistical 

measures in this study, MAE, RMSE, RAE, and RRSE. The 

calculation of SI is shown in Eq. (20). 

𝑆𝐼 =
1

𝑚
∑ (

𝑃𝑖 − 𝑃𝑚𝑖𝑛,𝑖

𝑃𝑚𝑎𝑥,𝑖 − 𝑃𝑚𝑖𝑛,𝑖

)

𝑚

𝑖=1

 (20) 

 

3.3 K-folds cross-validation 
 

K-folds cross-validation is a commonly used method in 

applied machine learning in order to have less bias 

performance. To perform a cross-validation method in 

conjunction with a predictor, the dataset 𝐷 is randomly 

split k different subsets (𝐷1 , 𝐷2, … . 𝐷𝑘) as given in Eq. 

(21). 

⋃{𝐷1, 𝐷2, … . , 𝐷𝑘}

𝑘

𝑖=1

= 𝐷 (21) 

Through the prediction process, one of each 𝐷𝑖  is used 

for test and remaining is used for the training until each 

subset of the data is used as test set (i.e., for the 10-folds 

cross-validation this process repeated as 10 times). In the 

end, the performance of the predictor is calculated as the 

average of k runs as shown in Eq. (22). 

𝑝∗ =
∑ 𝑝𝑖

𝑘
𝑖=1

𝑘
 (22) 

where (𝑝𝑖  , 𝑖 = 1,2, … . 𝑘) is the performance of predictor in 

𝑖𝑡ℎ iteration.  

K-folds cross-validation scheme is illustrated is shown 

in Fig. 2 in which k is chosen as 10 for illustration purpose.  

 

 

4. Results and discussions 
 

In this chapter, we provide the detailed comparison of 

chosen methods regarding regression analysis for the given 

dataset. Before running the experiment, as mentioned in 

Section 3 all data features are normalized by z-score and we 

have used the 10-folds cross-validation method to ensure 

the reliability of the results of algorithms. Hyperparameters 

are crucial to create optimum efficiency. Even a small 

change in one of them can dramatically increase or decrease 

the performance of the method. Thus, finding optimum 

parameters is a crucial process. It can yield not only the best 

 

Fig. 2 K-folds cross-validation scheme (k=10 for illustration 

purpose) 

 

Table 2 Pearson correlation between features and output 

Attributes Cement Slag Fly ash Water SP Coarse 

Aggr. 

Fine 

Aggr. 
Flow 

Cement 1.0000 0.2143 0.7179 0.5211 0.2079 0.5042 0.3537 0.4398 

Slag 0.2143 1.0000 0.3492 0.0853 0.5996 0.1849 0.1744 0.4509 

Fly ash 0.7179 0.3492 1.0000 0.4178 0.2039 0.5148 0.4220 0.1927 

Water 0.5211 0.0853 0.4178 1.0000 0.3138 0.7987 0.3991 0.8598 

SP 0.2079 0.5996 0.2039 0.3183 1.0000 0.0405 0.0196 0.4818 

Coarse 

Aggr. 
0.5042 0.1849 0.5148 0.7987 0.0405 1.0000 0.6816 0.5674 

Fine Aggr. 0.3537 0.1744 0.4220 0.3991 0.0196 0.6816 1.0000 0.4128 

Flow 0.4398 0.4509 0.1927 0.8598 0.4818 0.5674 0.4128 1.0000 

 

 

performance but also can save from computational time (i.e. 

very high training time might not increase the accuracy of 

the method while increasing computational time.). For this, 

we have utilized parameter optimization to get the best 

possible performance for each method by using grid search 

methodology which can be found in the Python Scikit-learn 

machine learning library. Basically, the value of each 

hyperparameter is selected from a range of predefined 

values and the combination of all hyperparameters giving 

the best performance is chosen.  

In addition to parameter optimization, we have also 

deployed feature selection. Instead of finding the most 

relevant features to correct output, we look for redundant 

features to avoid both unnecessary information given by 

them and increasing computational time if the feature is not 

really important for an overall experiment in Lab. The 

following Table 2 illustrates the Pearson correlation 

between features and features and output.Based on Table 2 

we can say that the most redundant features are Cement and 

Fly Ash with a correlation rate of 0.7179 and Cement and 

Water with a rate of about 0.5211. However, these are the 

main features, and ignoring one of them might not be a 

good idea. On the other hand, the water feature is the most 

relevant one to output with the correlation rate of about 

0.8598. As expected the water is a mandatory ingredient for 

the mixture and having the most contribution while creating 

a prediction model. Hence, ignoring one feature to create a 

prediction model for the lump flow problem does not make 

sense based on given attributes. However, this method 

might be very helpful in the case of adding an unusual 

attribute in some Lab experiment. Hence, we can move  
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Table 3 Pearson correlation between features and output 

Method Bag size percent Iterations 

RF 100 1500 

 

Table 4 The results of RF method in terms of evaluation 

metrics 

Evaluation Metrics R2 MAE RMSE RAE RRSE SI 

Results 0.68 9.78 12.55 68.28 72.70 0.71 

 

Table 5 The results of M5P-Trees method in terms of 

evaluation metrics 

Evaluation Metrics R2 MAE RMSE RAE RRSE SI 

Results 0.68 10.38 12.7 72.4 73.6 0.85 

 

Table 6 Optimum parameters for the SVR methods. 

Method Learning Algorithm C Kernel Variance Prop 

SVM RegSMOimproved 1 PolyKernel 0.0001 

 

 

further our experiment by using all available attributes. The 

following Table 3 shows the best parameter of the Random 

Forest (RF) method for the given problem. 

Table 4 shows the results of the RF method for the given 

regression problem. It can be seen that the RF slightly 

captures the pattern of the actual value (R2=0.68). Because 

of this poor performance error rates are not sufficient to be 

able to ignore the Lab process by using the RF method.  

For the M5P-Trees method, we have assigned 8 as the 

value of the minimum number of instances parameter as a 

result of the grid search method. Table 5 illustrates the 

results of M5P-Trees regarding evaluation metrics. M5P-

Trees method one of the worst methods among the chosen 

methods based on R2 and other error metrics. Although the 

correlation between the predictions and actual values is 

positive, it is not enough to close to 1 to used M5P-Trees  

 

 

Table 7 The results of SVR method in terms of evaluation 

metrics 

Evaluation Metrics R2 MAE RMSE RAE RRSE SI 

Results 0.65 10.65 13.30 74.31 77.05 1 

 

Table 8 Optimum parameters for the MLPReg method 

Method Activation Function Loss Function Ridge Tolerance 

MLPReg Sigmoid Squared Error 0.05 1e-6 

 

 

for future automated predictions. So, we can infer the M5P-

Trees method could not capture enough the pattern of actual 

values. 

For the M5P-Trees method, we have assigned 8 as the 

value of the minimum number of instances parameter as a 

result of the grid search method. Table 5 illustrates the 

results of M5P-Trees regarding evaluation metrics. M5P-

Trees method one of the worst methods among the chosen 

methods based on R2 and other error metrics. Although the 

correlation between the predictions and actual values is 

positive, it is not enough to close to 1 to used M5P-Trees 

for future automated predictions. So, we can infer the M5P-

Trees method could not capture enough the pattern of actual 

values. 

For the SVM method, the optimum parameters are given 

below in Table 6, and the results based on given parameters 

are provided in Table 7. 

SVM is another low-performance algorithm for the 

given regression problem. The correlation coefficient 

between the actual and predicted values is very low, so 

causing the error values are high. It can be inferred that 

SVM is not a good choice among chosen methods to create 

a good performance prediction model for the given 

problem. 

MLP is the last method that we have used. The 

advantage of the MLP is to be able to capture the nonlinear  

 

 

 

Fig. 3 Comparison of all methods 
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Table 9 The results of MLPReg method in terms of 

evaluation metrics 

Evaluation Metrics R2 MAE RMSE RAE RRSE SI 

Results 0.80 8.13 10.19 56.75 59.00 0 

 

 

relationship between the input and output values. The 

following Table 8 illustrates the optimum parameters for the 

MLP method. 

Among all methods MLPReg is the best one by 

capturing the relation between the actuals and predicted 

values based on the result given in Table 9. It yields a 

positive R2 which is rather close to 1. Also, it provides low 

error values in comparison to other methods. Hence, 

MLPReg is the best candidate among the compared 

methods.  

To visually represent the comparison of all methods we 

provide the following Figs. 3 and 4. The comparison of 

predicted values and actual values can be seen in Fig. 3 

(including training and test data). The performance of 

chosen methods based on the magnitude of the errors can be 

seen in Fig. 4. One needs to note that error is normalized for 

visualization convenience. We can see that RF, SVM, and 

M5P behaves similarly. For some data points, their error 

skews through the one. However, MLPReg errors have less 

variation and far from 1 which means it’s predictions closer 

to actual ones than others’ are. In addition to Fig. 3 given 

below, the complete solutions of the methods (including test 

and training data) are given in Table 11. 

Following Table 10 shows the percentage of the 

improvement succeed by methods. The reference point is 

the SVR result. To make it more concrete, for example, 

M5P improve SVR 3.69% in terms of R2 score, RF 

improved SVR 8.11% in terms of MAE, MLPReg improved 

SVR 23.43% in terms of RMSE and so on. One can see that  

 

Table 10 Improvement rates by methods 

Metrics 
 Increased by (%) 

SVR M5P RF MLReg 

R2 0.6506 3.69 4.95 23.96 

MAE 10.6462 -2.53 -8.11 -23.63 

RMSE 13.3015 -4.47 -5.66 -23.43 

RAE 74.3138 -2.53 -8.11 -23.63 

RRSE 77.0584 -4.47 -5.66 -23.43 

SI 1 14.89 29.25 100.00 

 

 

MLPReg noticeably improve with regards to all chosen 

evaluation metrics.  

 
 
5. Conclusions 

 

The main conclusions drawn from the study can be 

summarized as follows 1) the most relevant feature to 

output is the Water. Based on the Pearson correlation test, 

the amount of the water can highly affect the slump flow 2) 

there exist redundant features such as Fly Ash and Cement 

if we set threshold value as at least %50 (see Table 2). 

However, ignoring one of them can harm the model in 

terms of generalization for future predictions because the 

abnormal amount of Cement or Fly ash might noticeably 

change the slump flow according to the Lab experiments. 

Hence, keeping them for creating a prediction model can 

help us to capture abnormal behavior. 3) MLPReg is a 

baseline method to create a prediction model based on 

giving low error. It gives much more compact results 

compared to chosen well-known machine learning 

approaches. With the selection of optimum 

hyperparameters, it can yield state-of-the-art performance.  

In this study, the feature selection process is  

 

Fig. 4 Normalized error rates of chosen methods based on 10 Cross-Validation 
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implemented the first time for the slump flow prediction 

and it is proved that even with a few numbers of 

components machine learning methods can give highly 

accurate results.  

For future research, if more HPC data become available, 

 

 

deep learning approaches can be applied. Since deep 

learning approaches gives brilliant results in the different 

domain by based on the studies in the literature. A more 

complex network can be fed by more HPC data and it is 

possible to get much more accurate results. 

Table 11 Actual values and predicted values by all methods 

Samples Actual MLPReg SVR M5P RF Samples Actual MLPReg SVR M5P RF 

1 20 36.656 61.313 53.031 61.611 51 60 54.53 46.613 47.169 57.242 

2 48.2 44.955 39.832 39.581 39.134 52 67 64.685 55.523 52.647 56.197 

3 75 61.441 79.302 75.276 68.314 53 48.5 41.917 46.893 44.978 37.137 

4 69 63.192 63.551 65.748 60.502 54 67 66.454 56.255 53.754 50.594 

5 27.5 22.198 35.407 30.905 38.479 55 20 21.218 36.227 33.53 38.296 

6 77 69.453 78.036 76.772 71.512 56 78 66.651 80.506 73.911 71.318 

7 64 50.788 62.446 60.356 55.547 57 61.5 51.164 49.204 49.534 50.036 

8 46 31.691 37.113 38.655 30.864 58 70 51.779 48.304 52.141 47.406 

9 68 64.041 56.478 51.115 57.43 59 20 28.212 35.119 34.08 22.913 

10 51 50.855 38.531 43.399 46.658 60 50 54.072 49.469 45.14 40.446 

11 48 56.91 55.69 43.451 52.141 61 60 55.632 49.44 50.331 55.026 

12 58.5 65.007 89.917 73.951 68.078 62 59 52.295 56.166 51.092 53.198 

13 55 68.244 51.28 55.2 50.373 63 20 26.622 23.081 28.831 33.059 

14 20 23.078 34.015 26.446 24.456 64 48 50.346 35.724 39.741 45.079 

15 54.5 42.533 29.443 29.484 34.153 65 64.5 39.699 39.367 40.443 46.485 

16 20 20.603 28.54 30.023 26.143 66 58 52.189 54.721 44.424 56.221 

17 39 43.725 44.535 44.244 43.715 67 20 17.387 31.349 26.469 21.859 

18 58.5 56.143 51.497 43.4 48.5 68 49 52.681 44.551 46.719 50.858 

19 62.7 63.598 52.798 54.719 55.148 69 20 40.512 34.582 35.381 30.471 

20 46 48.305 41.448 38.97 44.187 70 55 56.157 56.11 50.759 58.475 

21 65 71.058 66.204 65.407 47.879 71 61 67.561 59.609 60.422 60.398 

22 64 66.785 53.66 55.177 59.53 72 46 63.464 68.707 69.895 63.174 

23 51 52.986 69.545 56.747 57.99 73 64 70.003 59.154 59.952 57.877 

24 52.5 49.058 42.656 38.975 45.917 74 63.5 62.431 53.153 52.507 57.276 

25 20 20.752 34.77 32.196 30.491 75 57 46.35 57.297 55.769 55.932 

26 20 39.996 42.331 43.792 50.473 76 38 53.442 47.143 46.917 40.469 

27 31 44.048 49.266 46.144 46.496 77 68.5 70.247 75.845 76.722 63.538 

28 49 58.976 49.448 54.355 54.896 78 30 22.581 41.061 41.624 50.168 

29 54 57.211 48.843 55.315 53.004 79 54 44.77 77.691 78.998 54.372 

30 48.5 63.482 57.524 60.177 61.036 80 35 56.704 59.981 59.655 55.871 

31 36.5 23.679 27.688 30.618 32.813 81 65 70.736 71.259 66.493 60.951 

32 64 57.039 62.581 57.413 56.073 82 54 56.012 52.061 48.011 59.853 

33 67 41.685 46.91 45.336 49.496 83 70 63.441 56.826 57.285 56.94 

34 48 52.209 63.331 60.615 57.131 84 40 41.001 44.046 42.45 51.544 

35 27 44.157 43.68 45.187 42.683 85 57 50.023 45.176 47.026 44.746 

36 70 59.757 63.772 56.527 46.358 86 43 47.181 44.78 43.829 46.725 

37 20 34.967 47.088 46.653 49.997 87 21.5 33.777 28.358 33.884 22.334 

38 61 42.853 39.937 43.114 54.005 88 62 63.25 66.037 67.275 55.443 

39 53 44.766 37.948 37.39 38.838 89 51 59.797 67.667 65.143 55.986 

40 20 37.564 36.187 36.882 43.643 90 53 43.002 56.468 51.664 51.34 

41 47 56.832 57.081 59.597 61.827 91 20 19.43 36.417 33.906 22.013 

42 42.5 37.974 53.864 52.484 51.122 92 41.5 23.609 39.244 36.886 37.528 

43 58 64.815 61.803 61.666 59.636 93 64 40.93 49.325 47.406 47.161 

44 60 52.231 55.578 55.635 55.686 94 62 66.607 54.314 55.765 60.11 

45 61 64.954 58.211 59.761 59.986 95 20 25.9 36.719 33.182 40.043 

46 78 70.336 76.647 69.304 71.498 96 63 57.297 52.609 53.759 51.119 

47 68.5 59.325 52.439 59.279 59.81 97 42 47.583 47.514 43.616 37.287 

48 20 35.697 47.088 51.367 49.209 98 64 59.343 63.796 60.786 56.388 

49 20 14.894 26.613 23.008 21.747 99 26 43.806 51.219 49.076 56.599 

50 69 66.412 60.21 55.482 56.811 100 60 59.089 45.051 43.135 49.292 
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