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1. Introduction  
 

An artificial neural network is a very useful and 

effective computational module of information processing 

models. Recently, it is used to estimate the result of any 

problem or case from physical or social sciences utilizing 

some input values and their relations. This can be described 

as a simulation of the human brain. This tool can be used 

for pattern recognition/classification or function 

approximation problems and very accurate results can be 

obtained. It is a very powerful tool for problems which 

involve even nonlinear relationship between input and 

output data. It analyzes the input and output data given to 

the network like a human brain, then forms a network 

which consists of a lot of relations. Adjusts these relations 

and finally trained neural network is utilized to estimate 

calculate the values of outputs. Numerical calculation 

methods, which produce approximate solutions with 

computer programs, provide quite convenience in solving 

engineering problems where theoretical solution can take a 

lot of time. As a powerful modeling tool, ANN offers many 

advantages over conventional statistical methods, as it can 

define complex and nonlinear relationships between 

parameters without any assumptions. With the artificial 

neural network method which may be an alternative to the 
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current calculation methods, many researchers have 

obtained very reliable results in civil engineering and 

contact mechanics applications in recent years. 

Neural networks have gained a broad interest in civil 

engineering problems. They are used as an alternative to 

statistical and optimization methods as well as in 

combination with numerical simulation systems.  

Application examples in Civil Engineering are 

forecasting, water management, controls and decision 

support systems. The application of ANN is used in tidal 

level forecasting to accurately estimate the tidal level for 

the complex bottom topography in the near-shore area. It is 

also used to estimate the earthquake-induced liquefaction 

potential which is essential for the civil engineers in the 

design procedure. This model is further applied in 

evaluation of the wave-induced seabed instability 

particularly important for coastal geotechnical engineers 

involved in the design of marine structures (such as 

offshore platform, pipeline and caisson etc.).  

One of the first studies of artificial neural network on 

civil engineering applications was made by Vanluchene and 

Sun (1990). The prediction of the compressive stresses in 

concrete is discussed by Ni and Wang (2000), and the 

prediction of the final shear force of prestressed concrete 

high beams is determined by Sanad and Saka (2001), and 

the relationship between vibration velocity and pressure 

resistance in concrete at various ages is discussed by Tang 

et al. (2007). Hanna (2007) in his paper proposed a general 

regression neural network model to assess nonlinear 

liquefaction potential of soil. Topcu et al. (2009), developed 

a feed forward artificial neural network model to model the 

corrosion currents of the reinforced concrete structure. Lin 

(2009) created an empirical model for assessing failure 
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potential of highway slopes, with a special attention to the 

failure characteristics of the highway slopes in the Alishan, 

Taiwan area prior to, and post, the 1999 Chi-Chi, Taiwan 

earthquake. Dehbozorgi during his research investigated an 

application of Neuro-Fuzzy classifier for short-term 

earthquake prediction using saved seismogram data. This 

method is able to predict earthquakes five minute before, 

with an acceptable accuracy (Dehbozorgi 2010). Sipos et al. 

(2013) used sensitivity and dimensionless parameter 

approach to estimate the behavior of reinforced concrete 

frame and infill walls under in-plane load. Garzon-Roca et 

al. (2013) proposed a new artificial neural network technique 

to estimate the maximum vertical load capacity of the brick 

wall on the basis of experimental data. Calibration of linear 

and nonlinear parameters with Levenberg-Marquardt back-

propagation ANN model was studied by Hasancebi and 

Dumlupinar (2013) and high accuracy was obtained. 
Estimation of contact stress in composite plates was 

studied by Chandrashekhara et al. (1998), estimation of 
contact distances between an elastic layer and two circular 
punches using ANN by Ozsahin et al. (2004), and 

calculation of maximum contact stresses by Cakiroglu et al. 
(2005). In their study, Hattori and Serpa (2015), 
investigated the potential of artificial neural networks to 
estimate the value of some parameters used in the ANSYS 
package program for the contact problem. Keskin and 
Arslan (2013) developed an artificial neural network model for 

predicting the diagonal cracking strength of RC slender 
beams without stirrups. Erdem et al. (2013) used artificial 
neural networks analysis to predict the compression 
strength of polypropylene fibre mixed concrete. The main 
purpose of the study of Mohebbi et al. (2010) includes 
investigation of the rheological properties of fresh self-

consolidating cement paste containing chemical and mineral 
additives using artificial neural network model. Lingam and 
Karthikeyan (2013) aimed at adapting artificial neural 
networks to predict the compressive strength of High-
Performance Concrete (HPC) containing binary and 
quaternary blends. 

In addition to these precious studies, here is some 

important recent studies about using ANN method for 

concrete structural analysis. Asteris et al. (2019) applied the 

artificial neural networks for the prediction of the 

compressive strength of cement-based mortars. Chitgar and 

Berenjian (2019) utilized from the Elman neural networks 

for predicting the mechanical properties of Self- 

Compacting Concretes (SCCs). Asteris et al. (2019) used 

the artificial neural networks approach to estimate the 

ultimate shear capacity of reinforced concrete beams with 

transverse reinforcement. Behforouz et al. (2019) aim to 

investigate the mechanical properties and durability of 

sustainable concrete containing waste ceramic powder 

(WCP), and to predict the results using artificial neural 

network in their study. Arani et al. (2019) presents a 

computational rational model to predict the ultimate and 

optimized load capacity of reinforced concrete (RC) beams 

strengthened by a combination of longitudinal and 

transverse fiber reinforced polymer (FRP) composite 

plates/sheets. Ozturk et al. (2018) studied the alkali 

activation of Electric Arc Furnace Slag (EAFS) with a 

comprehensive test program using artificial neural network 

method. Kong et al. (2016) studied the evaluation of the 

effect of aggregate on concrete permeability using grey 

correlation analysis and ANN. Ongpeng et al. (2016) 

focused on modeling the behavior of the compressive stress 

using the average strain and ultrasonic test results in 

concrete. They used feed forward backpropagation artificial 

neural network models to compare four types of concrete 

mixtures with varying water cement ratio (WC), ordinary 

concrete (ORC) and concrete with short steel fiber 

reinforcement (FRC). Camões and Martins (2016) studied 

about compressive strength prediction of CFRP confined 

concrete using data mining techniques. Saha et al. (2017) 

used artificial neural network to predict the compressive 

strength of self-compacting concrete in their study. Gazder 

et al. (2017) studied the predicting compressive strength of 

blended cement concrete with ANNs. Ashteyat and Ismeik 

(2017) studied predicting residual compressive strength of 

self-compacted concrete under various temperatures and 

relative humidity conditions by artificial neural networks. 

Hodhod et al. (2018) studied about prediction of creep in 

concrete using genetic programming hybridized with ANN. 

Shirkhani et al. (2019) studied about prediction of bond 

strength between concrete and rebar under corrosion using 

artificial neural network. 
There are also important studies about structural contact 

mechanics including tribology and wear using artificial 
neural network method. Shebani and Iwnicki (2018) studied 
on prediction of wheel and rail wear under different contact 
conditions using artificial neural networks. Serafińska et al. 

(2018) used artificial neural network in their study about 
friction law for elastomeric materials applied in finite 
element sliding contact simulations. Aleksendrića and 
Barton (2009) studied about prediction of disc brake 
performance by using artificial neural network. Rapettoa et al. 
(2009) studied about the influence of surface roughness on 

real area of contact in normal, dry, friction free, rough 
contact by using artificial neural network. Xiaoqiang et al. 
(2005) studied about solving elastoplastic contact problem 
by ANN. 

As seen from the literature search, there is a clear gap 

about using artificial neural networks method for receding 

contact problem analysis. In this study, it is aimed to 

investigate if this method is proper and reliable to predict 

the dimensionless parameters related to the maximum 

contact pressures and contact areas of receding contact 

problem for two elastic layers whose elastic constants and 

heights are different supported by two elastic quarter 

planes. The more realistic and correct definition of the 

contact parameters such as normal contact stiffness, 

penetration limit, etc. and the contact algorithms in any 

commercial software are depending on the user experience 

with contact problems, where more and more 

experimentations carried out in well-equipped laboratories 

are the usual form to choose the contact parameters. An 

alternative used in this work to avoid experimentation is to 

employ artificial neural networks, where some results of the 

contact solution are used to estimate the contact parameters. 

The theoretical solution of the problem was obtained from 

the study by Yaylacı and Birinci (2013). The input and 

output values of the training and testing set patterns are 

modeled exercising the theoretical solution. The best result  
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Fig. 1 Geometry and loading of the receding contact 

problem 

 

 

and minimum ANN structure is determined by test and 

error. After training, the effects of some parameters on 

maximum contact stress and contact areas were compared 

with artificial neural network results and theoretical results. 

 
 
2. Theoretical solution 

 

Consider symmetric contact problem for the quarter 

planes and two elastic layers with different elastic constants 

and heights shown in Fig. 1. The upper elastic layer is 

subjected to symmetrical distributed load whose length is 2a 

on its top surface. It is assumed that contact between all 

surfaces is frictionless and the effect of gravity force is 

neglected. Upper layer and lower layer are in contact over 

the interval (-𝑏, 𝑏), the lower layer and quarter planes are 

in contact over the interval (𝑐, 𝑑). The heights of the upper 

layer and lower layer are ℎ1 and ℎ2 , respectively. 

𝜇𝑖  and 𝜈𝑖 (𝑖 = 1,2,3) are elastic constants of the layers and 

quarter planes. The subscript 𝑖(𝑖 = 1,2,3)  refers to the 

layers and quarter planes, respectively. Thickness in z-

direction is taken to be unit.  

The analytical solution of the problem considered by 

Yaylaci and Birinci (2013) is summarized in the following. 

The stress and the displacement expressions of the layers 

are obtained using theory of elasticity and integral 

transform technique as follows. 
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(5) 

Where 𝑢𝑖(𝑥, 𝑦)  and v𝑖(𝑥, 𝑦)   are the x and y 

components of the displacement vector and 

𝜎𝑥(𝑥, 𝑦), 𝜎𝑦(𝑥, 𝑦), 𝜏𝑥𝑦(𝑥, 𝑦) are the stress components of 

the layers. 𝜅𝑖 = (3 − 4𝜈𝑖) for plane strain and 𝜈𝑖  is the 

Poisson’s ratio. 𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖  and 𝐷𝑖  (𝑖 = 1,2)  are the 

unknown coefficients for the layers which will be 

determined from boundary conditions of the problem.  

The stress and displacement expressions for the quarter 

planes can be written as follows 
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Where, 𝜎𝑟(𝑟, 𝜃), 𝜎𝜃(𝑟, 𝜃), 𝜏𝑟𝜃(𝑟, 𝜃)  are the stress 

components for the quarter planes, 𝑢𝜃  is the transverse 

component of displacement normal to the radial direction 

and 𝜙𝑀 is Airy stress function. 

Boundary conditions of the receding contact problem for 

the elastic layers can be written as 
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For the quarter planes, the boundary conditions in polar 

coordinates are 

2( , ) ( ),( ),( 0)r p r c r d  = −   =  (21) 

( , ) 0,( ), ( 0)r r d r  =   =  (22) 

2( , ) 0,(0 ),( )r r 
  =   =  (23) 
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2( , ) 0,(0 ),( )r r r 
  =   =  (24) 

Equilibrium conditions of the problem may be 

expressed as 

1 1 1 0( ) 2
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Where 𝑝0  is a known distributed load, 𝑝1(𝑥)  and 

𝑝2(𝑥) are the unknown contact pressures on the contact 

areas (𝑏) and (𝑑 − 𝑐), respectively.  

By using boundary conditions (11-18), 𝐴𝑖, 𝐵𝑖 , 𝐶𝑖  and 

𝐷𝑖  (𝑖 = 1,2) coefficients can be determined in terms of 

𝑝1(𝑥) and 𝑝2(𝑥). Substituting Eqs. (21-24) into stress and 

displacement expressions (6-10) and by using Mellin 

transform technique, expression 𝜕𝑢𝜃 𝜕𝑟⁄  in Eq. (19) is 

obtained. By substituting 𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖  and 𝐷𝑖  (𝑖 = 1,2) 

coefficients and expression 𝜕𝑢𝜃 𝜕𝑟⁄  into Eqs. (19-20), 

after some routine manipulations and using the symmetry 

conditions 𝑝1(𝑥) = 𝑝1(−𝑥) , 𝑝2(𝑥) = 𝑝2(−𝑥)  one may 

obtain following the system of singular integral equations. 
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Where 𝑀11(𝑥1, 𝑡1) , 𝑅11(𝑥1, 𝑡1) , 𝑅12(𝑥1, 𝑡2) , 

𝑀21(𝑥2, 𝑡1), 𝑀22(𝑥2, 𝑡2), 𝑘22(𝑥2, 𝑡2), 𝑀(𝛼) are explained 

by Yaylaci and Birinci (2013). 

The numerical solutions of the integral equations will be 

achieved by Gauss-Jacobi Integration Formulation which is 

given in Krenk (1975) and Erdogan et al. (1973).  

To simplify the numerical analysis of the integral 

equation, the following dimensionless quantities can be 

introduced. 
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Substituting these dimensionless quantities given in (29-

31) into (25-28) these equations may be written as follows 
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Where,

11 11 12 21 22 22( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( )M s r R s r R s r M s r M s r k s r M s  

are explained by Yaylaci and Birinci (2013). 

One may be noticed that because of the smooth contact 

at the end point 𝑏, the unknown function 𝑝1(𝑥) is zero at 

the ends, thereby the index of integral equation (33) is “-1”. 

Its solution may be expressed as 
1

22
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Using the Gauss-Jacobi integration formulas, the 

integral Eq. (33) and equilibrium conditions (35) become 
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𝑟1𝑖  and 𝑠1𝑘 are the roots of the related Jacobi 

polynomials and 𝑊1𝑖
𝑁 is the weighting constant 
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One may be noticed that because of the smooth contact 

at the end point 𝑑, unknown functions 𝑝2(𝑥) is zero at the 

ends. Unknown function 𝑝2(𝑥) is infinite in the point 𝑐 

which in the interior edge of the quarter plane, thereby the 

index of integral Eq. (34) is “0”. Its solution may be 

expressed as 
1
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Where 𝛽2 can be obtained as follows. 
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Using the Gauss-Jacobi integration formulas the integral 

Eq. (34) and equilibrium conditions (36) become 
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Where 𝑟2𝑖 and 𝑠2𝑘 are the roots of the related Jacobi 

polynomials and 𝑊2𝑖
𝑁 is the weighting constant 
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It can be seen that the extra Eqs. in (38) and (45) 

correspond to the consistency condition of the original 

integral Eqs. (33) and (34). It may be also shown that the 

(𝑁 2⁄ + 1)-th equations in (38) and (45) are automatically 

satisfied. Thus, Eqs. (38), (39), (45) and (46) give 2𝑁 + 2 

algebraic equations to determine the 2𝑁 + 2  unknowns 

𝐺1(𝑟1𝑖)  and 𝐺2(𝑟2𝑖) , 𝑏  and (𝑑 − 𝑐). The system of 

equations are linear 𝐺1(𝑟1𝑖)  and 𝐺2(𝑟2𝑖) , but highly 

nonlinear in 𝑏  and (𝑑 − 𝑐). Therefore, an interpolation 

and iteration scheme had to be used to obtain these two 

unknowns. 

 

 

3. Application of the artificial neural network 
 

Artificial neural network is a logical programming 

technique developed by imitating the working mechanism 

of brain. It makes decisions, draws conclusions, achieves 

results from the existing information in case of insufficient 

data, and accepts continuous data input, learns and 

remembers.  

The architecture is composed of a number of basic units 

called neuron or processing unit. Neurons are functionally 

simple, but highly interconnected, which are normally 

organized into layers (Dawson and Wilby 2009). Every 

neuron may have several input paths. The weighted values 

of the input paths are combines by a simple summation. The 

combined input-weight values are then modified by 

activation function during training to better reproduce 

output (Çakıroğlu et al. 2005). Fig. 2 shows the basics of an 

artificial neuron. 

A general artificial neural network system consists of 

layers. The input layer receives information from the 

external environment. There is no transaction in this layer. 

The hidden layer processes the information from the input 

layer. It can contain more than one layer. The output layer 

takes the weighted sum of the outputs of all hidden layer 

neurons and produces the output of the model. Each neuron 

is independent in its layer but is connected to all neurons in 

a next layer with weights (Ç akıroğlu et al. 2005). The 

number of neurons in the input and output layers is decided 

according to the requirements in the problem but there is no 

rule in determining the number of process elements in the 

hidden layers. The best generalization performance is 

obtained by trial and error against network complexity (Le 

Cun et al. 1990). 

 

Fig. 2 Artificial neuron 

 

 

Neural network learning process takes place in two 

ways; such as supervised and unsupervised. MLP is the 

most popular supervised learning approach due to its clear 

architecture and comparably simple algorithm (Yan et al. 

2006). After the MLP architecture has been determined, the 

connection weights of the network must be computed with a 

training procedure based on training models and desired 

output.  

MLP should normalize the values in the dataset for best 

results. If the training set [0.1-0.9] was normalized within 

the range that will remain within the sigmoid activation 

function. It was observed that the training results with the 

desired sensitivity were reached quickly (Zurada 1992). 

 

ANN architecture 

The input data used for the training of the network has 

been obtained from theoretical solutions. Network models 

were constructed using 6 process pattern. These input 

variables are, 

a/h2: Length of distributed load 

c/h2: Distance between the two quarter planes 

h1/h2: Ratio of lower and upper elastic layer heights 

μ2/μ1: Ratio of upper and lower elastic layer shear 

modulus 

μ3/μ2: Ratio of quarter planes and lower elastic layer 

shear modulus 

κ1=κ2=κ3: Elastic constants of the layers and quarter 

planes 

The output layer consists of 4 different processing 

elements. These are: 
max

1 0( )P x P : Dimensionless parameter related to the 

maximum contact pressure between two layers  
max

2 0( )P x P : Dimensionless parameter related to the 

maximum contact pressure between the lower layer and 

quarter plane 

b/h2: Dimensionless parameter related to the contact 

areas between two layers  

(d−c)/h2: Dimensionless parameter related to the contact 

areas between the lower layer and quarter plane.  

The MLP used in this study is consisted of three-layer 

including an input layer, a hidden layer, and an output layer. 

In this study Statistica 12 applications were used for data 

processing and the design of artificial neural networks. 173  
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Table 1 Test parameters 

𝑐 ℎ2⁄  𝜅2 = 𝜅3 
𝑎

ℎ2
 

ℎ1

ℎ2
 

𝜇2

𝜇1
 

𝜇3

𝜇2
 

0.01 1.25 0.1 0.1 0.25 0.25 

0.02 2.0 0.2 0.2 0.5 0.5 

0.03 2.5 0.3 0.3 0.75 0.75 

0.04  0.4 0.4 1 1 

0.05  0.5 0.5 2 2 

0.075  0.6 0.6 3 4 

0.1  0.7 0.7 4 5 

0.2  0.8 0.8 5 8 

0.3  0.9 0.9 6 10 

0.4  1 1 7  

0.5   1.1 8  

0.6   1.2 9  

0.7   1.3 10  

0.75   1.4   

0.8   1.5   

0.9   1.6   

1   1.7   

   1.8   

   1.9   

   2   

 

 

patterns which are different combinations of the values in 

Table 1 are solved theoretically to form the training set. 

Only 18 input values and the desired outputs of the 

validation set are given in Appendix 1. Variables were 

normalized to the interval [0, 1]. The input and output 

values of each patterns were normalized at different ranges. 

The input variables were divided randomly into 3 groups by 

the program: 70% for learning group, 15% for testing group 

and %15 for validation group.  

The number of neurons in a hidden layer will 

significantly influence the network’s ability to generalize 

from the training data to the unknown patterns (Kavzoglu, 

2001). Some problems require more than one hidden layer 

to train a network properly, whereas others require only one 

hidden layer. Accuracy and convergence speed are the two 

main parameters of a network. In our study network is 

tested for different number of hidden layer units. 2-10 units 

are used in the hidden layer to find optimum number.  

The weights are initialized into randdom values between 

0.0001 and 0.001. Then compared the appropriateness of 

both available error functions, the sum of squares and 

entropy, during training. After selecting the network type, 

network activation functions which transfer the incoming 

signals of the previous layer to the next layer using a 

mathematical function are selected. In our work, we  

 

 

 

Fig. 3 System architecture 

 

 

selected all function types (Identity, Logistic sigmoid, 

Hyperbolic tangent, Exponential, Softmax, and Gaussian) 

for input and output. The output layer consisted of nodes. 

The architecture of the overall decision support system is 

illustrated in Fig. 3. Then network architectured with the 

BFGS (Broyden fletcher goldfarb shanno) algoritm. Finally, 

neural network architecture was formed with the variables 

selected in the previous step, and 5000 networks were 

trained and retained for further evaluation. There are many 

computer programs used this method. In this study, a 

computer program written in C++ language was used to 

calculate the contact areas and contact pressures. A flow 

chart of the ANN design is shown in Appendix 2. 

 

 

4. Numerical results 
 

In this study, whether neural network analysis can be 

used to estimate contact pressures and contact areas by 

using a/h2, c/h2, h1/h2, μ2/μ1, μ3/μ2 and κ1=κ2=κ3. Results 

show that neural network analysis appears to be robustly 

capable of predicting the contact pressures and contact areas 

correctly. This option offers a simple and affordable 

approach for quick estimation.  

The MLP network type, with the error term sos 

produced superior networks. The most appropriate network 

configuration was 10 units for each hidden layer with tanh 

activation function. The quality of the network was 

evaluated based on the error rate of the validation group, as 

described in Adamus-Bialek et al (2017). The best of the 

neural networks recognized are shown in Table 2. 

The relative error is determined as 

100Actual ANN
rel

Actual

O O
e x

O

−
=  (50) 

 

 

Table 2 The characteristics of artificial networks that recognize 𝑏 ℎ2⁄ , (𝑑 − 𝑐) ℎ2⁄ , 𝑃1
max(𝑥) 𝑃0⁄ , 𝑃2

max(𝑥) 𝑃0⁄  

Network MLP 
Error in 

learning (%) 

Error in learning 

testing (%) 

Error in learning 

validation(%) 

Learning 

algorithm 

Error 

function 

Activation function 

in hidden layer 

Activation function 

in output layer 

N 1 6-10-1 1.16 0.04 5.15 BFGS 514 SOS Tanh Exponential 

N 2 6-10-1 1.91 0 0 BFGS 280 SOS Tanh Identity 

N 3 8-10-1 4.34 2.15 0 BFGS 601 SOS Tanh Identity 

N 4 8-10-1 0 0.02 0 BFGS 368 SOS Logistic Exponential 

BFGS: Broyden fletcher goldfarb shanno algorithm, SOS: Sum of square, Tanh: hyperbolic tangent function 
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Table 3 Variations of the contact areas with distance 

between the two quarter planes (a/h2=1, h1/h2=1, μ2/μ1=2, 

μ3/μ2=2, κ1=κ2=κ3=2)  

𝑐

ℎ2
 

𝑏 ℎ2⁄  (𝑑 − 𝑐) ℎ2⁄  

Actual 

Output 

ANN 

Output 
erel 

Actual 

Output 

ANN 

Output 
erel 

0.2 1.6153 1.614847 0.0280 1.5666 1.565726 0.0558 

0.4 1.6279 1.628649 0.0460 1.2953 1.295919 0.0478 

0.8 1.7205 1.721453 0.0554 0.7762 0.777329 0.1455 

1.0 1.8247 1.824764 0.0035 0.5812 0.581814 0.1056 

1.2 1.9726 1.966988 0.2845 0.4381 0.437074 0.2342 

1.5 2.2614 2.297653 1.6031 0.2976 0.284811 4.4974 

 

 

Where Oactual and OANN are the theoretical solution and 

ANN prediction of the 𝑏 ℎ2⁄ , (𝑑 − 𝑐) ℎ2⁄ , 𝑃1
𝑚𝑎𝑥(𝑥) 𝑃0⁄ , 

𝑃2
𝑚𝑎𝑥(𝑥) 𝑃0⁄ . 

The maximum relative errors of the a/h2 and (d-c)/h2 are 

calculated as 4.6698% and 5.3154% (Fig. 4). 

The testing set is used to evaluate the capacity of the 

trained ANN structure. Variations of the contact areas 

(𝑏 ℎ2⁄ ) and ((𝑑 − 𝑐) ℎ2⁄ ) with distance between the two 

quarter planes (𝑐 ℎ2⁄ ) , with elastic constants (𝜇2 𝜇1⁄ ) , 

with length of distributed load (𝑎 ℎ2)⁄ , with (ℎ1 ℎ2⁄ ), and 

with 𝜅2 = 𝜅3 are given in Table 3 to Table 7, respectively. 

The maximum relative errors of the 𝑃1
max(𝑥) 𝑃0⁄  and 

𝑃2
max(𝑥) 𝑃0⁄  in the testing set are calculated as 4.874% and 

4.690%, respectively and Fig. 4 is an expression of the 

learning capacity of the network on the 𝑃1
max(𝑥) 𝑃0⁄  and 

𝑃2
max(𝑥) 𝑃0⁄ . Each point stands for a testing pattern output. 

The nearer the points gather around the diagonal, the better 

are the learning results.  

In the following, the trained architecture is used to 

predict the effect of some factors on the dimensionless 

parameters related to the contact areas b/h2 and (d-c)/h2 and 

the results are compared with theoretical solutions. 

In Table 3, the contact areas between two elastic layers 

(𝑏 ℎ2⁄ ) and between the lower layer and quarter planes 

((𝑑 − 𝑐) ℎ2⁄ ) are analyzed by depending on the various of 

distance value between the two quarter planes (𝑐 ℎ2⁄ ). 

 

Table 4 Variations of contact areas with elastic constant 

(a/h2=1, c/h2=1, h1/h2=1, μ3/μ2=2, κ1=κ2=κ3=2) 

𝜇2

𝜇1
 

𝑏 ℎ2⁄  (𝑑 − 𝑐) ℎ2⁄  

Actual 

Output 

ANN 

Output 
erel 

Actual 

Output 

ANN 

Output 
erel 

2 1.8247 1.824764 0.0035 0.5812 0.581814 0.1056 

3 1.7370 1.655886 4.6698 0.5364 0.525960 1.9463 

4 1.6799 1.632288 2.8342 0.5132 0.522420 1.7966 

6 1.6085 1.595044 0.8366 0.4892 0.515203 5.3154 

8 1.5663 1.576457 0.6485 0.4776 0.502680 5.2513 

10 1.5382 1.555033 1.0943 0.4701 0.481466 2.4178 

 

Table 5 Variations of contact areas with length of distributed 

load (c/h2=1, h1/h2=1, μ2/μ1=2, μ3/μ2=2, κ1=κ2=κ3=2) 

𝑎

ℎ2
 

𝑏 ℎ2⁄  (𝑑 − 𝑐) ℎ2⁄  

Actual 

Output 

ANN 

Output 
erel 

Actual 

Output 

ANN 

Output 
erel 

0.2 1.7256 1.723608 0.1154 0.4756 0.454789 4.3757 

0.4 1.7331 1.731224 0.1082 0.4874 0.484304 0.6352 

0.8 1.7784 1.778814 0.0233 0.5385 0.538148 0.0654 

1.2 1.8912 1.902573 0.6014 0.6388 0.650509 1.8330 

1.6 2.0912 2.081604 0.4589 0.8139 0.831405 2.1508 

2.0 2.3786 2.474297 4.0232 1.0983 1.129139 2.8079 

 

 

With increasing distance between the two quarter planes, 

the contact area between the elastic layers increases. On the 

contrary, the contact area between the lower layer and two 

quarter planes decreases. 

Table 4 shows variations of the contact areas b/h2 and 

(d-c)/h2 with ratios of the elastic constants (𝜇2 𝜇1⁄ ). In 

Table 2, the contact areas between layers b/h2 and between 

lower layer quarter planes (d-c)/h2 decrease with increasing 
(𝜇2 𝜇1⁄ ). 

Table 5 shows the variation of size of the contact areas 

b/h2 and (d-c)/h2 for various values of length of distributed 

load (𝑎 ℎ2)⁄ . With increasing length of distributed load, the 

contact area between the elastic layers and contact area 

between the lower layer and the two quarter planes increase.  

 

  

 

 (a) (b)  

Fig. 4 Comparison of contact areas obtained from ANN and theoretical solution 
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Table 6 Variations of contact areas with h1/h2 (a/h2=1, 

c/h2=1, μ2/μ1=2, μ3/μ2=2, κ1=κ2=κ3=2)   

ℎ1

ℎ2
 

𝑏 ℎ2⁄  (𝑑 − 𝑐) ℎ2⁄  

Actual 

Output 

ANN 

Output 
erel 

Actual 

Output 

ANN 

Output 
erel 

0.2 1.1043 1.065039 3.5553 0.4177 0.420590 0.6919 

0.4 1.2441 1.199500 3.5849 0.4295 0.433581 0.9502 

0.8 1.6176 1.656844 2.4261 0.5082 0.527338 3.7658 

1.2 2.0302 1.975803 2.6794 0.6774 0.666778 1.5681 

1.6 2.4086 2.311551 4.0293 0.9360 0.893948 4.4927 

2.0 2.7446 2.738855 0.2093 1.2749 1.268815 0.4773 

 

 

 

Variations of the contact areas b/h2 and (d-c)/h2 with 

h1/h2 are given in Table 6. In the table, as h1/h2 increases, 

the contact areas b/h2 and (d-c)/h2 increase. 

In Table 7, the contact areas between two elastic layers 

b/h2 and between the lower layer and quarter planes (d-c)/h2 

are analyzed for quantities of the materials (𝜅2, 𝜅3). With 

increasing quantities of the materials, the contact areas b/h2 

and (d-c)/h2 increase. 

Table 7 Variations of contact areas with κ2=κ3 (a/h2=1, 

c/h2=1, μ2/μ1=2, μ3/μ2=2, κ1=2, h1/h2=1) 

𝜅2

= 𝜅3 

𝑏 ℎ2⁄  (𝑑 − 𝑐) ℎ2⁄  

Actual 

Output 

ANN 

Output 
erel 

Actual 

Output 

ANN 

Output 
erel 

0.5 1.6799 1.680959 0.0630 0.5132 0.499742 2.6224 

1.0 1.7372 1.732545 0.2680 0.5364 0.526762 1.7968 

1.5 1.7846 1.782935 0.0933 0.5591 0.554161 0.8834 

2.0 1.8247 1.824764 0.0035 0.5812 0.581814 0.1056 

2.5 1.8593 1.856492 0.1510 0.6028 0.609599 1.1279 

2.75 1.8750 1.865939 0.4833 0.6134 0.623503 1.6470 

 

 

 

Although contact pressure between the layers reaches its 

maximum value at the axis of symmetry, its value is zero at 

the endpoints of contact (𝑥 = ±𝑏). Furthermore, contact 

pressures are zero at the points (𝑥 = ±𝑑)  where the 

quarter planes are separated from the lower layer and, 

theoretically, go to infinity at the inner edge (𝑥 = ±𝑐) of 

the quarter planes. 

Fig. 6 demonstrates the variation of 𝑃1
max(𝑥) 𝑃0⁄  and  

 

  

 

 (a) (b)  

Fig. 5 Comparison of obtained 𝑃1
max(𝑥) 𝑃0⁄  and 𝑃2

max(𝑥) 𝑃0⁄  from ANN prediction and theoretical solution 

 

 

  

 

Fig. 6 Variations of the contact pressures 𝑃1
max(𝑥) 𝑃0⁄  and 𝑃2

max(𝑥) 𝑃0⁄  with distance between the two quarter 

planes (𝑐 ℎ2⁄ ), (𝑎 ℎ2 = 1, ℎ1 ℎ2 = 1⁄ , 𝜇2 𝜇1 = 2, 𝜇3 𝜇2 = 2, 𝜅1 = 𝜅2⁄⁄⁄ = 𝜅3 = 2) 
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𝑃2
max(𝑥) 𝑃0⁄  with 𝑐 ℎ2⁄  = (0.20, 0.40, 0.80, 1.00, 1.20, 

1.50) for (𝑎 ℎ2 = 1, ℎ1 ℎ2 = 1⁄ , 𝜇2 𝜇1 = 2, 𝜇3 𝜇2 = 2,⁄⁄⁄  

𝜅1 = 𝜅2 = 𝜅3 = 2). It is seen that as 𝑐 ℎ2⁄  increases, while 

the other input values are fixed, 𝑃1(𝑥) 𝑃0⁄  decrease and 

𝑃2(𝑥) 𝑃0⁄  increase. Pattern input values are also selected 

different from those in the train and test sets. Maximum 

relative errors are 1.770% and 3.132%, respectively. The 

contact pressure distributions for various values of c/h2 are 

shown in Fig. 6. With increasing distance between the two 

quarter planes, the contact pressure 𝑃1
max(𝑥) 𝑃0⁄  

decreases. On the contrary, the contact pressure 

𝑃2
max(𝑥) 𝑃0⁄  increases. 

Fig. 7 demonstrates the variation of 𝑃1
max(𝑥) 𝑃0⁄  and 

𝑃2
max(𝑥) 𝑃0⁄  with elastic constants 

𝜇2 𝜇1 = 2.00, 3.00, 4.00, 6.00, 8.00, 10.00⁄  f o r  a / h 2 = 1 , 

c/h2=1, h1/h2=1, 𝜇3 𝜇2 = 2⁄ , 𝜅1 = 𝜅2 = 𝜅3 = 2. It is seen 

that as 𝜇2 𝜇1⁄  increases, while the other input values are 

fixed, 𝑃1
max(𝑥) 𝑃0⁄  and 𝑃2

max(𝑥) 𝑃0⁄  increase. Pattern 

input values are also selected different from those in the 

train and test sets. Maximum relative errors are 2.378% and 

2.199%, respectively. Fig. 7 shows 𝑃1
max(𝑥) 𝑃0⁄  and 

 

 

 

𝑃2
max(𝑥) 𝑃0⁄  the dimensionless maximum contact pressure 

distributions. In the event of increase lower layer and upper 

layer ratio shear modules, it is indicated that the contact 

pressure distributions at the contact surfaces between two 

elastic layers and between the lower layer and quarter plane 

increase. 

Fig. 8 shows the variation of 𝑃1
max(𝑥) 𝑃0⁄  and 

𝑃2
max(𝑥) 𝑃0⁄  with length of distributed load a/h2=0.20, 

0.40, 0.80, 1.20, 1.60, 2.00 for 

𝑐 ℎ2 = 1, ℎ1 ℎ2 = 1⁄ , 𝜇2 𝜇1 = 2, 𝜇3 𝜇2 = 2, 𝜅1 = 𝜅2⁄⁄⁄ =
𝜅3 = 2. It is seen that as 𝑎 ℎ2⁄  increases, while the other 

input values are fixed, 𝑃1
max(𝑥) 𝑃0⁄  and 𝑃2

max(𝑥) 𝑃0⁄  

increase. Pattern input values are also selected different 

from those in the train and test sets. Maximum relative 

errors are 4.288% and 3.587%, respectively. Fig. 8 shows 

the maximum contact pressure distributions 𝑃1
max(𝑥) 𝑃0⁄  

and 𝑃2
max(𝑥) 𝑃0⁄  with variations of load width a/h2. In the 

event of increased load width, it is indicated that the contact  

pressure distributions at the contact surfaces between the 

two elastic layers and between the lower layer and quarter 

plane increase. 

 

  

 

Fig. 7 Variation of the contact pressures 𝑃1
max(𝑥) 𝑃0⁄  and 𝑃2

max(𝑥) 𝑃0⁄  with elastic constants 
(𝜇2 𝜇1⁄ ),(𝑎 ℎ2 = 1, 𝑐 ℎ2 = 1, ℎ1 ℎ2 = 1, 𝜇3 𝜇2 = 2, 𝜅1 = 𝜅2 = 𝜅3 = 2⁄⁄⁄⁄ ) 

 

  

 

Fig. 8 Variation of the contact pressures 𝑃1
max(𝑥) 𝑃0⁄  and 𝑃2

max(𝑥) 𝑃0⁄  with length of distributed load (𝑎 ℎ2)⁄ , 

(𝑐 ℎ2 = 1, ℎ1 ℎ2 = 1⁄ , 𝜇2 𝜇1 = 2, 𝜇3 𝜇2 = 2, 𝜅1 = 𝜅2⁄⁄⁄ = 𝜅3 = 2) 
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Variation of 𝑃1
max(𝑥) 𝑃0⁄  and 𝑃2

max(𝑥) 𝑃0⁄  with 

ℎ1 ℎ2⁄  = (0.20, 0.40, 0.80, 1.20, 1.60, 2.00) for 

𝑎 ℎ2 = 1, 𝑐 ℎ2 = 1⁄ , 𝜇2 𝜇1 = 2, 𝜇3 𝜇2 = 2, 𝜅1 = 𝜅2⁄⁄⁄ =
𝜅3 = 2  is given in Fig. 9. It is seen that as ℎ1 ℎ2⁄  

increases, while the other input values are fixed, 

𝑃1
max(𝑥) 𝑃0⁄  and 𝑃2

max(𝑥) 𝑃0⁄  decrease. Pattern input 

values are also selected different from those in the train and 

test sets. Maximum relative errors are 4.874% and 4.690%, 

respectively. As seen in Fig. 9, the contact pressure 

𝑃1
max(𝑥) 𝑃0⁄  decreases and  𝑃2

max(𝑥) 𝑃0⁄  increases with 

increasing of h1/h2. 

Variation of 𝑃1
max(𝑥) 𝑃0⁄  and 𝑃2

max(𝑥) 𝑃0⁄  with 𝜅2 =
𝜅3  = (0.50, 1.00, 1.50, 2.00, 2.50, 2.75) for 

𝑎 ℎ2 = 1, 𝑐 ℎ2 = 1⁄ , 𝜇2 𝜇1 = 2, 𝜇3 𝜇2 = 2, 𝜅1⁄⁄⁄ =
2, ℎ1 ℎ2 = 1⁄  is given in Fig. 10. It is seen that as 𝜅2, 𝜅3 

increases, while the other input values are fixed, 

𝑃1
max(𝑥) 𝑃0⁄  and 𝑃2

max(𝑥) 𝑃0⁄  decrease. Pattern input 

values are also selected different from those in the train and 

test sets. Maximum relative errors are 3.025% and 1.048%, 

respectively. The maximum contact pressure distributions 

for various values of 𝜅2 = 𝜅3 are shown in Fig. 10. In Fig. 

10, 𝑃1
max(𝑥) 𝑃0⁄  and 𝑃2

max(𝑥) 𝑃0⁄  decrease with 

increasing 𝜅2 = 𝜅3. 

 

 
 
5. Conclusions 

 

The main purpose of this paper is to present a 

comparative study of the analytical method and the artificial 

neural network method for analyzing the receding contact 

problems. In this sense, a the MLP consisted of three-layer 

has been developed and verified to be very sufficient in 

predicting the dimensionless parameters related to the 

maximum contact pressures and contact areas of receding 

contact problem for two elastic layers whose elastic 

constants and heights are different supported by two elastic 

quarter planes. The training and test data sets for the contact 

areas, contact areas and the contact pressure distributions 

are derived analytically from the basic equations of 

elasticity. It is clearly observed that, number of processing 

elements in the hidden layer, initial weight values, learning 

rate and momentum term have considerable effects on the 

training. Dimensionless contact pressure distributions 

between two elastic layers 𝑝1(𝑥) 𝑝0⁄  and between the 

quarter planes and the lower layer 𝑝2(𝑥) 𝑝0⁄ , contact areas 

(𝑏 ℎ2)⁄  and ((𝑑 − 𝑐) ℎ2)⁄  and the normal stress 

distributions 𝜎𝑥(0, 𝑦) 𝑝0⁄  and 𝜎𝑦(0, 𝑦) 𝑝0⁄  are derived for 

various dimensionless quantities, such as 𝑎 ℎ2⁄ , 𝑐 ℎ2⁄ , 

 

  

 

Fig. 9 Variation of the contact pressures 𝑃1
max(𝑥) 𝑃0⁄  and 𝑃2

max(𝑥) 𝑃0⁄  with 

(ℎ1 ℎ2⁄ ), (𝑎 ℎ2 = 1, 𝑐 ℎ2 = 1⁄ , 𝜇2 𝜇1 = 2, 𝜇3 𝜇2 = 2, 𝜅1 = 𝜅2⁄⁄⁄ = 𝜅3 = 2) 

 

  

 

Fig. 10 Variation of the contact pressures 𝑃1
max(𝑥) 𝑃0⁄  and 𝑃2

max(𝑥) 𝑃0⁄  with                                     

𝜅2 = 𝜅3, (𝑎 ℎ2 = 1, 𝑐 ℎ2 = 1⁄ , 𝜇2 𝜇1 = 2, 𝜇3 𝜇2 = 2, 𝜅1⁄⁄⁄ = 2, ℎ1 ℎ2 = 1⁄ ) 
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ℎ1 ℎ2⁄  and 𝜇2 𝜇1⁄ . Obtained results show that load width, 

distance between the two quarter planes, material properties 

of layers and quarter planes and layers height ratio have 

considerable effect on the contact areas, the normal stress 

distribution and the contact pressure distribution. In 

addition, the part of obtaining results was shown that the 

artificial neural networks reduce the overall computation 

time required when compared with existing theoretical 

analysis methods. As a result of comparing study, it is 

shown that the artificial neural network predictions agree 

well with that of theoretical solutions in Figs. 4-10. 

Consequently, based on the figures above, application of 

artificial neural networks to contact problems can be 

practical especially for the time-consuming problems which 

require interpolation and iteration in theoretical solution. In 

this manner, the trained network can be used for on-line 

prediction of desired values of receding contact problems. 

ANNs may be applied to discontinuous contact problems 

successfully for future works.  
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Appendix 1. Validation patterns 
 

 

 
Appendix 2. Flow chart of the ANN design 
 

 

 Input parameters Desired outputs 

No 
𝑐

ℎ2
 𝜅2 = 𝜅3 

𝑎

ℎ2
 

ℎ1

ℎ2
 

𝜇2

𝜇1
 

𝜇3

𝜇2
 

𝑏

ℎ2
 

(𝑑 − 𝑐)

ℎ2
 

𝑃1
𝑚𝑎𝑥(𝑥)

𝑃0
 

𝑃2
𝑚𝑎𝑥(𝑥)

𝑃0
 

1 0.01 1.25 0.5 1 2 2 1.2248 1.5307 0.68544 0.50220 

2 0.05 1.25 0.5 1 2 2 1.2286 1.4858 0.68298 0.51430 

3 0.1 1.25 0.5 1 2 2 1.2341 1.4276 0.67914 0.64447 

4 0.5 2 0.1 1 2 2 1.3199 0.9073 0.13846 0.50419 

5 0.5 2 0.2 1 2 2 1.3303 0.9148 0.27101 0.99708 

6 0.5 2 0.3 1 2 2 1.3473 0.9267 0.39271 1.46863 

7 0.5 2 0.5 0.1 2 2 0.5509 0.7248 1.01984 3.42441 

8 0.5 2 0.5 0.2 2 2 0.6103 0.7279 1.01980 3.40318 

9 0.5 2 0.5 0.3 2 2 0.6796 0.7356 1.01973 3.35071 

10 0.5 2 0.5 1 0.25 2 2.2208 1.6374 0.31039 1.16649 

11 0.5 2 0.5 1 0.5 2 1.8948 1.3176 0.38425 1.56029 

12 0.5 2 0.5 1 0.75 2 1.7324 1.1784 0.44749 1.79972 

13 0.5 2 0.5 1 2 1 1.5334 1.1710 0.57186 1.06761 

14 0.5 2 0.5 1 2 2 1.4010 0.9652 0.59161 2.31115 

15 0.5 2 0.5 1 2 4 1.3296 0.8365 0.60628 3.00229 

16 1 1.25 0.5 1 2 2 1.6478 0.4653 0.55918 5.84683 

17 1 2 0.5 1 2 2 1.7398 0.4965 0.51467 5.46004 

18 1 2.5 0.5 1 2 2 1.7862 0.5169 0.48912 5.23301 
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