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1. Introduction  
 

Anisotropic plates and lightweight composites are 

widely used in modern engineering   applications  such 

as offshore structures, aircrafts, machines, pressure vessels, 

buildings, and automobiles (Chien and Chen 2005, 

Katsikadelis 2014). Due to their practical importance, they 

have received significant attention from the researchers 

(e.g., Jemielita and Kozyra 2018, Draiche et al. 2019, 

Abualnour et al. 2019, Addou et al. 2019). The studies 

involving anisotropy have generally dealt with orthotropic 

or transversely isotropic plates (e.g., Akgoz and Civalek 

2011, Zenkour 2011, Temel and Sahan 2013, Bourad et al. 

2016, Haciyev et al. 2019). This is partly because 

orthotropic plates are frequently encountered in civil 

infrastructure systems and other structural applications due 

to their advantageous features such as high ratio of stiffness 

and strength to weight, and partly because the 

computational effort required for modelling orthotropy is 

less than that of general anisotropy (Thai and Kim 2012). 

Soil-structure interaction is a complex contact problem 

which arises when a structure or a machine is supported by 

a deformable medium (Levinson 1983, Bhardwaj et al. 

2007, Kargaudas et al. 2019). Various mathematical models 

have been developed to understand the flexural response of 

structures on elastic foundation (Radeş 1971). Linear 

models have mostly been considered in the vast literature 

(e.g., Tajeddini et al. 2011, Yas and Tahouneh 2012, 

Jędrysiak and Kaźmierczak-Sobińska 2015, Guminiak and 

Knitter-Piątkowska 2018, Altekin 2019). However, 

nonlinear models have been investigated in the recent 
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publications (Dumir 1985, Nassar and Labib 1988, Chien 

and Chen 2005, Jayachandran et al. 2008, Muradova and 

Stavroulakis 2012, Civalek 2013, Najafi et al. 2016, 

Sofiyev and Kuruoğlu 2017, Sofiyev et al. 2017).  

The governing differential equations of plates are 

characterized by linear or nonlinear PDEs for which 

generally, it is difficult to find the exact solutions. “Linear 

bending theories are based on the assumption that the 

deflections are small compared to the thickness of the plate. 

However, in many engineering applications, the deflections 

and the thickness may be of the same order of magnitude” 

(Striz et al. 1988). Thus, in case of large deflections, the 

load and the displacements can no longer be assumed to be 

proportional (Zheng and Zhou 2007). Therefore, inevitably 

there is a necessity for nonlinear analysis (Alwar and Reddy 

1979) for which very often closed form theoretical solutions 

are unavailable (Zong and Zhang 2009). Hence, numerous 

numerical methods have been used in the studies involving 

large deformation (e.g., Singh et al. 2008, Sepahi et al. 

2010, Keleshteri et al. 2019). 

Analysis of circular plates is one of the classic subjects 

in theory of elasticity (Wang et al. 2016). Besides, from 

engineering point of view circular plates are important and 

essential structural members (Temel and Noori 2020). Most 

of the publications in the extensive literature have focused 

on axisymmetric analysis (e.g., Li et al. 2008, Rad 2012, 

Lal and Ahlawat 2015, Temel and Noori 2020, Vivio and 

Vullo 2010, Wang et al. 2016, Yıldırım and Tutuncu 2018). 

The bending response of orthotropic plates is more 

complicated than that of isotropic plates due to the material 

anisotropy (Thai and Kim 2012), and the classical plate 

theory (CPT) does not yield sufficiently accurate results if 

the plate is not thin (Szilard 2004). The structure should be 

serviceable when subjected to design loads, and a part of 

serviceability can be achieved by imposing suitable 
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limitations on the deflections (Szilard 2004). Geometrically 

nonlinear axisymmetric bending of moderately thick 

circular plates subjected to uniform transverse pressure was 

examined in the current study for three types of material: (i) 

isotropic, (ii) transversely isotropic, and (iii) orthotropic. A 

comprehensive parametric investigation was made to 

observe the combined effects of the material properties and 

the boundary conditions on circular plates in contact with a 

nonlinear three-parameter elastic foundation. First, for a 

given external load, the numerical solutions were obtained. 

Next, since the maximum deflection develops at the center 

of the plate, for a given central deflection, the external load 

was computed. Shear deformable circular plates were 

studied numerically by means of FDM and DQM on the 

basis of Mindlin plate theory (FSDT) with Von Karman 

strain field. The fundamentals and the background of FDM 

and DQM were given in Appendix A. The algorithm was 

coded by the author in Matlab. The accuracy of the 

numerical procedure was validated through comparison 

studies. Computer implementations were carried out to 

investigate the influence of the thickness parameter, the 

edge conditions, the material parameters, and the 

foundation parameters on the deflection, on the stress 

resultants, and on the external load. Numerical results were 

reported and graphical results were discussed. 

 

 

2. Formulation 
 

2.1 Geometry of the plate 
 

The region occupied by the plate in cylindrical 

coordinates is given by (Draiche et al. 2019)  

0 r a, h / 2 z h / 2, 0 2  −       (1) 

 

2.2 Relations between stress resultants and 
displacements 

 

Since “transverse isotropy” is a special case of 

orthotropy, using the kinematic and the constitutive 

relations of a cylindrically orthotropic axisymmetric plate 

(Dumir and Shingal 1986), the following expressions are 

obtained.  
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2.3 Equations of equilibrium 

The equations of equilibrium for an axisymmetric plate 

undergoing large deflection are given by (Dumir and 

Shingal 1986) 

( ) ( )r r rr n n 0, r m m rq 0 
 − = − − =      (6) 

( ) ( )r r fr w n rq r q q 0 + + − =            (7) 

where qf is the foundation interface pressure defined by 

(Singh et al. 2008, Anh and Duc 2016) 

3
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2.4 Nondimensional variables and parameters 
 

The parameters and the nondimensional counterparts of 

the field variables ( r r rw,u, ,n ,q ,m ,m ) are introduced 

as follows 

rz

r r r

E G
,

E E

 
= =  = 


          (9) 

3 3

3 34 2 4

E h E h E h
k K, g G, k K

a a a

  = = =  (10) 

a
c , r a, q QE

h
= =  =         (11) 

4
c

c

W
Q Qc ,

Q
=  =


            (12) 

w Wh, u Uh= =               (13) 

4

r r

qa
q Q E h, w

D
= =              (14) 

r rn N E h, n N E h   = =            (15) 

2 2
r rm M E h , m M E h   = =         (16) 

 

2.5 Boundary conditions 
 

The problem is regarded as a boundary value problem. 

The boundary conditions at r=a, and the regularity 

conditions at r=0 were satisfied exactly (Table 1).  

 

 

3. Solution method 
 

Upon reorganizing Eqs. (2)-(8) together with the 

boundary conditions presented in Table 1 in terms of the 

nondimensional variables and parameters defined in Eqs. 

(9)-(16), a system of nonlinear ordinary differential 

equations was obtained. Since there is no analytical solution 

due to nonlinearity, the problem was attacked numerically. 

After performing pointwise discretization by means of 

FDM and DQM, the Newton-Raphson method was 

employed to obtain the solution (Eftekhari 2016). The grids 

for both FDM and DQM were constructed along the radial 

coordinate in the computational domain. 
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3.1 Finite difference method (FDM) 
 

FDM is the oldest while still a widely used approach in 

applied mathematics (e.g., Rajasekaran and Varghese 2005) 

because of its simplicity (Zhao and Wei 2009). Equally 

spaced grid points defined by  

( )

( )i

i 1
r a a for i 1,2,..., N

N 1

−
= − =

−
        (17) 

were used via forward and backward difference 

formulations given by (Mathews 1992) 
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3.2 Differential quadrature method (DQM) 
 

DQM is a simple and efficient technique which can 

yield highly accurate solutions to boundary value problems 

with relatively little computational effort (Shu 2000, Wu 

and Ren 2007). The mth-order derivative of a function with 

respect to r at point ri can be approximated as a linear sum 

of weighted function values at all of the discrete points in 

the domain of r (Hsu 2007, Alibeigloo and Simintan 2011).  
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(22) 

Here, ri denotes the location of the ith sampling point in 

the domain, and Cij
(m) are the ri -dependent weight 

coefficients (Hsu 2007, Alibeigloo and Simintan 2011). 

After selecting the sampling points, the weight coefficients 

can be obtained from the equations given by (Hsu 2007) 
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For the second order and the higher order derivatives, 

the weight coefficients are obtained by using the following 

recurrence relations given by (Hsu 2007) 
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As it was shown by Shu and Du (1997) the choice of the 

grid points affects the efficiency in DQM. C-G-L grid 

points given by 
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were considered in the study (Han and Liew 1997, Han and 

Liew 1999, Hsu 2007). 

 

 
4. Numerical simulation 
 

The radius of the plate was assumed unity, and κ2=5/6  

was considered in the computations. A large variety of 

parametric simulations were made for the combinations of 

the nondimensional parameters presented in Tables 2-4 for 

simply supported (S), and clamped (C) plates. The material 

parameters shown in Table 3 were taken from Dumir and 

Shingal (1986).  

 

4.1 Convergence study and verification of the results 
 

Excellent agreement was obtained in the comparison 

studies which were made for linear and nonlinear analyses 

(Tables 5-7). It can be deduced from the convergence 

studies that N=121, and N=51 are sufficient for admissible 

accuracy for FDM, and DQM, respectively. The results  

 

 

Table 1 Boundary conditions 

Location (S) (C) 

r=a w=u=mr=0 w=u=ψ=0 

r=0 u=ψ=qr=mr−mθ=0 

 

Table 2 Parameter of thickness 

Thickness Category T1 T2 T3 T4 T5 

c=a/h 500 100 50 20 10 

 

Table 3 Material properties 

Type of Material vθ β Γ Description 

M1 0.25 1 1/(2(1+vθ)) Isotropic 

M2 0.25 1 0.1 Transversely Isotropic 

M3 0.25 3 0.3 Orthotropic 

 

Table 4 Parameters of elastic foundation 

K G K3 Foundation Model 
Type of 

Foundation 

K>0 G=0 K3=0 (L) 1-parameter: Winkler F1 

K>0 G>0 K3=0 (L) 2-parameter: Pasternak F2 

K>0 G=0 K3≠0 (NL) 2-parameter: (NL) Winkler F3 

K>0 G>0 K3≠0 
(NL) 3-parameter: (NL) 

Winkler+Pasternak 
F4 
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reveal that compared to FDM, DQM leads to accurate 

results with less computational effort (Han and Liew 1997). 

 

4.2 Numerical examples 
 

Two types of numerical examples were solved for 

simply supported and clamped plates. First, a 

comprehensive investigation was made to highlight the 

influence of various parameters on the central deflection 

and on the stress resultants for Qc=20 (Tables 8-12, Figs. 1-

5). Very close values of Wmax regarding to the thickness 

categories T1 and T2 were obtained for the material groups 

M1 and M2 (Tables 8-12). Nr−ξ and Mr−ξ curves for several 

values of the elastic foundation parameters G and K3 were 

 

 

demonstrated (Fig. 1). Each material type was considered 

separately (Fig. 1). Mr−ξ curves for different types of 

material were shown for different values of the elastic 

foundation parameters G and K3 (Fig. 2). Mr−ξ curves of 

plates on nonlinear Winkler foundation were depicted for 

different types of material (Fig. 3). Thickness categories T3 

and T4 were considered for the distribution of Mr versus ξ 

(Fig. 3). The effects of the material properties on Mr and on 

Qr were illustrated for F3 and F4 (Figs. 4-5). Since almost 

identical results were obtained in the FDM solutions, for 

brevity, only the DQM solutions for the nondimensional 

central deflections of (S) and (C) plates subjected to Qc=20 

were presented in Tables 8-12. Next, an inverse problem 

was solved by imposing a limitation on the central  

 

  

 

 

  

 

 

  

 

Fig. 1 Influence of the nonlinear elastic foundation on the stress resultants 
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Table 5 Wmax of an isotropic (C) plate for (K;G;K3)=(5;2;0), 

and vθ=0.30 

(NL) 

Analysis 
Qc=18 Qc=24 Qc=30 Qc=36 Reference Thickness 

c=100 0.8588 1.0702 1.2521 1.4112 

Kutlu and 

Omurtag 

(2012) 

T2 

c=100 0.8635 1.0764 1.2597 1.4201 (FDM) N=121 T2 

c=100 0.8635 1.0763 1.2596 1.4200 (FDM) N=101 T2 

c=100 0.8634 1.0762 1.2595 1.4198 (FDM) N=81 T2 

c=100 0.8636 1.0765 1.2599 1.4204 (DQM) N=51 T2 

c=100 0.8636 1.0765 1.2599 1.4204 (DQM) N=41 T2 

c=10 0.8763 1.0916 1.2771 1.4395 

Kutlu and 

Omurtag 

(2012) 

T5 

c=10 0.8788 1.0948 1.2807 1.4435 (FDM) N=121 T5 

c=10 0.8788 1.0947 1.2806 1.4434 (FDM) N=101 T5 

c=10 0.8788 1.0946 1.2805 1.4433 (FDM) N=81 T5 

c=10 0.8789 1.0949 1.2809 1.4437 (DQM) N=51 T5 

c=10 0.8789 1.0949 1.2809 1.4437 (DQM) N=41 T5 

 

Table 6 Λmax of an anisotropic plate (K=G=K3=0, Qc=24) 

β Γ c (C) (S) 
Reference: (L) 

Analysis 

(Thickness; 

Material) 

1 0.4 100 0.17586 0.73836 
Dumir and 

Shingal (1986) 
(T2; M1) 

1 0.4 100 0.1758 0.7383 (FDM) N=121 (T2; M1) 

1 0.4 100 0.1759 0.7384 (DQM) N=51 (T2; M1) 

1 0.4 10 0.18328 0.74578 
Dumir and 

Shingal (1986) 
(T5; M1) 

1 0.4 10 0.1832 0.7457 (FDM) N=121 (T5; M1) 

1 0.4 10 0.1833 0.7458 (DQM) N=51 (T5; M1) 

1 0.1 100 0.17608 0.73858 
Dumir and 

Shingal (1986) 
(T2; M2) 

1 0.1 100 0.1760 0.7385 (FDM) N=121 (T2; M2) 

1 0.1 100 0.1761 0.7386 (DQM) N=51 (T2; M2) 

1 0.1 10 0.20578 0.76828 
Dumir and 

Shingal (1986) 
(T5; M2) 

1 0.1 10 0.2057 0.7682 (FDM) N=121 (T5; M2) 

1 0.1 10 0.2058 0.7683 (DQM) N=51 (T5; M2) 

3 0.3 100 0.11371 0.34298 
Dumir and 

Shingal (1986) 
(T2; M3) 

3 0.3 100 0.1137 0.3430 (FDM) N=121 (T2; M3) 

3 0.3 100 0.1137 0.3430 (DQM) N=51 (T2; M3) 

3 0.3 10 0.12361 0.35288 
Dumir and 

Shingal (1986) 
(T5; M3) 

3 0.3 10 0.1236 0.3529 (FDM) N=121 (T5; M3) 

3 0.3 10 0.1236 0.3529 (DQM) N=51 (T5; M3) 

 

Table 7 µmax of an isotropic circular plate (Qc=3, 

K=G=K3=0, vθ=0.30)  

(C) (C) (S) (C) (C) (L) Analysis 

c=100 c=50 c=40 c=20 c=10 Reference 

0.01561 0.01563  0.01578 0.01631 
Han and 

Liew (1997) 

0.01561 0.01564 0.06388 0.01578 0.01633 
Civalek and 

Ersoy (2009) 

0.0156271 0.0156485  0.0157985 0.0163341 
Altekin 

(2018) 

0.0156 0.0157 0.0637 0.0158 0.0163 
(FDM) 
N=121 

0.0156 0.0157 0.0637 0.0158 0.0163 (DQM) N=51 
 

 

 

 

 

Fig. 2 Influence of the material properties on Mr for plates 

on nonlinear elastic foundation (F4) 
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deflection. So, the external load Qc was determined using 

FDM by setting Wmax=1 (Tables 13-17). The load carrying 

 

 

 

capacities of plates each of which deflects the same at the 

center were compared with one another. The computations  

 

  

 

 

  

 

Fig. 3 Influence of the material properties on Mr for plates on nonlinear elastic foundation (F3) 

 

  

 

 

  

 

Fig. 4 Influence of the material properties on Mr for plates on nonlinear elastic foundation (T4) 
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Fig. 5 Influence of the material properties on Qr for plates on nonlinear elastic foundation (T4) 

Table 8 Wmax of a circular plate on elastic foundation (c=500, Qc=20, DQM, N=51) 

K G K3 M1 (S) M2 (S) M3 (S) M1 (C) M2 (C) M3 (C) (NL) Analysis 

1 0 0 1.758938 1.758936 2.347098 1.484418 1.484446 2.126179 F1 

3 0 0 1.67139 1.671387 2.170597 1.411154 1.411179 1.971608 F1 

5 0 0 1.584719 1.584716 1.998733 1.339826 1.339847 1.822807 F1 

5 1 0 1.371341 1.371339 1.625727 1.126694 1.126715 1.442601 F2 

5 2 0 1.176192 1.176191 1.318589 0.948962 0.948983 1.153477 F2 

5 0 -1 1.672038 1.672035 2.358791 1.384764 1.38479 2.049658 F3 

5 0 1 1.512682 1.512678 1.788412 1.30047 1.300488 1.673096 F3 

5 1 -1 1.429211 1.429209 1.797804 1.153846 1.15387 1.545235 F4 

5 2 -1 1.212091 1.21209 1.396678 0.964558 0.964581 1.198308 F4 

5 1 1 1.32219 1.322188 1.50894 1.102234 1.102253 1.365477 F4 

5 2 1 1.144651 1.14465 1.257898 0.934516 0.934535 1.115924 F4 

Table 9 Wmax of a circular plate on elastic foundation (c=100, Qc=20, DQM, N=51) 

K G K3 M1 (S) M2 (S) M3 (S) M1 (C) M2 (C) M3 (C) (NL) Analysis 

1 0 0 1.758917 1.758851 2.347302 1.484642 1.485341 2.126962 F1 

3 0 0 1.671367 1.671294 2.170758 1.411353 1.411973 1.972262 F1 

5 0 0 1.584694 1.584614 1.998853 1.34 1.340543 1.823341 F1 

5 1 0 1.371324 1.37127 1.62582 1.126865 1.127399 1.443099 F2 

5 2 0 1.176181 1.176145 1.318665 0.949127 0.94964 1.153941 F2 

5 0 -1 1.672017 1.671953 2.35908 1.384973 1.385624 2.050591 F3 

5 0 1 1.512652 1.512562 1.788459 1.300617 1.301074 1.673433 F3 

5 1 -1 1.429197 1.42915 1.797956 1.154039 1.154642 1.54591 F4 

5 2 -1 1.212081 1.212048 1.396775 0.964737 0.965292 1.198852 F4 

5 1 1 1.322171 1.322111 1.509001 1.102387 1.102863 1.365866 F4 

5 2 1 1.144639 1.1446 1.25796 0.934669 0.935145 1.116328 F4 
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Table 10 Wmax of a circular plate on elastic foundation (c=50, Qc=20, DQM, N=51) 

K G K3 M1 (S) M2 (S) M3 (S) M1 (C) M2 (C) M3 (C) (NL) Analysis 

1 0 0 1.758851 1.758586 2.347935 1.485341 1.488104 2.129392 F1 

3 0 0 1.671294 1.671004 2.17126 1.411973 1.414423 1.974294 F1 

5 0 0 1.584614 1.584297 1.999227 1.340543 1.34269 1.824999 F1 

5 1 0 1.37127 1.371056 1.626109 1.127399 1.129508 1.444641 F2 

5 2 0 1.176145 1.176002 1.318901 0.94964 0.951666 1.155375 F2 

5 0 -1 1.671953 1.671696 2.359983 1.385624 1.388197 2.05349 F3 

5 0 1 1.512562 1.5122 1.788606 1.301074 1.302881 1.674478 F3 

5 1 -1 1.42915 1.428967 1.798429 1.154642 1.157027 1.548002 F4 

5 2 -1 1.212048 1.211921 1.397076 0.965292 0.967487 1.200535 F4 

5 1 1 1.322111 1.321874 1.509191 1.102863 1.104742 1.367071 F4 

5 2 1 1.1446 1.144445 1.258152 0.935145 0.937023 1.117579 F4 

Table 11 Wmax of a circular plate on elastic foundation (c=20, Qc=20, DQM, N=51) 

K G K3 M1 (S) M2 (S) M3 (S) M1 (C) M2 (C) M3 (C) (NL) Analysis 

1 0 0 1.758389 1.756793 2.352278 1.490142 1.50602 2.145644 F1 

3 0 0 1.670787 1.669035 2.174707 1.416231 1.430327 1.987904 F1 

5 0 0 1.584061 1.582143 2.001799 1.344274 1.356631 1.836118 F1 

5 1 0 1.370896 1.369607 1.628073 1.131063 1.143186 1.454898 F2 

5 2 0 1.175895 1.17504 1.320492 0.953157 0.964735 1.164819 F2 

5 0 -1 1.671504 1.669952 2.36619 1.390098 1.405008 2.073065 F3 

5 0 1 1.511931 1.509748 1.789617 1.304212 1.31454 1.681441 F3 

5 1 -1 1.42883 1.427728 1.801655 1.158786 1.172549 1.561974 F4 

5 2 -1 1.211826 1.211063 1.399109 0.969103 0.98168 1.211642 F4 

5 1 1 1.321697 1.320267 1.510482 1.106126 1.116885 1.375062 F4 

5 2 1 1.14433 1.143401 1.259447 0.938405 0.949111 1.1258 F4 

Table 12 Wmax of a circular plate on elastic foundation (c=10, Qc=20, DQM, N=51) 

K G K3 M1 (S) M2 (S) M3 (S) M1 (C) M2 (C) M3 (C) (NL) Analysis 

1 0 0 1.756793 1.75119 2.366607 1.50602 1.553447 2.194414 F1 

3 0 0 1.669035 1.662849 2.186152 1.430327 1.472627 2.028997 F1 

5 0 0 1.582143 1.575342 2.010391 1.356631 1.393793 1.869797 F1 

5 1 0 1.369607 1.365118 1.634386 1.143186 1.180042 1.48525 F2 

5 2 0 1.17504 1.172127 1.325425 0.964735 0.999714 1.191936 F2 

5 0 -1 1.669952 1.664463 2.386837 1.405008 1.450816 2.13388 F3 

5 0 1 1.509748 1.501994 1.793007 1.31454 1.344913 1.702011 F3 

5 1 -1 1.427728 1.423915 1.812084 1.172549 1.214914 1.603918 F4 

5 2 -1 1.211063 1.208489 1.405451 0.98168 1.019982 1.243793 F4 

5 1 1 1.320267 1.315276 1.514606 1.116885 1.149217 1.398465 F4 

5 2 1 1.143401 1.140224 1.263438 0.949111 0.981223 1.149259 F4 

Table 13 Qc of a circular plate on elastic foundation (c=500, Wmax=1, FDM, N=121) 

K G K3 M1 (S) M2 (S) M3 (S) M1 (C) M2 (C) M3 (C) (NL) Analysis 

1 0 0 4.838758 4.838764 3.027352 9.500943 9.500573 4.931898 F1 

3 0 0 6.292719 6.292736 4.584295 10.861654 10.861299 6.398603 F1 

5 0 0 7.773777 7.773805 6.188862 12.240253 12.239915 7.901281 F1 

5 1 0 11.783449 11.783476 10.206818 16.847697 16.847241 12.46591 F2 

5 2 0 15.790993 15.791019 14.232508 21.412313 21.411703 16.921331 F2 

5 0 -1 7.265743 7.265762 5.579202 11.796744 11.796394 7.362928 F3 

5 0 1 8.295696 8.295733 6.826872 12.69115 12.690825 8.457739 F3 

5 1 -1 11.270367 11.270388 9.627442 16.38532 16.384853 11.922563 F4 

5 2 -1 15.275221 15.275243 13.667142 20.937346 20.936727 16.378232 F4 

5 1 1 12.30704 12.307073 10.802971 17.316411 17.315965 13.021511 F4 

5 2 1 16.315188 16.31522 14.809686 21.892788 21.892187 17.473656 F4 
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Table 14 Qc of a circular plate on elastic foundation (c=100, Wmax=1, FDM, N=121) 

K G K3 M1 (S) M2 (S) M3 (S) M1 (C) M2 (C) M3 (C) (NL) Analysis 

1 0 0 4.838808 4.838964 3.02698 9.497985 9.488763 4.928758 F1 

3 0 0 6.29285 6.293258 4.584036 10.858815 10.849967 6.395616 F1 

5 0 0 7.773997 7.774686 6.188748 12.237552 12.229133 7.898507 F1 

5 1 0 11.783667 11.78435 10.206245 16.844048 16.832684 12.460876 F2 

5 2 0 15.791203 15.79186 14.231594 21.407439 21.392279 16.91353 F2 

5 0 -1 7.265896 7.266375 5.578974 11.793949 11.785239 7.36 F3 

5 0 1 8.29599 8.296907 6.826895 12.688551 12.680451 8.455156 F3 

5 1 -1 11.270536 11.271064 9.626839 16.381588 16.36997 11.917468 F4 

5 2 -1 15.275394 15.275931 13.66623 20.932404 20.91703 16.370417 F4 

5 1 1 12.307311 12.308157 10.802436 17.312849 17.30176 13.016556 F4 

5 2 1 16.315439 16.316221 14.808776 21.887987 21.873054 17.46588 F4 

Table 15 Qc of a circular plate on elastic foundation (c=50, Wmax=1, FDM, N=121) 

K G K3 M1 (S) M2 (S) M3 (S) M1 (C) M2 (C) M3 (C) (NL) Analysis 

1 0 0 4.838964 4.839584 3.025817 9.488763 9.452222 4.918989 F1 

3 0 0 6.293258 6.294883 4.583227 10.849967 10.814921 6.386326 F1 

5 0 0 7.774686 7.777429 6.188391 12.229133 12.195806 7.889887 F1 

5 1 0 11.78435 11.787063 10.20446 16.832684 16.787846 12.445273 F2 

5 2 0 15.79186 15.794469 14.228755 21.392279 21.332679 16.889433 F2 

5 0 -1 7.266375 7.268283 5.57826 11.785239 11.750748 7.350897 F3 

5 0 1 8.296907 8.300562 6.826966 12.680451 12.648399 8.447129 F3 

5 1 -1 11.271064 11.273162 9.624963 16.36997 16.324113 11.901672 F4 

5 2 -1 15.275931 15.278066 13.663395 20.91703 20.856575 16.346276 F4 

5 1 1 12.308157 12.311525 10.800773 17.30176 17.258018 13.001201 F4 

5 2 1 16.316221 16.319328 14.805951 21.873054 21.814366 17.441864 F4 

Table 16 Qc of a circular plate on elastic foundation (c=20, Wmax=1, FDM, N=121) 

K G K3 M1 (S) M2 (S) M3 (S) M1 (C) M2 (C) M3 (C) (NL) Analysis 

1 0 0 4.840047 4.843782 3.017748 9.425175 9.211037 4.852456 F1 

3 0 0 6.296096 6.305999 4.577602 10.788996 10.58425 6.323166 F1 

5 0 0 7.779478 7.796231 6.185892 12.171173 11.977192 7.83141 F1 

5 1 0 11.789082 11.805393 10.192255 16.754849 16.49911 12.3412 F2 

5 2 0 15.796409 15.811996 14.209618 21.289038 20.956822 16.731825 F2 

5 0 -1 7.269706 7.281335 5.573298 11.725242 11.524012 7.289057 F3 

5 0 1 8.303292 8.325633 6.827425 12.624721 12.438677 8.392794 F3 

5 1 -1 11.274722 11.287294 9.612121 16.290351 16.028272 11.796215 F4 

5 2 -1 15.279651 15.292361 13.644262 20.812291 20.474705 16.18826 F4 

5 1 1 12.314032 12.334318 10.789408 17.225843 16.976918 12.898891 F4 

5 2 1 16.321639 16.34024 14.786926 21.771411 21.444911 17.284903 F4 

Table 17 Qc of a circular plate on elastic foundation (c=10, Wmax=1, FDM, N=121) 

K G K3 M1 (S) M2 (S) M3 (S) M1 (C) M2 (C) M3 (C) (NL) Analysis 

1 0 0 4.843782 4.856791 2.989838 9.211037 8.516323 4.638467 F1 

3 0 0 6.305999 6.342136 4.558058 10.58425 9.926589 6.121341 F1 

5 0 0 7.796231 7.857913 6.176983 11.977192 11.361585 7.646176 F1 

5 1 0 11.805393 11.86216 10.152326 16.49911 15.727418 12.029436 F2 

5 2 0 15.811996 15.864819 14.150084 20.956822 20.008577 16.288405 F2 

5 0 -1 7.281335 7.323869 5.556015 11.524012 10.880215 7.091997 F3 

5 0 1 8.325633 8.40813 6.828542 12.438677 11.85395 8.22206 F3 

5 1 -1 11.287294 11.330523 9.569979 16.028272 15.232633 11.479275 F4 

5 2 -1 15.292361 15.334889 13.584492 20.474705 19.506305 15.74261 F4 

5 1 1 12.334318 12.405467 10.752359 16.976918 16.230893 12.593528 F4 

5 2 1 16.34024 16.403851 14.727995 21.444911 20.518011 16.844459 F4 
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showed that the material classifications M1 and M2 had 

similar effects on Qc regarding to the thickness categories 

T1 and T2 (Tables 13-17).  

 

 

5. Conclusions 
 

A parametric study on the axisymmetric bending of 
circular plates was presented in the current work. The 
problem was formulated on the basis of FSDT, and Von 
Karman type geometric nonlinearity was used. 
Cylindrically orthotropic plates interacting with a nonlinear 
three-parameter elastic foundation were investigated. 
Numerical simulations were performed to discuss the 
influences of the material properties, the boundary 
conditions, and the foundation parameters on the deflection, 
on the stress resultants, and on the external load. The 
accuracy of the results was verified via comparison studies.  

The numerical simulations reveal that  
• The solutions regarding to thin plates such as T1 and 
T2 are very close to each other for the material 
categories M1 and M2. 

• Maximum deflection of a clamped plate increases in 

the order M1-M2-M3 (i.e., M1 minimizes Wmax, and M3 

maximizes Wmax). 

• Maximum deflection of a simply supported plate 

increases in the order M2-M1-M3 (i.e., M2 minimizes 

Wmax, and M3 maximizes Wmax). 

• For (C) plates M3 minimizes Qc, and M1 maximizes 

Qc. 

• For (S) plates M3 minimizes Qc, and M2 maximizes 

Qc. 
• The Pasternak parameter has a remarkable effect on Qc 
especially for M3. 
• The material properties have remarkable effect on Nr 
which is minimized by M3. The dispersion of Nr along 
the radial coordinate looks like each other for M1 and 
M2, but the distribution of Nr versus ξ is totally different 
for the material group M3. These statements also hold 
for Mr. 
• For (S) plates Mr does not reach its maximum value at 
the center. 
• The influence of the foundation parameters on Mr is 
significant. The effect of K3 should not be ignored. 
• M1 and M2 have almost similar influence on Mr and 
on Qr. The magnitudes of Qr and Mr are minimized for 
M3 at the support.   
• With increasing thickness, the distribution of Mr versus 
ξ tends to differ for the material categories M1 and M2. 
Compared to FDM, the rate of convergence for DQM is 

faster with smaller number of grid points. Since the memory 
storage requirement of DQM is less than that of FDM, it 
can be concluded that DQM requires less computational 
effort. The execution time of a code depends on the 
algorithm. In the current study, very similar algorithms were 
used for FDM and DQM, and the FDM code ran faster than 
the DQM code. 
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CC 

 

 

Nomenclature 
 

a, g, h 
radius of the plate, Pasternak parameter, 

thickness of the plate 

r, q radial coordinate, uniform pressure 

k, k3 linear and nonlinear Winkler parameters 

w, u deflection, horizontal displacement 

mr, mθ bending moments 

nr, nθ normal forces 

qr, ss shear force, step size in FDM 

N, D, Grz 
number of sampling points, bending rigidity, 

shear modulus 

Er, Eθ Young’s moduli 

ψ, κ2 rotation, shear correction factor 

νr, νθ Poisson ratios 

 

 

Abbreviation List 
 

CPT, FSDT 
classical plate theory, first order shear 

deformation theory 

FDM, DQM 
finite difference method, differential 

quadrature method 

FEM, FVM, GQ 
finite element method, finite volume 

method, Gaussian quadrature 

MWR, PDE 
methods of weighted residuals, partial 

differential equation 

(L), (NL), C-G-L 
linear, nonlinear, Chebyshev-Gauss-

Lobatto 

(C), (S) clamped, simply supported 
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Appendix A: An overview to FDM and DQM  
 

With the advance of computer technology, the role of 

numerical simulations in science and engineering has been 

growing (Wang 2015). “Various numerical methods such as 

FEM, FDM, FVM, and MWR have been used as powerful 

tools for solving PDEs. However, none of the 

aforementioned numerical methods is versatile and none of 

them is capable of solving all problems efficiently. Each 

method has its own merits and limitations. Therefore, along 

with the ever-growing advancement of faster computers, the 

research into the development of new efficient methods is 

an ongoing activity” (Bert and Malik 1996, Wang 2015).  

DQM is essentially a generalization of GQ which is 

used for numerical integration of functions (Zong and 

Zhang 2009). GQ approximates a finite integral as a 

weighted sum of the integrand values at selected points 

whereas DQM approximates the derivatives of a smooth 

function at a given discrete point as a weighted linear sum 

of the function values at all discrete points (Striz et al. 

1988, Zong and Zhang 2009). “This is in contrast to the 

standard FDM in which a solution value at a point is a 

function of values at adjacent points only. Even if FDM is 

of a high enough order to cover all points, there is still a 

fundamental difference in the fact that DQM is a 

polynomial fitting while the higher order FDM is a Taylor 

series expansion. Besides, the weighting coefficients in 

DQM are independent of the boundary conditions, and thus, 

they need to be determined only once” (Striz et al. 1988). 

Like FDM, DQM transforms the differential equations 

into a set of analogous algebraic equations in terms of the 

unknown function values at the grid points (Civalek and 

Çatal 2003). “Owing to the higher order polynomial 

approximation, DQM usually requires fewer gid points in 

comparison to FDM. However, DQM leads to 

nonsymmetric and nonbanded system matrices, and it 

appears to be very sensitive to the choice of the grid points” 

(Lamacchia et al. 2014). The accuracy of the results can be 

increased by shifting the mesh points from a uniformly 

distributed grid towards a Gauss-Chebyshev-Lobatto grid 

(Lamacchia et al. 2014) in which the points are 

concentrated close to the boundaries (Hejripour and Saidi 

2011).  

From computational aspects, the memory storage 

requirements are often considerable for the numerical 

methods (Civalek and Çatal 2003). Due to its attractive 

features such as rapid convergence, high accuracy with a 

considerably smaller number of grid points, and 

computational efficiency, the DQM is a well-known method 

worldwide (Shu 2000, Wang 2015).  
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