
Computers and Concrete, Vol. 25, No. 5 (2020) 433-445 

DOI: https://doi.org/10.12989/cac.2020.25.5.433                                                                  433 

Copyright ©  2020 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=cac&subpage=8                                      ISSN: 1598-8198 (Print), 1598-818X (Online) 

 
1. Introduction 

 

Self-compacting concrete (SCC) can flow to fill gaps in 

reinforcements, corners of moulds, and voids in rock blocks 

without vibration during the placement process (Okamura 

and Ouchi 2003, An et al. 2014). SCC of high quality has 

superior workability, including high deformability and 

segregation resistance. The workability determines whether 

a concrete is qualified for use. Therefore, evaluating the 

workability of SCC before placement is of incredible 

significance. Slump flow and V-funnel tests (Okamura and 

Ouchi 2003, An et al. 2014, Wu and An 2014) are the most 

commonly used tests in estimating SCC workability. The 

slump flow value (SF) indicates the SCC deformability, and 

the V-funnel flow time (VF) indicates the segregation 

resistance ability and viscosity. Therefore, the two tests are 

always performed for mix design in laboratories and for 

quality control on construction sites. However, these tests 

have a number of problems in practice. One is that these 

tests are always conducted before placement to ensure that 

the SCC has good workability. In addition, the workability 

of SCC can only be determined immediately before 

placement. If the concrete is unqualified, the mixture is 

wasted, and the mix design needs to be changed (Gidaris et 

al. 2015). 

The issues mentioned above can be addressed if the 

SCC workability can be estimated during the mixing 

process. Chopin et al. (2017) proposed a method that a 

concrete mixture can be regarded as a large rheometer. The 

rheological parameters of SCC are determined by 
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considering fresh concrete as a Bingham material. Beaupré 

(1994) indicated that the rheological parameters can be used 

to estimate whether a mixture is a qualified SCC. However, 

it remains an open question to use a mixer as a reliable 

rheometer. Other methods have been proposed to evaluate 

SCC workability. Some experienced engineers can evaluate 

the concrete by watching the concrete mixing process. 

Thus, it may be an effective solution to use visual 

information, such as in image processing methods 

(Marinoni et al. 2005, Hutchinson and Chen 2006, Cabaret 

et al. 2007, Lee et al. 2013), during the mixing process to 

predict SCC workability. Li and An (2014) adopted this 

method and found a relationship between the visual 

characteristics and the workability of SCC. Daumann and 

Nirschl (2008) used ultramarine blue as a tracer component 

to obtain the mixture homogeneity during the concrete 

mixing process. However, these image processing methods 

depend mainly on human experience and insight. For 

example, in Li’s work, the boundaries were manually 

extracted. In Daumann’s work, features such as the tracer 

component were also manually selected. In addition, these 

features were often connected to a specific experimental 

scenario. Consequently, the application of these methods is 

limited. 

The aforementioned methods contain several 

drawbacks. To solve these problems, it is necessary to 

reduce the dependency on human experience and 

investigate the information hidden behind the original data. 

Deep learning (DL) could be an effective alternative 

method to automatically estimate SCC workability. DL 

solves the data representation problem by introducing 

relatively simple intermediate representations that can be 

combined to establish complex concepts. Thus, there is no 

need for specific techniques to extract features that can 

represent the image data (Deng et al. 2009, Bengio et al. 
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2013, He et al. 2014). Due to its complex structure, DL 

requires a large amount of data to generate models with 

good performance in prediction and therefore has a large 

computational cost. Deep convolutional neural networks 

(CNNs) are an example of a successful DL model that 

provides a powerful tool for extracting visual 

representations and is widely used in image classification 

(Affonso et al. 2017), object detection (Girshick et al. 

2014), and semantic segmentation (Gidaris et al. 2015). 

Compared with CNNs, recurrent neural network (RNN) 

models are “deep in time” and can form implicit 

compositional representations in the time domain (Donahue 

et al. 2017). The obvious drawback of RNNs is the 

vanishing gradient effect, which refers to the tendency to 

back propagate an error signal through a long-range 

temporal interval. This problem becomes increasingly 

difficult to solve. Long short-term memory (LSTM) units 

are recurrent modules that enable long-range learning. 

LSTM units have a hidden state augmented with nonlinear 

mechanisms that allow state update, reset and propagation 

without modification using simple learned gating functions. 

LSTMs have been used for sequential labelling and provide 

much improvement when enough data are available. It has 

been demonstrated that a CNN with RNN units can be used 

for visual time-series modelling (Donahue et al. 2017). 
Machine learning techniques have been successfully 

employed in construction engineering in recent years. This 
approach can automatically establish a relationship between 

the original information and the parameter of interest based 
on a well-trained model. Machine learning has been used to 

detect cracks (Yokoyama and Matsumoto 2017, Zhang et al. 

2017), predict compressive strength (Chou et al. 2014, Abd 
and Abd 2017, Yaseen et al. 2018), analyze concrete dam 

reliability (Hariri-Ardebili and Pourkamali-Anaraki 2018), 
assess durability (Taffese and Sistonen 2017), and predict 

carbonation (Taffese et al. 2015). Ding and An (2018) 

proposed an approach that uses a DL model to 
automatically extract features from mixing images and 

predict the SF and VF of SCC. However, this approach 
proves only that the DL model can be used for a specific 

mixer and mixing volume, constituting merely one mixing 
condition. There are various kinds of SCC with different 

mixers and mixing volumes whose workability needs to be 

predicted in reality. The mixing conditions are diverse and 
complicated. Whether DL method can be generalized over a 

larger mixing scope, namely, in different kinds of mixers 
mixing different SCC volumes, is important and needs to be 

demonstrated. Additionally, if this could be realized, the 

mixing conditions including mixers and mixing volumes 
were countless in the world though. It is logical to collect 

all the mixing conditions to train and predict. However, this 
work would cost a lot and hard to realize. Is it possible to 

choose some typical mixing conditions to train and predict 
other new mixing conditions? In this way, some mixing 

conditions do not have to be collected because they can be 

predicted by others. Therefore, the workload can be reduced 
and made feasible. This idea needs to be proven too. 

In all, there were two main objectives in this study. One 

was to extend the use of the DL model to estimate the 

workability of SCC in different mixing conditions, 

including different types of mixers and mixture volumes. 

The other was to demonstrate that a number of typical 

mixing conditions combined together can be used to predict 

a new mixing condition. 

Four groups of SCC mixing videos with different 

mixing conditions were collected. Each group contained 

many SCC mixing videos with the same mixing conditions 

but disperse workability. All videos were processed into 

image sequences in a suitable format for DL. The data were 

then divided into the training and validation set and testing 

sets, with about 30 thousand samples with SF and VF as its 

label. The testing sets were divided into two kinds 

according to whether their mixing conditions (including the 

mixer and mixing volume) were contained in the training 

sets. Then, the model was trained to find relationships 

between the image sequences and SCC workability. After 

that, two kinds of testing data distinguished by whether 

their mixing conditions were learned by the training sets 

were predicted to obtain the SF and VF. Based on this 

approach, a method to evaluate SCC workability in 

different mixing conditions altogether at the same time was 

proposed, and the goal to perform effective prediction on a 

new mixing condition was achieved. 

 

 

2. Data processing 
 

DL requires a large amount of data to generate models 

with good performance in prediction. Therefore, the main 

purpose of this part is to collect and prepare enough data 

suitable for the DL model. Among these data, preprocessing 

method was applied to overcome the overfitting problem, 

which is typical in DL field and effects the prediction 

accuracy a lot. Data augmentation was further used to 

reduce the problem and provide enough suitable data. 

 

2.1 Data collection 
 

The DL model takes image sequences of the SCC 

mixing process as input. The image sequences were 

collected by recording videos of the SCC mixing process in 

four mixing conditions, namely, groups A, B, C and D. The 

SCC of group A was mixed in a 30 L single-shaft mixer 

with a 20 L mixing volume. The mixer of groups B, C and 

D is a 60 L single-shaft mixer. The mixing volumes of 

group B, group C and group D were 15 L, 40 L, and 20 L, 

respectively shown in Table 1. 

The experimental setup to record videos is shown in Fig. 

1(a). A camera on a tripod was placed beside the mixer. The 

shooting angle and tripod position in different experiment 

batches were adjusted to record the two important 

boundaries of the mixing SCC as shown in Fig. 1 because 

 

  

Table 1 The mixing parameters of the four groups 

Group 

name 

Mixer volume 

(L) 

Mixing volume 

(L) 

The Number of mixing 

videos 

Group A 30 20 31 

Group B 60 15 21 

Group C 60 40 36 

Group D 60 20 6 
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the upper boundary and lower boundary have proven to be 

the most prominent feature to distinguish SCC with 

different workability (Li and An 2014). Different tripod 

location and shooting angles introduced different 

perspective distortions into the videos. The camera was a 

smartphone with a frame rate of 30 fps. The resolution of 

each picture was fixed at 1920 pixels×1080 pixels. After 

mixing and recording, slump flow and V-funnel tests were 

 

 

 

performed to obtain the SF and VF values as a label and 

name. 

The cement used in all experiments was 42.5 Portland 

cement. The coarse aggregates contained crushed stones 

with particle sizes from 5 mm to 20 mm. The fine 

aggregates were quartz sands with a maximum particle size 

of 5 mm. Polycarboxylate super plasticizer (SP) was used as 

a water reducing agent with a 20% solid content. Fly ash  
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Blade
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 (a) The relative placement of the camera and mixer (b) Two important boundaries of SCC  

Fig. 1 Schematic diagram of the test setup 

Table 2 Mix composition and workability characteristics of the mixing videos in group A 

Video 

number 
Vw/Vc SP% 

Cement 

(kg/m3) 

Water 

(kg/m3) 

Plasticizer 

(kg/m3) 

Hold time 

(min) 

SF 

(mm) 

VF 

(s) 

Volume 

(L) 

1 1.15 0.85 515 188 4.38 0 600 13.0 20 

2 1.20 1.00 504 191 5.04 0 610 9.9 20 

3 1.30 0.90 482 199 4.34 0 610 18.1 20 

4 1.15 0.90 515 188 4.64 0 648 13.0 20 

5 1.13 0.85 520 186 4.42 0 598 16.4 20 

6 1.11 0.85 525 185 4.46 0 625 26.0 20 

7 1.17 0.90 511 189 4.60 0 668 9.8 20 

8 1.11 0.90 525 184 4.73 0 675 13.0 20 

9 1.13 0.90 520 186 4.68 0 675 13.0 20 

10 1.17 0.85 511 189 4.34 0 680 11.6 20 

11 1.30 1.00 482 198 4.82 0 690 9.9 20 

12 1.30 1.00 482 198 4.82 0 700 10.2 20 

13 1.20 0.80 504 192 4.03 30 350 24.1 20 

14 1.20 0.80 504 192 4.03 0 480 14.5 20 

15 1.20 0.90 504 191 4.53 60 510 14.7 20 

16 1.20 1.00 504 191 5.04 30 585 9.2 20 

17 1.10 1.00 528 183 5.28 0 460 45.5 20 

18 1.10 0.90 528 183 4.75 30 355 Blocked 20 

19 1.20 1.00 504 191 5.04 90 360 Blocked 20 

20 1.30 0.90 482 199 4.34 30 485 69.0 20 

21 1.30 0.90 482 199 4.34 60 340 Blocked 20 

22 1.30 1.00 482 198 4.82 90 440 Blocked 20 

23 1.20 1.00 504 191 5.04 60 495 56.8 20 

24 1.20 0.90 504 191 4.53 30 565 83.0 20 

25 1.10 0.90 528 183 4.75 0 575 35.8 20 

26 1.20 0.90 504 191 4.53 0 705 43.9 20 

27 1.30 1.00 482 198 4.82 60 655 30.8 20 

28 1.18 0.85 508 190 4.32 0 668 64.0 20 

29 1.15 0.88 515 188 4.54 0 679 31.0 20 

30 1.30 1.00 482 198 4.82 30 690 52.9 20 

31 1.20 0.90 504 191 4.53 0 710 52.0 20 
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was used as an addictive in group B. 

During the mixing and recording process, the camera 

was used to record videos through the opening hatch of the 

mixer. First, all the dry materials, including cement, sand 

and gravel, were mixed for 30 s, and then water and SP 

were added. The materials were continuously wet-mixed for 

240 s. When the mixing ended, the mixture was poured out, 

followed by slump flow and V-funnel tests to obtain the SF 

and VF values of SCC. Sometimes, the produced SCC was 

 

 

 

put in a container for a certain time (such as 30 min and 60 

min) as a hold time and then poured back into the mixer for 

remixing. The slump flow and V-funnel tests were then 

performed again. Videos were also collected during these 

remixing tests.  

For group A, the SCC was mixed in a 30 L single-shaft 

mixer with a 20 L mixing volume. Thirty-one videos with 

different workability characteristics are listed in Table 2. 

They are distinguished from each other due to different  

Table 3 Mix composition and workability characteristics of the mixing videos in group B 

Video 

number 
Vw/Vc SP% 

Cement 

(kg/m3) 

Fly ash 

(kg/m3) 

Water 

(kg/m3) 

Plasticizer 

(kg/m3) 

SF 

(mm) 

VF 

(s) 

Volume 

(L) 

1 1.40 1.20 474 0 211 5.69 600 7.8 15 

2 1.30 0.80 517 69 201 7.41 638 14.8 15 

3 1.07 1.43 455 0 217 5.46 675 28.3 15 

4 1.50 1.20 412 176 201 5.88 700 9.8 15 

5 1.04 1.43 494 0 205 4.94 605 36.1 15 

6 1.30 1.00 455 0 218 5.00 625 32.7 15 

7 1.50 1.10 474 0 212 4.25 645 34.8 15 

8 1.40 0.90 474 0 212 4.74 650 34.7 15 

9 1.40 1.00 474 0 211 6.16 660 44.5 15 

10 1.40 1.30 517 0 198 4.14 430 160.9 15 

11 1.20 0.80 517 0 198 4.65 535 100.8 15 

12 1.20 0.90 494 0 205 4.45 540 54.5 15 

13 1.30 0.90 494 0 206 3.96 555 65.7 15 

14 1.30 0.80 517 0 197 5.17 565 56.0 15 

15 1.20 1.00 474 0 212 3.79 570 42.8 15 

16 1.40 0.80 494 0 204 5.44 433 15.6 15 

17 1.30 1.10 362 151 198 3.51 495 16.0 15 

18 1.16 0.97 494 0 205 4.94 485 15.3 15 

19 1.30 1.00 494 0 204 5.93 523 13.3 15 

20 1.30 1.20 474 0 212 4.74 535 10.8 15 

21 1.40 1.00 474 0 211 5.44 568 26.9 15 

 
(a) the frames extracted from one mixing video of group A 

 
(b) the frames extracted from one mixing video of group C 

Fig. 2 The frames extracted from mixing videos 
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water to cement ratios by volume (Vw/Vc), SP contents of 

the cement by weight (SP%), and hold times. The SCC 

formulations in video 18, 19, 21, 22 became blocked in the 

V-funnel test due to their large viscosities. 

For group B, the SCC was mixed in a 60 L single-shaft 

mixer with a 15 L mixing volume. A total of twenty-one 

mixing videos are listed in Table 3. 

For group C, the mixing volume of the SCC was the 

largest, at 40 L. The SCC was mixed in a 60 L single-shaft 

mixer. Thirty-six videos were collected, as shown in Table 

4. As noted, the mixtures in videos 23, 26, 29, and 30 were 

blocked. For group C, the mixing volume was relatively 

large, at 40 L. To save time as well as materials to collect 

more videos, after conducting the slump flow and V-funnel 

tests, the SCC was put back to the mixer, and then water or 

SP were added and the SCC was remixed to repeat the 

workability tests to obtain new SF and VF values.  

For group D, the SCC was mixed in a 60 L single-shaft 

mixer with a 20 L volume whose volume was between that 

of group B (15 L) and group C (40 L). Six videos were 

 

 

collected, as shown in Table 5. 

Four groups of videos with different mixers and mixing 

volumes were gathered. Their parameters are presented in 

Table 1. 

According to the process of data collection, the 

necessary spatial and temporal information was included in 

the video data for the DL model to learn. The SF and VF 

values were used as two labels of the corresponding SCC 

mixing video, composing a vector with two elements. The 

VF value of the blocked V-funnel test was set to a default 

value of 200 to satisfy the need for numerical labels, which 

was large enough compared with other cases. After 

recording, the videos were converted into numerous images 

with SF and VF as its label, shown in Fig. 2, and prepared 

for the input of the DL model. 

 

2.2 Data preprocessing 
 

After the data was collected and transformed into 

images, they cannot be directly input into the DL model for  

Table 4 Mix design and workability properties of the SCC in the group C videos 

Video 

number 
Vw/Vc SP% 

Cement 

(kg/m3) 

Water 

(kg/m3) 

Plasticizer 

(kg/m3) 

Hold time 

(min) 

SF 

(mm) 

VF 

(s) 

Volume 

(L) 

1 1.05 0.95 566 187 5.37 0 660 19.3 40 

2 1.14 1.51 511 182 7.71 0 685 14.4 40 

3 1.09 1.00 511 175 5.11 0 695 14.2 40 

4 0.98 1.30 616 187 7.97 0 705 17.9 40 

5 1.13 0.95 610 218 5.80 0 605 5.2 40 

6 1.07 1.29 511 172 6.61 0 665 21.4 40 

7 1.07 1.18 511 172 6.04 0 685 9.0 40 

8 1.09 1.48 511 174 7.55 0 690 17.3 40 

9 1.06 1.27 511 169 6.48 0 703 18.2 40 

10 1.05 1.06 566 187 5.97 0 720 18.0 40 

11 1.11 1.49 511 177 7.61 20 720 17.8 40 

12 1.00 1.32 603 187 7.97 25 740 18.1 40 

13 1.32 0.89 592 248 5.27 0 365 7.0 40 

14 1.32 0.89 592 248 5.27 0 425 4.7 40 

15 1.19 0.89 592 223 5.27 0 350 12.2 40 

16 1.03 0.95 610 198 5.80 0 548 9.3 40 

17 1.02 0.89 627 202 5.58 0 350 16.7 40 

18 1.08 0.89 627 215 5.58 0 385 7.0 40 

19 1.58 0.89 592 298 5.27 0 438 2.5 40 

20 1.06 1.22 511 169 6.26 0 495 35.0 40 

21 1.06 1.27 511 169 6.51 0 500 44.0 40 

22 1.05 1.10 511 169 5.61 30 420 56.4 40 

23 1.05 0.95 511 169 4.86 0 405 Blocked 40 

24 0.99 0.99 603 187 5.97 0 395 33.6 40 

25 1.01 1.54 561 175 8.66 0 425 72.8 40 

26 0.90 0.95 610 173 5.80 0 433 Blocked 40 

27 1.05 1.13 511 169 5.76 0 440 40.5 40 

28 1.09 1.38 511 174 7.03 0 550 30.8 40 

29 0.97 0.89 627 192 5.58 0 300 Blocked 40 

30 1.11 0.89 592 208 5.27 0 300 Blocked 40 

31 1.11 1.69 511 175 8.66 0 708 66.9 40 

32 1.09 1.58 511 174 8.05 0 650 63.2 40 

33 1.08 1.40 511 172 7.18 0 665 104.2 40 

34 1.11 1.49 511 177 7.61 0 683 100.5 40 

35 1.09 1.13 511 175 5.79 0 675 68.2 40 

36 1.00 1.32 603 187 7.97 0 735 60.1 40 
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(a) Converting the RGB image into grayscale 

350

2
0

0

 
(b) Affine transformation 

 
(c) Extracting the ROI and resizing to a fixed size 

 
(d) Histogram equalization 

Fig. 3 Date preprocessing 

 

 

training and validation. These images require preprocessing 

due to two reasons. First, the size of the original image is 

quite large, 1920 pixels×1080 pixels, placing a significant 

demand on the computational requirements of the neural 

networks. In addition, not all the information is necessary, 

and some information may be noise and may severely 

impact the performance of the DL model in the form of 

overfitting. The overfitting problem occurs when a model 

fits the training data too well. The details and noise in the 

training data are learned by the model to such an extent that 

it negatively impacts the performance of the model on new 

data. Noise or random fluctuations in the training data are 

picked up and mistakenly learnt as features by the model. 

However, as these concepts do not apply among new data, it 

negatively affects the model’s ability to provide accurate 

predictions. Therefore, the preprocessing is necessary for 

every image before training. 

The preprocessing procedure comprises four main steps 

as shown in Fig. 3. First, the RGB images were converted 

into grayscale. Second, the affine transformation was 

carried out. Third, the region of interest (ROI) was 

extracted. Finally, histogram equalization was performed as 

 

 
(a) The images after preprocessing from one video of group A 

 
(b) The images after preprocessing from one video of group B 

 
(c) The images after preprocessing from one video of group C 

Fig. 4 The images after preprocessing in several groups 

 

 

presented and resized the image to a fixed size. 

The RGB image has three channels, including R (red), G 

(green) and B (blue), while the grayscale image has only 

one channel, so the computational cost can be reduced by 

two times, increasing the computing speed. In addition, the 

colour of the SCC is different because of the shooting 

environment and camera parameters, so the colour provides 

little information to differentiate the SCC workability. 

Thus, the RGB image was converted into grayscale. The 

effect of this operation is shown in Fig. 3(a). 

Different shooting angles and camera placements result 

in differences in the perspective distortions among videos. 

However, the differences in SCC workability is not 

essentially due to these distortions. Taking distortions as a 

feature would confuse the computer and affect its 

performance on new data. The affine transformation was 

carried out to correct for nonideal camera angles and 

eliminate distortions. Fig. 3(b) shows that the grayscale 

image is transformed by the affine matrix to a 350 

pixels×200 pixels image stripped of useless environment 

information. 

During the mixing process, it was likely that the SCC 

paste would splash on the inner wall of the mixer inlet and 

leave marks on it, which could be mistaken as a feature. 

Attention then was then paid to the ROI, which can truly 

provide useful features for the model to recognize shown in 

Fig. 3(c). The part of the image that is framed in a box was 

extracted as the ROI and resized to a certain size, 150 

pixels×50 pixels. 

Different illumination would cause differences in 

brightness between images, reflected in the grayscale 

values. If the grey level of an image were distributed 

unevenly, especially in a narrow range, the image contrast 

would be rather low, influencing the image sharpness and 

recognition. Thus, some part of the image would be either  

Table 5 Mix composition and workability characteristics of the mixing videos in group D 

Video 

number 
Vw/Vc SP% 

Cement 

(kg/m3) 

Fly ash 

(kg/m3) 

Water 

(kg/m3) 

Plasticizer 

(kg/m3) 

SF 

(mm) 

VF 

(s) 

Volume 

(L) 

1 1.16 0.99 362 151 198 3.60 655 68.4 20 

2 1.15 0.93 310 201 198 2.88 660 22.5 20 

3 1.15 1.07 310 201 198 3.32 550 30.7 20 

4 1.15 1.07 310 201 198 3.32 660 55.2 20 

5 1.15 0.88 310 201 198 2.73 455 21.2 20 

6 1.15 1.07 310 201 198 3.32 465 17.6 20 

1

50 

5

0 
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Fig. 5 The flowchart to enlarge dataset 

 

 

too bright or too dark to distinguish. Consequently, the 

illumination will be a noise that should not be learned as a 

feature. Thus, histogram equalization was performed to 

address this problem, and the effect is shown in Fig. 3(d). 

The four preprocessing steps were all applied in turn 

among these groups. Fig. 4 presents the preprocessing 

results of several images selected from several groups. 

 

2.3 Data enlarging 
 

The DL model needs a large amount of data, while the 

available data is restricted, so some processing steps were 

used to enlarge the amount of data. The steps to enlarge the 

data sets are shown in Fig. 5, from one video to multiple 

image sequences. First, only in the last one minute of the 4-

minute mixing process was the mixture considered to be 

fully mixed and homogeneous (Cazacliu and Roquet 2009). 

Therefore, the last 60 s of the video was extracted and 

converted into many images in sequence for preprocessing. 

The number of these images was designated parameter S. 

For each video, the value of S was approximately 1800 

frames. 

After data preprocessing, it was easy to find that the 

images in sequence comprised some mixing cycles. A 

mixing cycle means the process in which the blades in a 

mixer rotate back to the initial position in the shortest time. 

The number of images in a mixing cycle was designated 

parameter R. For different mixers, R differed, as shown in 

Table 6. For the 60 L mixer, a mixing cycle contained 42 

frames, implying that every time the mixer rotated one 

cycle, 42 frame images were generated. Then, the images in 

the sequence were divided by the mixing cycles 

 
(1) 

Table 6 Down-sampling parameters of three groups 

Group 

name 

Images in one 

cycle (R) 

Temporal 

resolution (T) 

Image sequence 

length (N) 

Group A 35 5 7 

Group B, C, D 42 6 7 

 

Table 7 The amount of data in the three groups 

Groups Number of samples Number of video 

A 10710 31 

B 6468 21 

C 10836 36 

D 1848 6 

 

 

M represents the number of mixing cycles in a 60 s 

video. Subsequently, the long image sequence was cut into 

M mixing cycles. 

When all the images in the mixing cycles were put in the 

DL model, the computational cost was rather large to 

compute, and not all the frames were necessary because the 

differences between several adjacent images were fairly 

small, providing almost the same information. Therefore, 

some images carrying similar information in a cycle could 

be skipped. Thus, the parameter T, defined as the temporal 

resolution, was used to realize the downsampling operation 

by choosing every other T frame in a mixing cycle. Note 

that a larger T corresponds to more images being skipped 

and more time information being lost. Considering the 

computational cost and the time sequence information, the 

value of T should be neither too large nor too small. 

According to previous research (Ding and An 2018), a 

suitable value is between 5 and 9. The temporal resolution 

for each group in this paper is shown in Table 6. The 

number of frames extracted from one mixing cycle to form 

an image sequence was then converted from R into 

 
(2) 

For each mixing cycle, the value of parameter N is 7, as 

shown in Table 6. The 7 chosen frames form one image 

sequence, namely, one sample. This process is shown in 

Fig. 6, taking one mixing cycle in group C as an example. 

The images framed in the box located on the first column 

are chosen every other six frames in a mixing cycle in 

group C as shown in Fig. 6(a) and eventually form one 

image sequence with seven images whose label contains the 

values of SF and VF, as shown in Fig. 6(b). 

After enlargement, each video was first converted into a 

large number of frames. Then, these frames were turned 

into M mixing cycles, and each mixing cycle was 

transformed into one image sequence. Finally, each video 

was converted to M image sequences, corresponding to M 

samples. Each sample includes 7 preprocessed images with 

the SF and VF as its corresponding label vector. 

Data augmentation was performed to further decrease 

the overfitting effect and enlarge the data. This method is 

clarified as follows. For each sample, the first image was 

placed at the end of the sequence in turn to maintain the 

temporal order. This approach works because the 7 images 

form a cycle, and whichever to be the starting is proper. Fig.  
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Fig. 7 Seven image sequences after operating data 

augmentation for group C 

 

 

7 shows the augmentation operation. Six more image 

sequences derive from the original sequence, expanding the 

amount of initial data by a factor of 7. 

In all, after data enlargement and augmentation, the 

amount of the data increases rapidly, as shown in Table 7, 

substantially mitigating the overfitting problem. 

 

 

3. Dataset classification and model 
 

After the data was collected, processing and enlarged, 

the samples should be divided into different data sets 

according to different goals. Then the training model was 

built in this part to train these processed data samples. 

 

3.1 Dataset classification 
 

The data were first classified into the training and 

validation set and the testing set. The former set was used to 

train the model and after training several times, the 

accuracy of the model improved considerably. Then the 

model was used to predict the testing set, and the 

predictions were compared with the actual labels, namely, 

the SF and VF values.  

There were two main objectives in this study. For 

different goals, the dataset classifications were different. 

For the first goal to estimate the workability of the SCC 

 

Table 8 The testing data from three groups 

Testing set Video number SF (mm) VF (s) 

Test A 

19 360 200 

20 485 69 

16 585 9 

1 600 13 

2 610 10 

3 610 18 

6 625 26 

4 648 13 

29 679 31 

Test B 

11 535 101 

13 555 66 

14 565 56 

1 600 8 

6 625 33 

7 645 35 

3 675 28 

4 700 10 

Test C 

15 350 12 

14 425 5 

20 495 35 

21 500 44 

16 548 9 

32 650 63 

7 685 9 

4 705 17 

31 708 67 

 

 

in different mixing conditions, the testing data should 

contain different mixers and mixing volumes, and the 

testing videos were randomly chosen from groups A, B and 

C, for a total of 26 groups as shown in Table 8. The left 

unchosen data of groups A, B and C automatically became 

the training and validation set. The mixing condition of the 

testing set was the same as that of one group in the training 

and validation set but with different workability. 

The second goal is to demonstrate that a number of 

typical mixing conditions combined together can be used to  

R=6

 
(a) seven images chosen every other 6 frames in a mixing cycle from group C 

 
(b) one image sequence with SF and VF labels from group C 

Fig. 6 Transition from a mixing cycle to an image sequence 
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predict a new mixing condition. Here, the training and 

validation set was kept unchanged, formed by groups A, B 

and C. However, the testing data were a new set whose 

mixing condition was never seen or learned. Group D was 

the extra collected data to confirm this idea and was set as 

the testing data. It is emphasized that the mixing condition 

of the testing image sequences was different from that of 

the training and validation set. 

If different kinds of mixers mixing different SCC 

volumes can be combined together to learn and achieve the 

abovementioned two goals, then whether or not the mixing 

condition of testing image sequences is included in the 

combined training set and learned by the model, this 

method can be applied to predict the workability of SCC in 

various mixing conditions with a combined training set. 

 
3.2 Model architecture 
 

As shown in Fig. 8, the model contains two main parts: 

the convolutional and the recurrent parts. The CNN part 

was used to extract the spatial features, and the recurrent 

part was used to extract temporal features. The two parts 

were connected by the time distributed layer because the 

recurrent part included an extra time dimension. Thus, the 

convolution parts could be applied for each of the time 

steps. CNN part comprised convolutional, pooling and 

flatten layers. The convolutional layers convolved with the 

input images or feature map with several local kernel filters. 

In this study, the convolutional layers both had four kernel 

filters with 2×2 kernel size, and the stride length was one, 

with no padding around the input data. The activation 

function was Rectified Linear Unit (ReLU). The max 

pooling layers were used to extract the most important 

 

 

features, with 2×2 size and stride length was one. Pooling 

reduced size of feature maps by about half. After 

convolutional and pooling, the flattened layer was applied 

to transform the high-dimensional feature map into a one-

dimensional vector by thewidth or length of the feature 

map. The image sequences with 7 images contained not 

only spatial information extracted by CNN but also SCC 

time features for they were extracted in a whole mixing 

cycle in turn. To learn the sequential image features, the 

recurrent part was necessary and set as LSTM whose 

dimension was five to learn the temporal information from 

the sequences. 

After the abovementioned layers were applied to the 

image sequences, a fully connected layer was finally used to 

transform the feature maps into a two-dimensional vector, 

comprising SF and VF, to achieve the regression goal. 

Cross entropy was employed as the cost function to 

measure the similarity between the predicted values and 

target values. 

This model was implemented in Python using the Keras 

package. The CPU used was Intel(R) Core(TM) i7-7700 

CPU, RAM 8.0 GB, and GPU was NVIDA GeForce GTX 

1050.  

 

 

4. Results and discussion 
 

4.1 Prediction results in different mixing conditions  
 

After the training process, the testing data were 

predicted. For one specific video, the predictions of the 

image sequences were computed together to obtain their 

average SF and VF values.  

 

  
 (a) Model layers (b) Input and output of each layer 

Fig. 8 Model architecture diagram 
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Table 9 Prediction results of the three learned groups 

Testing 

set 

Video 

number 

Ground truth Prediction Relative error 

SF 

(mm) 

VF 

(s) 

SF 

(mm) 

VF 

(s) 

SF 

(%) 

VF 

(%) 

Test A 

19 360 200 419 161 16.4 19.5 

20 485 69 501 30 3.3 56.5 

16 585 9 589 17 0.7 88.9 

1 600 13 659 13 9.8 0 

2 610 10 574 21 5.9 110 

3 610 18 639 39 4.8 116.7 

6 625 26 628 43 0.5 65.4 

4 648 13 670 8 3.4 38.5 

29 679 31 647 43 4.7 38.7 

Test B 

11 535 101 507 65 5.2 35.6 

13 555 66 569 57 2.5 13.6 

14 565 56 524 50 7.3 10.7 

1 600 8 643 18 7.2 125 

6 625 33 633 22 1.3 33.3 

7 645 35 582 36 9.8 2.9 

3 675 28 625 21 7.4 25 

4 700 10 606 12 13.4 20 

Test C 

15 350 12 451 8 28.9 33.3 

14 425 5 417 8 1.9 60 

20 495 35 536 54 8.3 54.3 

21 500 44 460 47 8 6.8 

16 548 9 561 17 2.4 88.9 

32 650 63 676 56 4 11.1 

7 685 9 670 36 2.2 300 

4 705 17 635 15 9.9 11.8 

31 708 67 688 51 2.8 23.9 

 

 

Table 9 shows the ground truth, predicted SF values, 

estimated VF values and relative error of the testing set in 

the three groups. It can be concluded that the training set 

combined by three mixing conditions chosen from groups 

A, B and C can effectively predict the value of SF. The 

prediction relative errors of the VF are numerically larger 

because the value of the ground truth is relatively small, the 

same magnitude as the absolute error; therefore, the results 

of the VF were influenced. For the same fluctuations in 

number, VF was influenced more than SF. 

However, whether the workability of SCC was qualified 

is more important in practice. The qualified SF value should 

be over 600 mm. And for the VF, the value should be 

between 5 s and 25 s. 

If the SF or VF of the ground truth is qualified but that 

of the prediction is not, then the prediction is considered 

inaccurate, as marked by an underline in Table 9, vice 

versa. Only if the SF and VF are qualified or unqualified 

both in ground truth and prediction is the prediction 

considered accurate. 

The relation between ground truth and prediction is 

shown in Fig. 9. The results also show whether the SF and 

VF are predicted accurately. Taking the SF prediction as an 

example, 600 mm is a boundary to distinguish the qualified 

and unqualified SCC. The dots in the lower left and the 

upper right dividing by the line 600 mm in Fig. 9(a) are 

estimated accurately, while the dots in the lower right and 

Table 10 Prediction results of the unlearned group D with a 

new mixing condition 

Testing 

set 

Ground truth Prediction Relative error 

SF (mm) VF (s) SF (mm) VF (s) SF (%) VF (%) 

Test D 

660 22.5 670 30.1 1.6 33.9 

550 30.7 523 38.8 4.9 26.3 

455 21.2 593 21.3 30.3 0.4 

465 17.6 599 25.0 28.7 42.2 

655 68.4 612 50.0 6.6 26.8 

660 55.2 600 26.4 9.1 52.3 

 

 

the upper left is predicted inaccurately. So is the VF and the 

dividing boundary is 25 s. For SF prediction of test A, three 

dots are distributed in the lower left and four in the upper 

right. They are all estimated accurately. Only one dot in the 

lower right is predicted inaccurately. 

Therefore, the accuracy of the SF and VF in test A is 

both 89%, shown in Fig. 9(a)-(b). The corresponding results 

for test B are 85% and 75%, presented in Fig. 9(c)-(d) and 

those of test C are 100% and 89% as shown in Fig. 9(e)-(f). 

The total accuracy of the 26 dots is shown in Fig. 9(g-h). 

The SF and VF accuracy assessments are 92% and 85%, 

respectively. The total 26 groups of testing data show that 

the model can accurately estimate the workability of SCC in 

different mixers and mixing volumes, constituting different 

mixing conditions. 

It can be concluded that the combined training set can 

effectively predict SCC workability. This result shows that 

the model can estimate several kinds of testing data at the 

same time whose mixing condition is the same as that of 

one group in the training set. The mixer of group A is 

different from that of group B and C, so it is easy to 

distinguish group A from group B and C. As to group B and 

C, although their mixers are the same, their mixing volume 

differs a lot which makes it easier for the model to 

differentiate. 

 

4.2 Prediction result of the unlearned group with a 
new mixing condition 

 

Group D is the unlearned group, whose mixing 

condition is not contained in the training set. In addition, six 

videos of group D were collected in this paper sets as the 

extra testing set, with mixing conditions different from 

those of groups A, B, and C which means its mixing 

condition differed from the combined training set. Table 10 

shows the ground truth, prediction and relative error of 

group D. Although the VF value of the first group was 

predicted to be unqualified, as marked by an underline, the 

left ones are all predicted correctly, consistent with the 

ground truth. 

Fig. 10 shows the relation between the ground truth and 

prediction as well as the prediction accuracy. The SF and 

VF prediction accuracies of group D, whose mixing 

conditions are different from those of the training 

sequences, are 100% and 83%, respectively. Although the 

accuracy of the VF is relatively low, as shown in Fig. 10, 

the distance between the ground truth and prediction is 

smaller. The mixer of group C is the same as that of group 
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B and D, and the mixing volume is between them. The 

feature of group C is similar to group B and D. Therefore, 

although there are not any samples of group D in the 

training set, the model still has the ability to make a good 

 

 

prediction on group C.  

Therefore, it can be concluded that the combined 

training and validation set in the DL model can estimate the 

unlearned group D well. 

 

  

 

 (a) SF prediction of test A (b) VF prediction of test A  

 

  

 

 (c) SF prediction of test B (d) VF prediction of test B  

 

  

 

 (e) SF prediction of test C (f) VF prediction of test C  

 

  

 

 (g) All the SF prediction results (h) All the VF prediction results  

Fig. 9 SF and VF prediction results in the learned groups 
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5. Conclusions 
 

In this paper, a method was proposed to estimate the 

workability of SCC with different types of mixers and 

mixing different volumes by recording the mixing process, 

with four groups in total and approximately thirty thousand 

samples. The SCC mixing videos were transformed into a 

series of image sequences to fit the DL model to predict the 

SF and VF values of SCC. The model achieved good 

prediction accuracy of the testing data.  

• It can estimate the testing set with different kinds of 

mixing conditions at the same time when their mixing 

conditions, namely, the mixer and mixing volume, have 

been learned and contained in the training set.  

• In addition, the model also achieved the goal of 

estimating image sequences whose mixing condition 

was not learned and included in the training set. 

Therefore, the training set combined by three different 

mixing condition groups can be used to estimate SCC 

with different workability at the same time regardless of 

whether the mixing condition is included in the training 

set and learned by the model. 

New mixing conditions can be predicted through the use 

of typical mixing conditions. Therefore, the work to collect 

the mixing conditions is reduced and proven to be feasible. 

The model can be extended in the future to more kinds of 

mixers mixing different volumes. The DL model can be 

used in other kinds of mixers, such as a twin-shaft mixer 

and vertical paddle mixer, and with different mixing 

volumes. In the next step, The plan is to collect further 

video data to expand the use of this technique and establish 

an automatic prediction system to estimate the workability 

of SCC in various mixing conditions.  
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