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1. Introduction 
 

The shells are basic parts in structuring different devices 

in engineering and technology and so on. In the seventeenth 

century, a thin pressure vessel in the form of a cylinder was 

structured and extended for industrial aims during the 

period: 1745-50. Investigation of vibrations for cylindrical 

shells was introduced by Sophie Germaine in 1821. After 

her research, this problem was studied by Rayleigh (1884) 

in the last years of the nineteenth century. Firstly, Love 

(1888) presented the Kirchhoff’s hypotheses for plates. 

After that this theory became a foundation stage for 

building new ones by changing physical terms expressions. 

More than one type of materials is used to structure the 

functionally graded materials (FGMs) by some material 

manufacturing law and their physical properties vary from 

one surface to the other surface. 

In these surfaces, one has highly heat resistance property 

while other may preserve great dynamical perseverance and 

differs mechanically and physically in regular manner from 

one surface to other surface, making them of dual physical 

appearance. All these materials have changeable outer and 

inner sides and their physical properties greatly differ from 

each other (Suresh and Mortensen 1997, Koizumi 1997). 
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These materials are organized by various techniques and 

their applications are seen in dynamical elements such as 

plates, beams and shells. Moreover, they are also observed 

in space crafts, nuclear reactors and missiles technology etc. 

Greif and Chung (1975) studies the vibrations of cylindrical 

shells for number of edge conditions with many mid-way 

supports between boundaries and applied the Rayleigh- Ritz 

formulation. Loy and Lam (1997) investigated shell 

vibrations with ring supports that restricted the motion of 

cylindrical shells in the transverse direction. This influence 

was inducted by the polynomial functions. Xiang et al. 

(2002) formed some closed form solution functions for 

studying vibrations of cylindrical shells (CSs). The mid-

way ring supports were clamped around the shells. 

Fundamental frequencies with different parameters have 

been investigated with wave propagation approach. Mehar 

et al. (2020a) investigated the modal responses of multi-

walled carbon nanotube-reinforced composite sandwich 

structural plate under the elevated temperature environment 

using a higher order polynomial kinematic model and the 

isoparametric finite element steps. The proposed model 

accuracy has been verified with experimental modal values 

under the influence of elevated temperature and ambient 

conditions. Sewall and Naumann (1968) considered the 

vibration analysis of CSs based on analytical and 

experimental methods. The shells were strengthened with 

longitudinal stiffeners. Sharma (1974) analyzed vibration 

frequencies circular cylinder with using the Rayleigh - Ritz 

formulation and made comparisons of his results with some 

experimental ones. Asghar et al. (2019) conducted the 
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vibration of nonlocal effect for double-walled carbon 

nanotubes using wave propagation approach. Many material 

parameters are varied for the exact frequencies of many 

indices of double-walled carbon nanotubes. Najafizadeh 

and Isvandzibaei (2009) presented the study of the vibration 

of thin cylindrical shells with ring supports made of a 

functionally gradient material (FGM) composed of stainless 

steel and nickel. Material properties are graded in the 

thickness direction of the shell according to volume fraction 

power law distribution. Effects of boundary conditions and 

ring support on the natural frequencies of the FGM 

cylindrical shell are studied. The cylindrical shells have ring 

supports which are arbitrarily placed along the shell and 

which imposed a zero lateral deflection. Chung et al. (1981) 

investigated the vibrations of fluid filled CSs and presented 

an analysis of experimental and analytical investigation. 

Goncalves and Batista (1987) gave an analytical 

investigation of cylindrical shell partially filled and 

submerged in a fluid. Recently, some researchers have done 

their research in concrete construction (Thomée et al. 2006, 

Meftah et al. 2006, Yaman et al. 2006, Gasser 2007). 

Sedighi et al. (2011) presented the new analytical work on 

the well-known preload nonlinearity using the innovative 

equivalent function (EF). The nonlinear vibration of 

cantilever beam with nonlinear boundary condition in the 

presence of preload spring with cubic nonlinearity is 

studied. The powerful analytical method, called He's 

Parameter Expanding Method (HPEM) is used to obtain the 

exact solution of dynamic behavior of the mentioned 

system. Fatahi-Vajari et al. (2019) studied the vibration of 

single-walled carbon nanotubes based on Galerkin’s and 

homotopy method. This work analyses the nonlinear 

coupled axial-torsional vibration of single-walled carbon 

nanotubes (SWCNTs) based on numerical methods. Two-

second order partial differential equations that govern the 

nonlinear coupled axial-torsional vibration for such 

nanotube were derived. Jiang and Olson (1994) 

recommended the characteristics of analysis of stiffened 

shell using finite element method to diminish large 

computational efforts which are required in the 

conventional finite element analysis. Sharma et al. (2019) 

studied the functionally graded material using sigmoid law 

distribution under hygrothermal effect. The Eigen 

frequencies are investigated in detail. Frequency spectra for 

aspect ratios have been depicted according to various edge 

conditions. Mehar et al. (2019) reported the buckling load 

parameters of the graded nanotube sandwich structure under 

the influence of uniform thermal loading. The 

corresponding properties of the graded nanotube sandwich 

evaluated via the extended rule of mixture including 

temperature dependent properties of each constituent. The 

nanotube structural model derived mathematically using a 

higher-order polynomial displacement to maintain the 

required shear stress continuity and thermal distortion via 

Green-Lagrange strain. Swaddiwudhpong et al. (1995) 

conducted the vibrations of cylindrical shells (CSs) using 

Ritz polynomials. The axial modal deformation 

displacements with various boundary conditions were 

investigated for any number of intermediate supports. The 

procedure was easy for computer programming for various 

combinations of boundary conditions. Alazzawy and Jweeg 

(2010) studied the free vibration solution for laminated 

simply supported closed cylindrical shells. This solution is 

obtained using general third shell theory (GTT). Also the 

critical in-plane fatigue load is studied and the required 

equilibrium equations are developed, the effects of tension 

or compression in-plane load on the natural frequencies are 

discussed also. Mehar et al. (2020b) studied the thermal 

frequency of the graded nanotube-reinforced composite 

structure embedded with shape memory alloy (SMA) fiber 

first time numerically using a micromechanical multiscale 

finite element material model. The smart nanotube-

reinforced composite structure has been formulated through 

the higher- order kinematics including the shear 

deformations. Hussain and Naeem (2018a) used Donnell’s 

shell model to calculate the dimensionless frequencies for 

two types of single-walled carbon nanotubes. The frequency 

influence was observed with different parameters. Salamat 

and Sedighi (2017) investigated the free and forced 

vibration of simply-supported single-walled carbon 

nanotube under the moving nanoparticle by considering 

nonlocal cylindrical shell model. To validate the theoretical 

results, modal analysis of nanotube is conducted using 

ANSYS commercial software. Excellent agreement is 

exhibited between the results of two different methods. 

Furthermore, the dynamic response of SWCNT under 

moving nanoparticle is also studied. Hussain and Naeem 

(2017) examined the frequencies of armchair tubes using 

Flügge’s shell model. The effect of length and thickness-to-

radius ratios against fundamental natural frequency with 

different indices of armchair tube was investigated. Mehar 

et al. (2016) investigated the free vibration behavior of 

functionally graded carbon nanotube reinforced composite 

plate under elevated thermal environment. The carbon 

nanotube reinforced composite plate has been modeled 

mathematically using higher order shear deformation 

theory. The material properties of carbon nanotube 

reinforced composite plate are assumed to be temperature 

dependent and graded in the thickness direction using 

different grading rules. Jweeg and Alazzawy (2007) 

developed the transient solutions for laminated simply 

supported closed cylindrical shells subjected to a uniform 

dynamic pressure at the outer surface of the cylinder. 

Rectangular pulse, triangular pulse, sinusoidal pulse and 

(ramp-constant) load-time varying functions are studied and 

the required equilibrium equations are developed. Hussain 

et al. (2017) demonstrated an overview of Donnell theory 

for the frequency characteristics of two types of SWCNTs. 

Fundamental frequencies with different parameters have 

been investigated with WPA. Sedighi et al. (2017) provided 

the static and dynamic pull-in behavior of nano-beams 

resting on the elastic foundation based on the nonlocal 

theory which is able to capture the size effects for structures 

in micron and sub-micron scales. For this purpose, the 

governing equation of motion and the boundary conditions 

are driven using a variational approach. Wang et al. (1997) 

to scrutinized the vibrations of a ring-stiffened CSs using 

Ritz polynomial functions. Materials of both shells and 

rings were of isotropic nature. These shells are stiffened 

with isotropic rings having three types of locations on the 
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shell outer surface. To increase the stiffness of CSs was 

stabilized by ring-stiffeners. Isotopic materials are the 

constituents of these rings. Sharma et al. (1998) determined 

frequencies of composite cylindrical shells containing fluid. 

They estimated the axial modal deformations by the Fourier 

series of trigonometric functions. Mehar and Panda (2016) 

investigated the nonlinear free vibration behavior of 

functionally graded carbon nanotube reinforced composite 

flat panel using temperature dependent material properties 

for different grading. The carbon nanotube reinforced 

composite flat panel model has been developed 

mathematically using the higher-order shear deformation 

theory and Green-Lagrange nonlinearity. Wang and Lai 

(2000) presented simple approach for the evaluation of 

eigen-frequencies of cylindrical shells. The numerical 

process adopted by them was alike the wave propagation 

approach (WPA). Ergin and Temarel (2002) did a vibration 

study of cylindrical shells. The shells lied in a horizontal 

direction and contained fluid and submerged in it. Zhang 

(2002) studied vibrations of CSs submerged in a fluid. It 

was seen that the fluid factor impressed vibration shell 

frequencies to a significant limit. Najafizadeh and 

Isvandzibaei (2007) applied ring supports to CSs for 

vibration analysis of along the tangential direction and 

founded their research on angular deformation theory of 

higher order. The angular deformation shell theory of third 

order was used for shell equations and determined the 

effects of constituent volume fractions, shell configurations 

on the shell vibrations. FG material parameters were 

changed step by step. Recently, Hussain and Naeem (2019a, 

b, c, d, 2020a) and performed the vibration of SWCNTs 

based on wave propagation approach and Galerkin’s 

method. They investigated many physical parameters for 

the rotating and non-rotating vibrations of armchair, zigzag 

and chiral indices. Moreover, the mass density effect of 

single walled carbon nanotubes with in-plane rigidity have 

been calculated for zigzag and chiral indices. Shah et al. 

(2009) and Sofiyev and Avcar (2010) studied stability of 

CSs based on Rayleigh - Ritz and Galerkin technique using 

elastic foundations. The structures of cylindrical shell were 

tackled under the exponential law and axial load. Naeem et 

al. (2013) conducted the vibrational behavior of submerged 

FG-CSs. The problem of submerged cylindrical shells is 

frequently met where fluid envelopes a structure. The 

present problem consists of a cylindrical shell submerged in 

a fluid and surrounded by ring supports. There is no 

evidence found where this problem has not been studied 

earlier. Ansari et al. (2015) performed nonlocal model for 

the frequencies of multi-walled carbon nanotubes with 

small effects subject to various boundary conditions using 

Rayleigh-Ritz technique. The governing equation was 

formulated based on Flügge’s and nonlocal shell theory. 

Some new resonant frequencies are identified with the 

association of vibrational modes and circumferential modes 

into shell model. Mehar et al. (2017a) studied the nonlinear 

eigen frequency response of the functionally graded single-

walled carbon nanotube reinforced sandwich structure 

numerically considering the Green- Lagrange nonlinear 

strain under uniform thermal environment. The 

mathematical model of the sandwich plate has been derived 

using the simple higher-order shear deformable kinematics 

including the temperature dependent properties of each 

constituent. Hussain and Naeem (2018) used Donnell’s 

shell model to calculate the dimensionless frequencies or 

two types of single-walled carbon nanotubes. The frequency 

influence was observed with different parameters. Recently, 

many researchers used different methods at nano level 

(Bilouei et al. 2016, Golabchi et al. 2018, Lal and Markad 

2018, Mousavi et al. 2019, Loghman et al. 2017, Zamani et 

al. 2017, Batou et al. 2019, Salah et al. 2019, Ayat et al. 

2018, Jamali et al. 2019, Behera and Kumari 2018, 

Narwariya et al. 2018, Rezaiee-Pajand et al. 2018, Yazdani 

and Mohammadimehr 2019, Esmaeili and Andalibia 2019, 

Mehar and Panda 2019).  

According to our knowledge, up to now little is known 

about the vibration analyses of ring supports with 

exponential volume fraction laws and moreover, the 

influence of length-to-radius ratio, thickness-to-radius ratio 

and varying of exponents of volume fraction have not been 

investigated for FG-CS based on Galerkin’s technique. 

Many material researchers calculated the frequency of 

CNTs using different techniques (Mehar and Panda 2017a, 

b, c, d, Mehar and Panda 2018, Mehar et al. 2017c, d, 

Mehar et al. 2018), for example, multiscale modeling 

approach (Mehar and Panda 2019, Mehar et al. 2019). 

The proposed model are quite straightforward for the 

vibrational analysis of these structures of CSs. The shell are 

stabilized by ring supports to increase the stiffness and 

strength. Isotopic materials are the constituents of these 

rings. A large use of shell structures in practical 

applications makes their theoretical analysis an important 

field of structural dynamics. Since a shell problem is a 

physical one, so their vibrational behaviors are distorted by 

variations of physical and material parameters. Effects of 

different parameters for ratios of length- and height-to-

radius versus fundamental natural frequencies are 

investigated. In this paper, utilizing the Love shell theory 

with exponential volume fraction laws for the CSs 

vibrations provides a governing equation. It is also 

exhibited the effect of frequencies by varying the positions 

of ring supports and ratios of length- and- height-to-radius. 

Throughout the computation, it is observed that the 

frequency behavior for the boundary conditions follow as; 

clamped-clamped (C-C), simply supported-simply 

supported (SS-SS) frequency curves are higher than that of 

clamped-free (C-F) curves. Also the Love shell model 

based on the Galerkin’s method for estimating fundamental 

natural frequency has been developed to converge more 

quickly than other methods and models. In addition, by 

increasing the value of height-to-radius ratio resulting 

frequencies also increase and frequencies decrease on 

increasing the ratio of length-to-radius ratio. The presented 

vibration modeling and analysis of CSs may be helpful 

especially in applications such as oscillators and in non-

destructive testing. To elude any complications which may 

risk a physical system their analytical investigation is done. 

The shells are supported by isotropic ring-supports.  

 

 

2. Theoretical formation  
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Geometrical structure of a cylinder is sketched in Fig. 1. 

Strain energy U for FG-CS (Naeem et al. 2013).  
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where the membrane (Aij), coupling (Bij) and flexural (Dij) 

stiffness are expressed as 





















=

=

=







−

−

−

2

2

2

2

2

2

2

h

h

jiji

h

h

jiji

h

h

jiji

dzQzD

dzQzB

dzQA

             (4) 

For isotropic CSs the coupling stiffness Bij condensed to 

zero when its material is isotropic and does not become zero 

when a cylindrical shell is structured from composite or 

laminated or functionally graded material. 

Qij
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Strain energy modified form is achieved after putting 

 

 

{α}T and [S] in Eq. (1)  
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2.1 Relationship of strain-displacement expressions 
 

With advancements in study of shell problem, new shell 

theories were developed and used to do vibration analysis 

of cylindrical shell problems. There found minute 

differences in numerical results when different shell 

theories were utilized. Applying Love shell theory, strain-

displacement expressions are stated as 

 1 2

1 1
, , , ,

u v v u
e e w

x R x R


 

     
= + +  

     
     (7) 

Similarly relations for curvature - displacement for κ1, 

κ2, τ are written as: 
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On substitution of the expressions (7) and (8) in the 

relation (6), the strain energy U in modified form can be 

elaborated as  
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Fig. 1 Geometry of shell 
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Similarly kinetic energy for a CSs doing vibration is 

written as 
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The mass density relation ρT is expressed as 

 

(11) 

With the coalescence energies (strain and kinetic), the 

Lagrangian functional can be obtained can be given as 

(Sodel 1981) 
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2.2 Shell dynamical equations  
 

When a shell problem is formed in the integral form, it 

can be solved by applying the Rayleigh-Ritz method. The 

shell governing equations are formed in a system of PDEs 

in three unknown displacement functions. These equations 

are framed from the Lagrangian functional (12) with 

process of variation. So application of the Hamitonian 

variational principle, the governing equations are given by 
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(13c) 

2.3 The Galerkin technique  
 

Over the past several years vibration of nanostructures 

of various configurations and boundary conditions have 

been extensively studied (Hussain et al. 2018a, Hussain et 

al. 2018b, Hussain et al. 2018c, Hussain and Naeem 2018b, 

Hussain et al. 2019a, Hussain et al. 2019b, Hussain et al. 

2020a, Hussain and Naeem 2020b, Asghar et al. 2020, 

Hussain et al. 2020b, c, d ,e, f, g, Taj et al. 2020a, Taj et al. 

2020a, b, c). Many material researchers has used various 

methods to solve PDEs (Wuite et al. 2005). Closed form 

functions exist for solutions of shell motion equations for 

some types of edge conditions. For rest of boundary 

conditions, the numerical solutions are obtained by 

approximate methods. Galerkin’s method is made to extract 

approximate solution of shell controlling equations because 

these techniques provide results robustly with sufficient 

accuracy. This method is appropriate, straightforward to 

extract the shell vibration frequencies. Differential 

equations are generated involving the three dependent 

variables. Boundary conditions existing at the shell ends are 

met by these functions. For solving the shell problem, first 

the special variables x, θ and temporal variable t are split. 

For this purpose the following modal displacement 

expressions for the deformation functions: u, v and w are 

presupposed as: 

( , , ) sin cosm

d
u x t A n t

dx


  =

       

(14) 

( , , ) ( ) cos cosmv x t x B n t   =
       

(15)  

( )1( , , ) ( ) sin cosibk

m i iw x t x C x a n t   ==  −

  

(16)  

Where the parameters Am, Bm and Cm in the relations 

(14)-(16) represents the vibration in the x, θ and z directions 

correspondingly. ψ(x)
 

signifies the unknown axial 

deformation function that fulfills the end conditions stated 

at two shell ends. The position of ith ring support is denoted 

by ai from the x=0 along the longitudinal direction. In Eq. 

(16), k represents number of ring supports. bi
 
Possesses the 

value 1 when a ring support is linked and is zero when no 

support is held up. Making substitutions of the expressions 

for the deformation displacement functions from Eq. (14), 

(15), (16) into Eq. (13a), (13b), (13c) with their 

corresponding derivatives, by taking bi=1 and multiplying 

with d

dx

 , ψ(x)
 
and ψ(x)(x−a) respectively. We attained an 

equation after integrating x from 0 to L 

( ) ( ) ( )

2 66 12 66 12 66
11 1 2 22 2

2 12 6612
6 7 11 8 9 6 72

2

2

2

2
3

m m

m

m

A A A B B
A I n I A n I B

R R R

B BA
I I B I I n I I C

R R

hI A 

+ +   
− − + +   

   

+ 
+ − + + + 

 

= −

 (16a) 
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The integral term are tabulated in Appendix-I. 

Making the arrangement of terms in the Eqs. (16a)-

(16c), the shell frequency equation framed in the eigenvalue 

form as below (Dong 1977) 

  

2

11 12 13 2

2

21 22 23 4

2

31 32 33 13

m m m m

m m m m

m m m m

A B C hA I

A B C hB I
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 

 

 

+ + = −


+ + = − 


+ + = −     

(17) 

Here terms ( , 1,2,3)ij i j =  implicate geometrical and 

material quantities and are tabulated in the Appendix-I. The 

above equations can be arranged in matrices form as 
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2
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0 0

0 0

0 0

m m

m m

m m

A I A

B h I B
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     
       

(18) 

 
2.4 Functionally graded materials 

 

On mixing two or more than two materials like ceramic 

and metal, functionally graded materials are obtained. This 

type of material are working in high-temperature 

dependence material goods. To recover the performance of 

the material it is circulated the functionality between the 

surface with high wear resistance and inside with high 

toughness which have material parameters: E1, E2, v1, v2, 

and ρ1, ρ2. Then the effective material quantities: EFGM, vFGM 

and ρFGM are stated as (Naeem et al. 20130, Hussain et al. 

2018c) 

 1 2
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FGM q
z

h
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+ 
 

            (19) 

where q known as power law index and thickness and z is 

the coordinate which varies from zero to infinity. The 

distribution of volume fraction for all types of CSs are 

assumed as (Chi and Chung 2006) 

1
V =

2

q

f

z

h

 
+ 

 
 (20) 

 
2.5 Volume fraction law 

 

This supposition simplifies the procedure of evaluation 

of integrals denoting material stiffness moduli. A FG-CS 

consisting of two constituent materials. In these categories 

nickel and stainless steel are used as the interior surfaces 

and the exterior surface respectively, but their arrangement 

has profound influence on the formation of FG-CSs. The 

order of the FG constituent materials is reversed as category 

I (C-I) and category II (C-II). The volume fraction Vf are 

designated for CSs, respectively. Their exist a property of 

unity for composite material (Arshad et al. 2007).  

( )

1
1

0.5

V
f q

z
he

= −

+

 

(21) 

where e is natural exponent. Therefore, from these 

expressions, the actual fabric properties: mass density ρ, 

Poisson ratio v, and Young’s modulus E, for a FG-CS are 

expressed as 

( )
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 

+ 
 

 
 
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 

+ 
 

 
 
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 
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 (22)

 

For z=−h/2, EFGM=E2, vFGM
=v2, and ρ

FGM
=ρ2, 

  and for z=h/2, 

  
( )( )1

1 2 21 ,FGME E E e E−= − − + ( )( )1

1 2 21 ,FGMv v v e v−= − − +
 

and ( )( )1

1 2 21 .FGM e   −= − − +
 

The material parameters: E1, E2, v1, v2, and ρ1, ρ2
 
for 

constituents materials stainless steel and nickel at a 

temperature of 300K are given in (Arshad et al. 2007). 

Toulokian et al. (1967) stated the material properties  at 

high temperature environ, with temperature-dependents 

which is a function of temperature. In Eq. (23), the 

constants (η0, η-1, η1, η2, η3) are different for different 

material.  

  ( )1 2 3

0 1 1 2 3  T T T T    −

−= + + +  (23) 

At temperature 300K, for stainless steel and nickel, the 

material properties for FG-CS are: E, υ, ρ for stainless steel  
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Table 1 Convergence of SS-SS frequencies with frequency 

parameter 2(1 ) /R v E  = −  (Xiang et al. 2002) 

n Method 
m 

1 2 3 

1 
Xiang et al. (2002) 0.0161029 0.039271 0.1098116 

Present 0.0161028 0.0392714 0.1098115 

 

Table 2 Convergence of SS-SS frequencies (Loy et al. 

1999) 

n Method 
m 

1 2 3 4 5 

2 
Loy et al. (1999) 2050.7 5643.3 8941.3 11416.9 13262.9 

Present 2044.7 5635.4 8932.5 11407.5 13253.2 

3 
Loy et al. (1999) 2204 4052 6633.3 9140.6 11378.8 

Present 2195 4035.5 6630.6 9135 11368.9 

 

 

(SST) are 2.0778×1011 N/m2, 0.317756 and 8166 Kg/m3 

and nickel (Ni) are 2.05098×1011 N/m2, 0.3100, and 8900 

Kg/m3. These values have been taken from references (Loy 

et al. 1999). 

 
 
3. Results and discussion 
 

In this paper, vibrational frequencies for functionally 

graded cylindrical shells are presented and analyzed. The 

Galerkin’s method which is versatile numerical technique  

 

 

Table 3 Convergence of clamped-clamped frequencies with 

frequency parameter 2(1 ) /R v E  = −  (Xuebin 2008) 

Method 
n  

2 3 4 5 

Xuebin (2008) 0.014052 0.022726 0.042272 0.068116 

Present 0.014256 0.022713 0.042215 0.06805 

 

Table 4 Convergence of frequencies (Lam and Loy 1998) 

for a clamped-free isotropic CSs 

m method 
n 

3 4 5 6 

1 
Lam and Loy (1998) 759.9 1459.3 2360.9 3463.9 

Present 765.3 1460.2 2361.1 3464 

 

 

has been used in the present study to explore the vibration 

characteristics of FG-CSs with ring supports. For the 

convergence rate of CSs, the non-dimensional frequency 

parameters enumerated in the current work, i.e., using 

Galerkin’s method, are happened to be in a good 

consistency along with the so-called exact results furnished 

by (Xiang et al. 2002, Loy et al. 1999, Xuebin 2008, Lam 

and Loy 1998), those were established by working out with 

three boundary conditions as provided in Tables 1-4. The 

proposed model based on Galerkin’s can incorporate in 

order to accurately predict the acquired results of material 

data point and the percentage difference is negligible. 

 
 
 

Table 5 Clamped-clamped frequencies (Hz) against the circumferential wave number (n) (h/R=0.002 m, L/R=20 m) 

 
n 

q=0.5 q=1 q=8 
 S-S C-C C-F S-S C-C C-F S-S C-C C-F 

Category-I 

1 13.213 28.292 5.41 13.142 28.141 5.382 12.95 27.73 5.303 

2 4.472 9.913 2.08 4.446 9.858 2.069 4.384 9.716 2.039 

3 4.15 5.95 3.698 4.125 5.916 3.678 4.07 5.834 3.627 

4 7.041 7.464 6.951 7.001 7.421 6.913 6.905 7.32 6.817 

5 11.253 11.369 11.223 11.191 11.306 11.162 11.036 11.15 11.006 

Category -II 

1 13.258 28.357 5.057 13.332 28.516 5.085 13.538 28.957 5.164 

2 4.496 9.934 2.065 4.524 9.99 2.078 4.591 10.144 2.108 

3 4.169 5.969 3.705 4.195 6.004 3.726 4.254 6.093 3.781 

4 7.056 7.48 6.961 7.096 7.524 7.001 7.2 7.633 7.103 

5 11.268 11.385 11.236 11.331 11.449 11.299 11.498 11.617 11.466 

 

Table 6 Clamped-clamped frequencies (Hz) against axial wave mode (m) (n=1, h/R=0.002 m, L/R=20 m) 

 
m 

q=0.5 q=1 q=8 
 S-S C-C C-F S-S C-C C-F S-S C-C C-F 

Category -I 

1 13.213 28.292 5.052 13.142 28.141 5.025 12.95 27.73 4.951 

2 48.48 69.643 29.663 48.221 69.271 29.505 47.517 68.259 29.074 

3 97.295 120.07 74.424 96.776 119.43 74.027 95.362 117.68 72.945 

4 152.73 174.62 128.88 151.92 173.7 128.2 149.7 171.15 126.32 

5 210.48 230.33 187.53 209.36 229.11 186.52 206.3 225.75 183.8 

Category -II 

1 13.258 28.357 5.057 13.332 28.516 5.085 13.538 28.957 5.168 

2 48.652 69.864 29.717 48.925 70.256 29.884 49.682 71.343 30.446 

3 97.657 120.51 74.619 98.205 121.19 75.038 99.725 123.06 76.199 

4 153.32 175.35 129.29 154.19 176.31 130.02 156.57 179.03 132.03 

5 211.32 231.29 188.19 212.51 232.59 189.24 215.8 236.63 192.17 
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3.1 Frequency analysis of FGM cylindrical shells 
without ring supports  
 

Here, the frequencies for FG-CS are evaluated with 

exponential volume fraction law under clamped-clamped 

(C-C), clamped-free (C-F) and simply supported - simply 

supported (SS-SS). Table 5 display FG-CS frequencies for 

Category I and Category II with the end conditions of C-C 

under exponential volume fraction. In this Table n is 

increased almost two times as compared to the edge 

condition of SS-SS at the initial value of n but almost its 

values becomes similar at n=5. The influence of the value 

of q, on both categories is same as it was seen for the end 

condition of SS-SS. Table 6 depicts the frequencies of FG-

CSs versus the axial wave number for clamped-clamped 

conditions. The frequency increases on increasing the wave 

number and on increasing the value of q (0.5~8), the 

frequency decreases for all boundary conditions. It is 

observed that the frequencies of Category-II are greater than 

that of Category-I. It is due to the material which is used in 

the formation of shell. 

Tables 7-8 shows the variations of clamped - clamped 

frequencies versus the L/R and h/R for FG-CS. In these 

tables, a great influence of ‘q’ has been seen on the 

variation of natural frequency. The affect of the value of ‘q’ 

is varied according to the Category I and Category II. In 

Table 8, it has been seen that there is a little bit changed 

when the value of L: R goes to higher step by step in both 

categories (I & II). For Category I and Category II the 

influence of the value of q, in the present case is similar 

Table 7. 
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Fig. 2 Frequency pattern versus n for three boundary 

conditions for FG-CS with ring support (m=1, L=20 m, 

h=0.002 m, R=1 m, q=0.5, a=0.3L) 
 
 

3.2 Frequency analysis with ring supports 
 

Here frequencies for both types of FG-CSs with ring 

supports are presented in following figures. The frequency 

variation with the position of the ring support at a=0.3L for 

the edge conditions: SS- SS, C-C and C-F for both FG-CS 

as shown in Fig. 2. The frequencies increase significantly 

from n=1~10 and for other wave number, the frequencies 

increase linearly. Fig. 3. depicts the frequency variations 

versus ring support for Categories-I and-II cylindrical  

Table 7 Clamped-clamped frequencies (Hz) against length-to-radius ratio L/R 

 
L/R 

q=0.5 q=1 q=8 
 S-S C-C C-F S-S C-C C-F S-S C-C C-F 

Category 

-I 

1 669.14 722.53 558.9 689.44 28.141 555.92 679.37 27.73 549.02 

2 469.27 518.23 276.16 466.77 69.271 274.69 459.95 68.259 270.68 

3 152.73 215.33 69.25 151.92 119.43 68.881 149.7 117.68 67.874 

4 89.786 143.05 38.037 89.306 173.69 37.833 88.001 171.15 37.281 

5 48.48 87.567 19.497 48.221 229.1 19.393 47.517 225.75 19.11 

Category 

-II 

1 695.57 724.25 561.05 699.47 28.516 564.2 710.3 28.957 572.94 

2 471.16 520.5 277.22 473.81 70.256 278.77 481.14 71.343 283.09 

3 153.32 216.38 69.383 154.18 121.19 69.773 156.57 123.06 70.853 

4 90.11 143.67 38.091 90.623 176.3 38.305 92.026 179.03 38.898 

5 48.652 87.88 19.519 48.925 232.59 19.629 49.682 236.19 19.932 

Table 8 Clamped-clamped frequencies (Hz) against height-radius ratio h/R 

 
h/R 

q=0.5 q=1 q=8 
 S-S C-C C-F S-S C-C C-F S-S C-C C-F 

Category 

- I 

0.001 13.213 28.292 5.052 13.142 28.141 5.025 12.95 27.73 4.952 

0.003 13.212 28.292 5.052 13.141 28.14 5.024 12.95 27.729 4.951 

0.006 13.211 28.291 5.051 13.14 28.14 5.024 12.949 27.729 4.951 

0.01 13.21 28.291 5.05 13.138 28.139 5.022 12.947 27.728 4.95 

0.03 13.203 28.288 5.047 13.127 28.135 5.017 12.941 27.726 4.946 

Category 

-II 

0.001 13.257 28.356 5.056 13.332 28.516 5.085 13.538 28.957 5.163 

0.003 13.258 28.357 5.057 13.333 28.516 5.085 13.539 28.957 5.164 

0.006 13.259 28.357 5.057 13.335 28.517 5.086 13.54 28.958 5.164 

0.01 13.261 28.358 5.058 13.337 28.518 5.087 13.541 28.959 5.165 

0.03 13.269 28.363 5.063 13.348 28.525 5.094 13.549 28.964 5.169 
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Fig. 3 Variations of frequencies versus the ring support a/L 

under various boundary conditions for FGM cylindrical 

shells (m=1, n=1, L=20 m, h=0.002 m, R=1 m, q=0.5) 

 

 

shells. These variations of frequencies are drawn with three 

types of end conditions. As a/L is enhanced for these 

boundary conditions, the frequencies go up. At a/L (=0.5) 

all the frequencies are higher and at a/L (=0.6~0.9), the 

frequencies decreases. The frequencies are same at a/L=0, 1 

and rust itself a bell shape. In these figure, the C-F are 

lower than that of C-C and SS-SS. As shown by this figure, 

the boundary conditions C-C have the highest frequency 

curves. These frequencies have a great impact on the 

vibration of FG-CSs. It is inferred this frequency behavior 

with position of the ring supports has paramount influence 
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Fig. 4 Frequency variations at different ratios of L/R of FG-

CSs with the position of ring support (n=1, m=1, h=0.002 

m, R=1 m, q=0.5) 

 

 

on the vibrations of FG-CSs. In Figs. 4 (a), (b), (c), 

frequencies for C-I and-II FG-CSs are sketched versus with 

position a of ring supports for three values of L/R=1, 7, 20. 

These results have been evaluated for three boundary 

conditions, respectively. Their graphical view presents that 

affect of ring support positions on vibration frequencies is 

pronounced at large values of L/R ratios where at L/R=1, 

their influence is reduced. Fig. 5 (a), (b), (c) demonstrate 

the frequencies of FG-CSs with three different boundary 

conditions against positions of ring supports. Frequency 

variations for these boundary conditions have observed  
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(c) 

Fig. 5 Variations of frequencies at different ratios of h/R of 

FGM cylindrical shells with the position of ring supports.  

 

 

slightly different with parameter (L=20, R=1 m, q=0.5). 

The SS-SS, C-C, C-F frequencies increase and decrease 

symmetrically around the mid location of ring supports. For 

rest of two end conditions, the variations of frequencies are 

observed to in linear style. Fig. 6 (a), (b), (c) depict the 

frequencies of FG-CS for Category-I and category-II 

cylindrical shells with specified boundary conditions. These 
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Fig. 6 Frequency variations different exponents of FGM 

cylindrical shells (n=1, m=1, L=20 m, h=0.002 m, R=1 m) 

 

 

variations have been plotted against the locations of ring 

supports for three values of exponents of volume fraction 

law. For three conditions, frequency variations show 

different behavior with these values of this law. The 

frequencies are visible for simply supported condition in the 

case of ring supports. The frequency first increases and gain 

maximum value in the midway of the shell length and then 
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lowers down. For clamped-clamped conditions, variations 

of frequencies are also like that for simply supported end 

conditions. For clamped-free conditions, frequency 

variations appear to be seen linear manner. For simply 

supported-simply supported conditions, a symmetrical 

behavior for natural frequencies is seen with the mid 

location of ring supports. For clamped-free conditions, a 

linear behavior of frequency variations is observed around 

the mid location of the ring supports. 

 

 
4. Conclusions 
 

In this paper, utilizing the Love shell theory with 

exponential volume fraction laws for the CSs vibrations 

provides a governing equation for the distribution of 

material composition of material. It is also exhibited that the 

effect of frequencies by varying the positions of ring 

supports and ratios of length and height-to-radius. Effects of 

different parameters for ratios of length- and height-to-

radius versus fundamental natural frequencies been 

determined for two categories of cylindrical shells. 

Throughout the computation, frequency behavior for the 

boundary condition follow as; C-C, SS-SS frequency curves 

are higher than that of C-F curves. Also the Love shell 

model based on the Galerkin’s method for estimating 

fundamental natural frequency has been developed to 

converge more quickly than other methods and models. In 

addition, by increasing the value of height-to-radius ratio 

resulting frequencies also increase and frequencies decrease 

on increasing the ratio of length-to-radius ratio. For FG-

CSs, variations of frequencies with the locations of ring 

supports have been analyzed placed round the 

circumferential direction. The position of a ring support has 

been taken along the radial direction. As the position of ring 

is enhanced for these boundary conditions, the frequencies 

go up. At mid point, all the frequencies are higher and after 

that the frequencies decreases. The frequencies are same at 

initial and final stage and rust itself a bell shape. Due to FG 

material ordering the increment and decrement frequencies 

occurs. For future work, this paper can be extended for the 

fluid-filled rotating of carbon nanotubes with ring supports.  
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