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1. Introduction 
 

CNTs are exceptionally meagre in structure, so to 

envision the behaviour through experimental techniques of 

such nanostructures under various conditions is not an easy 

task. For that reason, computational simulations have been 

taken an edge being dynamic tool to inspect the physical 

and mechanical attributes of CNTs. Owing to remarkable 

physical and mechanical features of the nanosized 

structures, carbon nanotubes have been persuasive and 

contemporary measure in aerospace, microscopic system, 

actuators, gas exposure, defence, diagnosis devices and 

several other (Lau and Hui 2002, Zhao 2002, Lieber 2003, 

Liu and Zang 2004, Kostarelos et al. 2009, Sosa et al. 2014, 

Fakhrabadi et al. 2015). Since from the last decade carbon 

nanotubes (CNTs) have become potential subject of 

scientific research with its vigorous performance in the 

various fields. CNTs also contribute significantly in 

material science, medicine and structural engineering 

(Gittes et al. 1993, Nogales 2001, Kasas et al. 2004, Regi 

2007, Reilly 2007, Gohardani et al. 2014, Soldano 2015). 

Basically CNTs are in shape of cylindrical macromolecules 

composed of carbon atoms attracted astounding response 

from scientific community.  

Over the last number of years, CNTs have became focus 

of interest amidst leading scientists from many research 

areas. At the same time, continuum mechanics has been 

engaged to examine various features of minuscule and 
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nano-sized suchlike thermo mechanical investigations 

(Murmu and Adhikari 2010, Rafiee and Moghandam 2014), 

buckling (Chang et al. 2005, Wang et al. 2006, Lu et al. 

2007) and free vibrations (Xu et al. 2008, Hu et al. 2012, 

Chang and Lee 2009, Avcar 2019) of CNTs. In recent 

times, some of the researchers made use of continuum shell 

model to inquire further advancements in CNTs (Li and 

Kardomateas 2007, Hu et al. 2012, Brischetto 2014). The 

theory of non-local elasticity happened to be intrinsic factor 

in continuum mechanics by accommodating the size 

dependency in nanostructures introduced by Eringen 

(Eringen 1983, 2002). Kolahchi and Cheraghbak (2017) 

studied with the nonlocal dynamic buckling analysis of 

embedded microplates reinforced by single-walled carbon 

nanotubes (SWCNTs). The material properties of structure 

are assumed viscoelastic based on Kelvin-Voigt model. 

Agglomeration effects are considered based on Mori-

Tanaka approach. The elastic medium is simulated by 

orthotropic visco-Pasternak medium. 

Kolahchi et al. (2017) focussed with general wave 

propagation in a piezoelectric sandwich plate. The core is 

consisted of several viscoelastic nanocomposite layers 

subjected to magnetic field and is integrated with 

viscoelastic piezoelectric layers subjected to electric field. 

The piezoelectric layers play the role of actuator and sensor 

at the top and bottom of the core, respectively. Batou et al. 

(2019) studied the wave propagations in sigmoid 

functionally graded (S-FG) plates using new Higher Shear 

Deformation Theory (HSDT) based on two-dimensional 

(2D) elasticity theory. The current higher order theory has 

only four unknowns, which mean that few numbers of 

unknowns, compared with first shear deformations and 

others higher shear deformations theories and without 

needing shear corrector. Motezaker and Kolahchi (2017a) 
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investigated the Seismic response of the concrete column 

covered by nanofiber reinforced polymer (NFRP) layer. The 

concrete column. The column is modeled using sinusoidal 

shear deformation beam theory (SSDT). Mori-Tanaka 

model is used for obtaining the effective material properties 

of the NFRP layer considering agglomeration effects. Using 

the nonlinear strain-displacement relations, stress-strain 

relations and Hamilton’s principle, the motion equations are 

derived.  

Sharma et al. (2019) studied the functionally graded 

material using sigmoid law distribution under hygrothermal 

effect. The Eigen frequencies are investigated in detail. 

Frequency spectra for aspect ratios have been depicted 

according to various edge conditions. Motezaker and 

Kolahchi (2017b) presented the dynamic analysis of a 

concrete pipes armed with Silica ($ SiO_2 $) nanoparticles 

subjected to earthquake load. The structure is modeled with 

first order shear deformation theory (FSDT) of cylindrical 

shells. Mori-Tanaka approach is applied for obtaining the 

equivalent material properties of the structure considering 

agglomeration effects. Salah et al. (2019) examined a 

simple four-variable integral plate theory for studying the 

thermal buckling properties of functionally graded material 

(FGM) sandwich plates. The proposed kinematics considers 

integral terms which include the effect of transverse shear 

deformations. Motezaker et al. (2020) analysis the 

vibration, buckling and bending of annular nanoplate 

integrated with piezoelectric layers at the top and bottom 

surfaces. The higher order nonlocal theory for size effect 

and Gurtin-Murdoch theory for surface effects are utilized. 

The governing equations are derived based on the layer-

wise (LW) theory and Hamilton’s principle. The differential 

cubature method (DCM) as a new numerical procedure is 

utilized to solve the motion equations for obtaining the 

frequency, buckling load and deflection. Hussain and 

Naeem (2017) examined the frequencies of armchair tubes 

using Flügge’s shell model. The effect of length and 

thickness-to-radius ratios against fundamental natural 

frequency with different indices of armchair tube was 

investigated. Motezaker et al. (2020) presented the post-

buckling of a cut out plate reinforced through carbon 

nanotubes (CNTs) resting on an elastic foundation. Material 

characteristics of CNTs are hypothesized to be altered 

within thickness orientation which is calculated according 

to Mori-Tanaka model. For modeling the system 

mathematically, first order shear deformation theory 

(FSDT) is applied and using energy procedure, the 

governing equations can be derived.  

Gafour et al. (2020) focused the behavior of non-local 

shear deformation beam theory for the vibration of 

functionally graded (FG) nanobeams with porosities that 

may occur inside the functionally graded materials (FG) 

during their fabrication, using the nonlocal differential 

constitutive relations of Eringen. For this purpose, the 

developed theory accounts for the higher-order variation of 

transverse shear strain through the depth of the nanobeam. 

Motezaker and Eyvazian (2020) deals with the buckling and 

optimization of a nanocomposite beam. The agglomeration 

of nanoparticles was assumed by Mori-Tanaka model. The 

harmony search optimization algorithm is adaptively 

improved using two adjusted processes based on dynamic 

parameters. The governing equations were derived by 

Timoshenko beam model by energy method. The optimum 

conditions of the nanocomposite beam- based proposed 

AIHS are compared with several existing harmony search 

algorithms. Hussain and Naeem (2018a) used Donnell’s 

shell model to calculate the dimensionless frequencies for 

two types of single-walled carbon nanotubes. The frequency 

influence was observed with different parameters. Kolahchi 

and Bidgoli (2016) presented a model for dynamic 

instability of embedded single-walled carbon nanotubes 

(SWCNTs). SWCNTs are modeled by the sinusoidal shear 

deformation beam theory (SSDBT). The modified couple 

stress theory (MCST) is considered in order to capture the 

size effects. The surrounding elastic medium is described 

by a visco-Pasternak foundation model, which accounts for 

normal, transverse shear, and damping loads. The motion 

equations are derived based on Hamilton’s principle. 

Fatahi-Vajari et al. (2019) studied the vibration of single-

walled carbon nanotubes based on Galerkin’s and 

homotopy method.This work analyses the nonlinear 

coupled axial-torsional vibration of single-walled carbon 

nanotubes (SWCNTs) based on numerical methods. Two-

second order partial differential equations that govern the 

nonlinear coupled axial-torsional vibration for such 

nanotube are derived. Madani et al. (2016) presented 

vibration analysis of embedded functionally graded (FG)-

carbon nanotubes (CNT)-reinforced piezoelectric 

cylindrical shell subjected to uniform and non-uniform 

temperature distributions. The structure is subjected to an 

applied voltage in thickness direction which operates in 

control of vibration behavior of system. Asghar et al. 

(2019a, b) conducted the vibration of nonlocal effect for 

double-walled carbon nanotubes using wave propagation 

approach. Many material parameters are varied for the exact 

frequencies of many indices of double-walled carbon 

nanotubes. Boulal et al. (2020) investigated the buckling 

behavior of carbon nanotube-reinforced composite plates 

supported by Kerr foundation model. In this foundation 

elastic of Kerr consisting of two spring layers 

interconnected by a shearing layer. The plates are 

reinforced by single-walled carbon nanotubes with four 

types of distributions of uniaxially aligned reinforcement 

material. The analytical equations are derived and the exact 

solutions for buckling analyses of such type’s plates are 

obtained. Hussain et al. (2017) demonstrated an overview 

of Donnell theory for the frequency characteristics of two 

types of SWCNTs. Fundamental frequencies with different 

parameters have been investigated with wave propagation 

approach. The use of nonlocal continuum mechanics 

evolved small scale effect which conferred the vibrational 

analysis of CNTs (Erigen 1972, Zang et al. 2005, Heireche 

et al. 2008, Ansari et al. 2012, Zidour et al. 2014, 

Benguediab et al. 2014). Kolahchi et al. (2016b) 

investigated the nonlinear dynamic stability analysis of 

embedded temperature-dependent viscoelastic plates 

reinforced by single-walled carbon nanotubes (SWCNTs). 

The equivalent material properties of nanocomposite are 

estimated based on the rule of mixture. For the carbon-

nanotube reinforced composite (CNTRC) visco-plate, both 
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cases of uniform distribution (UD) and functionally graded 

(FG) distribution patterns of SWCNT reinforcements are 

considered. The surrounding elastic medium is modeled by 

orthotropic temperature-dependent elastomeric medium. 

The viscoelastic properties of plate are assumed based on 

Kelvin-Voigt theory. The past research work found on 

nanotubes carried out by two main methodologies known as 

continuum mechanics and molecular dynamics (MD). The 

nonlocal elasticity theory has been extensively utilized for 

different types of nanostructures such as nano FGM 

structures (Jung and Han 2013, Kolahchi et al. 2015, Nejad 

et al. 2016) and static (Wang and Liew 2007, Pradhan and 

Reddy 2011, Eltaher et al. 2013). Kolahchi et al. (2017) 

studied the dynamic buckling of sandwich nano plate (SNP) 

subjected to harmonic compressive load based on nonlocal 

elasticity theory. The material properties of each layer of 

SNP are supposed to be viscoelastic based on Kelvin-Voigt 

model. In order to mathematical modeling of SNP, a novel 

formulation, refined Zigzag theory (RZT) is developed. 

Furthermore, the surrounding elastic medium is simulated 

by visco-orthotropic Pasternak foundation model in which 

damping, normal and transverse shear loads are taken into 

account. The double-walled CNT is coaxial nano structure 

in nature comprised of certainly two single-walled CNTs 

encapsulated one in other. The structure of double-walled 

CNT makes it rudimentary course of action to estimate the 

aftermath of inwall coupling hinge on the assorted 

substantial properties of CNTs. The MD simulation 

approach is a presentation of molecules of the materials 

which is distinct solution of Newton’s classical equations of 

motion and has been efficiently exercised to analyze the 

dynamical properties of single-, double- and multi-walled 

CNTs (Cornwell and Wille 1997, Liew et al. 2005, Hao et 

al. 2008, Hu et al. 2008). On comparing the single-walled 

to double-walled CNTs, it is observed that double-walled 

CNTs demonstrate strong mechanical ability, thermal 

combat and effective electronic characteristics. Among 

armchair, chiral single and double-walled CNTs, limited 

work is done related to chiral especially double-walled 

CNTs. The stress aspects of single-walled CNT with respect 

to chiral dependency of the axial tensile strain was 

examined (Yoshikazm et al. 2005).  

Arani and Kolahchi (2016) used a concrete material in 

construction industry it’s been required to improve its 

quality. Nowadays, nanotechnology offers the possibility of 

great advances in construction. For the first time, the 

nonlinear buckling of straight concrete columns armed with 

single-walled carbon nanotubes (SWCNTs) resting on 

foundation is investigated in the present study. The column 

is modelled with Euler Bernoulli and Timoshenko beam 

theories. The characteristics of the equivalent composite 

being determined using mixture rule. The foundation 

around the column is simulated with spring and shear layer. 

They applied numerical simulation that worked with a tight 

binding and first principles density functional theory 

calculation depicting its authentication. Ghavanloo and 

Fazelzadeh (2009) studied the vibration frequency spectra 

of chiral CNT, Flugge shell theory was applied to obtain the 

isotropic elastic model. Free vibrations of double-walled 

CNT (Xu et al. 2008) showed explicitly the interaction of 

van der Waals forces being two exclusive beams. The 

small-scale diameters/aspect ratios were main focus for 

investigation which revealed the valid use of Donnell shell 

theory for vibration study (Hashemi et al. 2012). Zamanian 

et al. (2017) considered the use of nanotechnology 

materials and applications in the construction industry. 

However, the nonlinear buckling of an embedded straight 

concrete columns reinforced with silicon dioxide (SiO2) 

nanoparticles is investigated in the present study. The 

column is simulated mathematically with Euler-Bernoulli 

and Timoshenko beam models. Agglomeration effects and 

the characteristics of the equivalent composite are 

determined using Mori-Tanaka approach. The foundation 

around the column is simulated with spring and shear layer. 

Double-walled CNTs resonant frequencies were 

subjected to end layer wise conditions (Rouhi et al. 2013). 

The technique employed to obtain the numerical outcomes 

for ruling equations was radial point interpolation 

differential quadrature (RPIDQ) and proposed nonlocal 

Donnell shell theory which happened to justify the small 

scale effects. Kolahchi (2017) investigated the bending, 

buckling and buckling of embedded nano-sandwich plates 

based on refined zigzag theory (RZT), sinusoidal shear 

deformation theory (SSDT), first order shear deformation 

theory (FSDT) and classical plate theory (CPT). In order to 

present a realistic model, the material properties of system 

are assumed viscoelastic using Kelvin-Voigt model. 

Timoshenko beam model framed on nonlocal elasticity 

theory was utilized (Zidour et al. 2014), they performed a 

study on elastic bending of chiral single-walled CNT 

considering axial compression. Their work 

comprehensively covered the chirality of single-walled 

CNT, its vibrational mode and aspect ratio against the 

critical buckling load. Bilouei et al. (2016) used as concrete 

the most usable material in construction industry it’s been 

required to improve its quality. Nowadays, nanotechnology 

offers the possibility of great advances in construction. For 

the first time, the nonlinear buckling of straight concrete 

columns armed with single- walled carbon nanotubes 

(SWCNTs) resting on foundation is investigated in the 

present study. The column is modelled with Euler-Bernoulli 

beam theory. Benguediab et al. (2014) inspected 

mechanical buckling characteristics of a zigzag double-

walled CNT incorporated with chirality and small scale 

effect. Their findings revealed influential reliance of critical 

buckling load of zigzag CNT by using nonlocal 

Timoshenko beam model. Kolahchi et al. (2016a) 

concerned with the dynamic stability response of an 

embedded piezoelectric nanoplate made of polyvinylidene 

fluoride (PVDF). In order to present a realistic model, the 

material properties of nanoplate are assumed viscoelastic 

using Kelvin-Voigt model. The visco-nanoplate is 

surrounded by viscoelastic medium which is simulated by 

orthotropic visco-Pasternak foundation. The PVDF visco-

nanoplate is subjected to an applied voltage in the thickness 

direction. Chemi et al. (2015) exhibited frequency 

vibrations of chiral double-walled CNT. The set of 

governing equations were modelled by nonlocal Euler 

Bernoulli beam theory. Recently Hussain and Naeem 

(2019a, b, c, d, 2020a) performed the vibration of SWCNTs 
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Fig. 1 Hexagonally description of chiral DWCNTs on the 

(a) graphene sheet (b) Rolled DWCNTs 

 

 

based on wave propagation approach and Galerkin’s 

method. They investigated many physical parameters for 

the rotating and non-rotating vibrations of armchair, zigzag 

and chiral indices. Moreover, the mass density effect of 

single walled carbon nanotubes with in-plane rigidity have 

been calculated for zigzag and chiral indices.  

The foremost intension of this paper to investigate 

nonlocal vibrations characteristics of chiral double-walled 

CNT by means of Kelvin’s model along with wave 

propagation technique, which is our intrinsic interest. The 

suggested method to investigate the solution of fundamental 

eigen relations, which is a well-known and efficient 

technique to develop the fundamental frequency equations. 

It is carefully observed from the literature, no information is 

seen regarding present established model where 

aforementioned problem has been considered so it became 

an incentive to proceed current study. The specific 

influence of three different end supports based on proposed 

method such as clamped-clamped, clamped-simply 

supported, simply supported-simply supported and 

clamped-free is examined in detail. 

Many material researchers calculated the frequency of 

CNTs using different techniques, for example, Timoshenko 

beam model (Zidour et al. 2014), SiO2 nanoparticles (Zarei 

et al. 2017, Amnieh et al. 2018, Jassas et al. 2019), Euler 

Bernoulli beam theory (Chemi et al. 2015), layerwise 

theory (Hajmohammad et al. 2018a, Hajmohammad et al. 

2019), Flugge shell theory ((Zidour et al. 2014), Grey Wolf 

algorithm (Kolahchi et al. 2020), nonlocal Donnell shell 

theory (Rouhi et al. 2013), reinforced polymer layer 

(Hajmohammad et al. 2018b), agglomerated CNTs 

(agglomerated CNTs), zigzag theory (Kolahchi et al. 2017), 

viscoelastic cylindrical shell (Hosseini and Kolahchi 2018, 

Hajmohammad et al 2018c), and interpolation differential 

quadrature (Rouhi et al. 2013). The aim of current study is 

to delve for the free vibration characteristics of chiral 

double-walled CNTs by forming a nonlocal double-walled 

shell model (DSM). Erigen’s nonlocal elasticity equations 

are acquired by adopting DSM subjected to small scale 

effect. The investigation is realized by employing the wave 

propagation approach due to its effective application in 

studying the structural vibrational analysis related to 

different parameters and end supports. The domination of 

numerous end supports alike DSM simply supported (DSM-

SS), DSM clamped-supported (DSM-CS), DSM clamped-

clamped (DSM-CC) and clamped free (DSM-CF) regarding 

disparate values of nonlocal parameter are explored 

numerically and reflected with help of graphs.  

 

 

2. Formulation of governing nonlocal shell equations 
 

When a graphene sheet is rolled with its hexagonal cells, 

the structure can be conceptualized as SWCNTs and its 

circumference and quantum properties depend upon the 

chirality and diameter described as a pair of (n, m). The 

indices pair occur during the rolling of tube Fig. 1 shows 

the schema of the pair indices as (m, n) which occurs on 

rolling of the tube and this pair of in indices formed as 

chiral, if mn. 

We will apply nonlocal orthotropic elastic shell model 

to analyze the wave propagation of CNTs. Surrounding 

medium of CNTs will be modeled by Kelvin model. We 

will develop nonlocal orthotropic Kelvin-like model by the 

combination of these models. We will use wave 

propagation approach to find the wave dispersion relations 

for CNTs in viscoelastic medium. 
 

2.1 Nonlocal orthotropic Kelvin-like model  
 

Cemal Eringen are pioneers of the nonlocal theory 

(Kröner 1967, Eringen 1972). For an elastic and 

homogeneous material the stress strain relationships are 

given below 

𝜎𝑖𝑗,𝑗 = 0                   (1) 

𝜎𝑖𝑗(𝑥) = ∫𝜑(|𝑥
′ − 𝑥|, 𝜓)𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (𝑥

′)𝑑𝑉(𝑥′), ∀ 𝑥 ∈ 𝑉 (2) 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)              (3) 

where,  𝑗 denotes the derivative with respect to 𝑗, 𝜎𝑖𝑗 and 

𝜀𝑘𝑙  are strain tensor and stress tensor respectively, and 

elastic modulus tensor is denoted by 𝐶𝑖𝑗𝑘𝑙, 𝑢𝑖 represents 

the displacements, the attenuation function is 𝜑(|𝑥′ −
𝑥|, 𝜏), and |𝑥′ − 𝑥| denotes the usual distance. Also, 𝜓 =
𝑒0𝑎/𝑙 , where 𝑒0  is a material constant, internal 

characteristics length is represented by 𝑎 and 𝑙 denotes 

the external characteristics length. 

The differential form of Eq. (2) is used as nonlocal 

constitutive relation (Eringen 2002) 

(1 − (𝑒𝑜𝑎)
2∇2)𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙           (4) 

where 𝑎 is the internal characteristic length. 

In this study we have taken 𝑒0𝑎 as a single parameter, 

known as small scale parameter which represents the effect 

of size for the nano and micro structures, and ∇2 is the 
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Laplace operator. Our coordinate system 𝑥, 𝑦 and 𝑧 are 

axial, circumferential and radial coordinates respectively 

whose dimensionless coordinates are 𝛼 = 𝑥/𝑅 , 𝛽 = 𝑦/𝑅 

and 𝛾 = 𝑧/𝑅.  

Along 𝛼 , 𝛽  and 𝛾  directions, the displacement of 

middle surface are 𝑢 , 𝑣  and 𝑤 , respectively. The 

geometrical relations are given by Flugge’s shell theory 

(Flugge 1973, Zou and Foster 1995, Paliwal et al. 1995) 

𝜀𝛼 =
1

𝑅
(
𝜕𝑢

𝜕𝛼 
− 𝛾

𝜕2𝑤

𝜕𝛼2
)              (5) 

𝜀𝛽 =
1

𝑅
(
𝜕𝑣

𝜕𝛽 
+𝑤) −

𝛾

𝑅(1+𝛾)
(
𝜕2𝑤

𝜕𝛽2
+𝑤)        (6) 

𝜀𝛼𝛽 =
𝛾

𝑅(1+𝛾)
[
𝜕𝑢

𝜕𝛽
+

𝜕𝑣

𝜕𝛼
+ 2𝛾 (

𝜕𝑣

𝜕𝛼
−

𝜕2𝑤

𝜕𝛼𝜕𝛽
) + 𝛾2 (

𝜕𝑣

𝜕𝛼
−

𝜕2𝑤

𝜕𝛼𝜕𝛽
)]  

(7) 

The stress-strain relationships in dimensionless 

coordinates derived from Eq. (4) is as under (Gao and An 

2010) 

𝜎𝛼 − (𝑒𝑜𝑎)
2∇2𝜎𝛼 = 𝐸1(𝜀𝛼 + 𝜇1𝜀𝛽)/(1 − 𝜇1𝜇2)    (8) 

𝜎𝛽 − (𝑒𝑜𝑎)
2∇2𝜎𝛽 = 𝐸2(𝜀𝛽 + 𝜇2𝜀𝛼)/(1 − 𝜇1𝜇2)    (9) 

𝜏𝛼𝛽 − (𝑒𝑜𝑎)
2∇2𝜏𝛼𝛽 = 𝐺𝜀𝛼𝛽         (10) 

where 𝜎𝛼, 𝜎𝛽 and 𝜏𝛼𝛽 are normal and shear stresses, and 

𝜀𝛼  , 𝜀𝛽  and 𝜀𝛼𝛽  are respective strains; 𝐸1  and 𝐸2  are 

moduli of elasticity; Poisson’s ratios in the directions of 𝛼 

and 𝛽  are 𝜇2  and 𝜇1  respectively. G is modulus of 

rigidity or shear modulus. Also we have 𝐸1𝜇1 = 𝐸2𝜇2 and 

∇2= (𝜕2/𝜕𝛼2 + 𝜕2/𝜕𝛽2)/𝑅2  which is the Laplace 

operator in dimensionless coordinates. The element of tube 

in our coordinates is shown in Fig. 2, where (𝑁, 𝑆, 𝑄) are 

the stress resultants and (𝑀) is the moment. The thermal 

expansion causes pre-stress, which is neglected because the 

present temperature is considered as the reference 

temperature. We arrive at the dynamic equilibrium 

equations 

{
 
 

 
 

𝜕𝑁𝛼

𝜕𝛼
+

𝜕𝑆𝛽

𝜕𝛽
+ 𝜅 = 𝜌ℎ𝑅

𝜕2𝑢

𝜕𝑡2
 

 
𝜕𝑁𝛽

𝜕𝛽
+

𝜕𝑆𝛼

𝜕𝛼
+ 𝑄𝛽 = 𝜌ℎ𝑅

𝜕2𝑣

𝜕𝑡2

𝜕𝑄𝛼

𝜕𝛼
+

𝜕𝑄𝛽

𝜕𝛽
+𝑁𝛽 + 𝑝 = 𝜌ℎ𝑅

𝜕2𝑤

𝜕𝑡2

         (11) 

{

𝜕𝑀𝛼𝛽

𝜕𝛼
+

𝜕𝑀𝛽

𝜕𝛽
− 𝑅𝑄𝛽 = 0

𝜕𝑀𝛽𝛼

𝜕𝛽
+

𝜕𝑀𝛼

𝜕𝛼
− 𝑅𝑄𝛼 = 0

            (12) 

where 𝜌 is the mass density. 

Where p denotes the exerted pressure on i tube through 

van der Waals (vdW) interaction forces. The proposed vdW 

model accounts the effects of interlayer interactions 

between the tubes of double-walled CNT. 

2 2

1 1

i ij ij j

j j

p w c c w
= =

= − 
 

( 1,2)i =

 

(13) 

cij
 

is vdW coefficient, depicting the pressure increment 

contributing from ith to jth tube.  

12 6
13 7

4 4

1001 1120

3 9
ij ij ij jc E E R

a a

  
= − 
 

    (14) 

Here C-C bond length is given by 1.42a A= , depth of 

potential by ε, σ as parameter concluded by equilibrium 

distance, Rj as radius of jth tube and Eij
m be as elliptic integral 

which is given as  

2

2 2

0

( )
(1 cos )

m m

ij j i m

ij

d
E R R

K






−= +
−       (15) 

being m as integer and coefficient Kij is defined by 

2

4

( )

j i

ij

j i

R R
K

R R
=

+
               (16) 

The resultants (𝑁, 𝑆, 𝑄) are derived from above set of 

integral equations using the stress components. 

(1 − (𝑒0𝑎)
2∇2) [

𝑁𝛼 , 𝑆𝛼 ,
𝑀𝛼 , 𝑀𝛼𝛽

] = ∫ [
𝜎𝛼, 𝜏𝛼𝛽 ,

 𝑧 𝜎𝛼, 𝑧 𝜏𝛼𝛽
]

ℎ

2

−
ℎ

2

(1 +
𝑧

𝑅
)𝑑𝑧  

(17) 

(1 − (𝑒0𝑎)
2∇2) [

𝑁𝛽 , 𝑆𝛽 ,

𝑀𝛽 , 𝑀𝛽𝛼
] = ∫ [

𝜎𝛽 , 𝜏𝛽𝛼,
𝑧 𝜎𝛽, 𝑧 𝜏𝛽𝛼

]
ℎ

2

−
ℎ

2

𝑑𝑧   (18) 

(1 − (𝑒0𝑎)
2∇2)(𝑄𝛼, 𝑄𝛽) = ∫ [𝜏𝛼𝑧, 𝜏𝛽𝑧]

ℎ

2

−
ℎ

2

𝑑𝑧     (19) 

where ℎ is thickness of the shell. Above equations result in 

𝑁𝛼 − (𝑒𝑜𝑎)
2∇2𝑁𝛼 =

𝐾

𝑅
[
𝜕𝑢

𝜕𝛼
+ 𝜇1 (

𝜕𝑣

𝜕𝛽
+ 𝑤) − 𝑐2

𝜕2𝑤

𝜕𝛼2
]  (20) 

𝑁𝛽 − (𝑒𝑜𝑎)
2∇2𝑁𝛽 =

𝐾𝑘1

𝑅
[
𝜕𝑣

𝜕𝛽
+ 𝜇2

𝜕𝑢

𝜕𝛼
+𝑤 + 𝑐2 (

𝜕2𝑤

𝜕𝛽2
+𝑤)]  

(21) 

𝑆𝛼 − (𝑒𝑜𝑎)
2∇2𝑆𝛼 =

𝐾𝑘2

𝑅
[
𝜕𝑢

𝜕𝛽
+

𝜕𝑣

𝜕𝛼
− 𝑐2 (

𝜕2𝑤

𝜕𝛼𝜕𝛽
−

𝜕𝑣

𝜕𝛼
)]  (22) 

𝑆𝛽 − (𝑒𝑜𝑎)
2∇2𝑆𝛽 =

𝐾𝑘2

𝑅
[
𝜕𝑢

𝜕𝛽
+

𝜕𝑣

𝜕𝛼
+ 𝑐2 (

𝜕2𝑤

𝜕𝛼𝜕𝛽
+

𝜕𝑣

𝜕𝛼
)]  (23) 

𝑀𝛼 − (𝑒𝑜𝑎)
2∇2𝑀𝛼 = −𝐾𝑐

2 [
𝜕𝑢

𝜕𝛼
+ 𝜇1

𝜕𝑣

𝜕𝛽
− (

𝜕2𝑤

𝜕𝛼2
+ 𝜇1

𝜕2𝑤

𝜕𝛽2
)]   

(24) 

𝑀𝛽 − (𝑒𝑜𝑎)
2∇2𝑀𝛽 = 𝐾𝑘1𝑐

2 (
𝜕2𝑤

𝜕𝛽2
+𝑤 + 𝜇2

𝜕2𝑤

𝜕𝛼2
)  (25) 

𝑀𝛼𝛽 − (𝑒𝑜𝑎)
2∇2𝑀𝛼𝛽 = 2𝐾𝑘2𝑐

2 (
𝜕𝑣

𝜕𝛼
−

𝜕2𝑤

𝜕𝛼𝜕𝛽
)   (26) 

𝑀𝛽𝛼 − (𝑒𝑜𝑎)
2∇2𝑀𝛽𝛼 = 𝐾𝑘2𝑐

2 (
𝜕𝑢

𝜕𝛽
−

𝜕𝑣

𝜕𝛼
+ 2

𝜕2𝑤

𝜕𝛼𝜕𝛽
) (27) 

𝑄𝛼 − (𝑒𝑜𝑎)
2∇2𝑄𝛼 =

𝐾𝑐2

𝑅
[

𝜕2𝑢

𝜕𝛼2
− 𝑘2

𝜕2𝑢

𝜕𝛽2
+ (𝑘2 + 𝜇1)

𝜕2𝑣

𝜕𝛼𝜕𝛽
−

𝜕3𝑤

𝜕𝛼3
− (2𝑘2 + 𝜇1)

𝜕3𝑤

𝜕𝛼𝜕𝛽2
 

]  

 (28) 

𝑄𝛽 − (𝑒𝑜𝑎)
2∇2𝑄𝛽 =

𝐾𝑘1𝑐
2

𝑅
[

2
𝑘2

𝑘1

𝜕2𝑣

𝜕𝛼2
−

𝜕3𝑤

𝜕𝛽3
−

𝜕𝑤

𝜕𝛽
− (2

𝑘2

𝑘1
+ 𝜇2)

𝜕3𝑤

𝜕𝛼2𝜕𝛽
 
] (29) 

where 𝐾 = 𝐸1ℎ/(1 − 𝜇1𝜇2) , 𝑘1 = 𝐸2/𝐸1 , 𝑘2 = 𝐺(1 −
𝜇1𝜇2)/𝐸1,  

𝑐2 = ℎ𝑜
3/(12𝑅2ℎ). 
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Using Kelvin model and Eqs. (11) and (12), we get 

Kelvin-like nonlocal orthotropic elastic shell model.  

The obtained model is as follows 

[
𝜕2

𝜕𝛼2
+ 𝑘2(1 + 𝑐

2)
𝜕2

𝜕𝛽2
] 𝑢 + [(𝜇1 + 𝑘2)

𝜕2

𝜕𝛼𝜕𝛽
] 𝑣 +

[6 +
𝜕

𝜕𝛼
+ 𝑐2 (𝑘2

𝜕3

𝜕𝛼𝜕𝛽2
−

𝜕3

𝜕𝛼3
)]𝑤 =

𝜌ℎ𝑅2[1−(𝑒𝑜𝑎)
2∇2]

𝐾

𝜕2𝑢

𝜕𝑡2
  

(30) 

[(𝜇1 + 𝑘 2)
𝜕2

𝜕𝛼𝜕𝛽
 ] 𝑢 + [𝑘2(1 + 3𝑐

2)
𝜕2

𝜕𝛼2
+ 𝑘1

𝜕2

𝜕𝛽2
] 𝑣 +

[𝑘1
𝜕

𝜕𝛽
− 𝑐2(𝜇1 + 3𝑘2)

𝜕3

𝜕𝛼2𝜕𝛽
 ] 𝑤 =

𝜌ℎ𝑅2[1−(𝑒𝑜𝑎)
2∇2]

𝐾

𝜕2𝑣

𝜕𝑡2
(31) 

[𝜇1
𝜕

𝜕𝛼
− 𝑐2 (

𝜕3

𝜕𝛼3
− 𝑘2

𝜕3

𝜕𝛼𝜕𝛽2
)] 𝑢 + [𝑘1

𝜕

𝜕𝛽
− 𝑐2(𝜇1 +

3𝑘2)
𝜕3

𝜕𝛼2𝜕𝛽
] 𝑣 + [(1 +

1

𝑐2
) 𝑘1 +

𝜕4

𝜕𝛼4
+ 𝑘1

𝜕4

𝜕𝛽4
+ 2𝑘1

𝜕2

𝜕𝛽2
+

(2𝜇1 + 4𝑘2)
𝜕4

𝜕𝛼2𝜕𝛽2
] 𝑐2𝑤 +

𝑅2

𝐾
(1 − (𝑒0𝑎)

2∇ 2) [𝐸𝑤 +

𝜂
𝜕𝑤

𝜕𝑡
] [

2 2

1 1

i ij ij j

j j

w c c w
= =

−  ] = −
𝜌ℎ𝑅2[1−(𝑒𝑜𝑎)

2∇2]

𝐾

𝜕2𝑤

𝜕𝑡2
   

(32) 

where 𝐾 =
E1h

1−μ1μ2
, medium has stiffness 𝐸 , and the 

viscosity of the medium is 𝜂 and the nonlocal parameter is 

 = (𝑒𝑜𝑎)
2. Two kinds of boundary conditions may be 

assumed while solving such problems. These three 

conditions are: 

Clamped-clamped 

𝛼 = 𝛽 = 𝛾 =
𝜕𝛾

𝜕𝛼
= 0, at 𝛼 = 0, 𝛼 = 𝐿/𝑅     (33) 

Clamped-free 

{
𝛼 = 𝛽 = 𝛾 =

𝜕𝛾

𝜕𝛼
= 0   at 𝛼 = 0

𝑁𝛼𝛼 = 𝑀𝛼𝛼 = 𝑁𝛼𝛽 = 𝑀𝛼𝛽=0  at α = 𝐿/𝑅
    (34) 

where 𝐿 is the length of CNTs. 

Using any combination of above three conditions we 

come close to nonlocal Flugge’s shell model. Above system 

of equations is the nonlocal orthotropic Kelvin-like shell 

model for CNTs. To understand the waves propagating in 

CNTs, we need to derive the dispersion relations. 

 

2.2 Application of wave propagation approach 
 

Over the past several years vibration of nanostructures 

of various configurations and boundary conditions have  

 

 

been extensively studied (Hussain et al. 2018a, Hussain et 

al. 2018b, Hussain et al. 2018c, Hussain and Naeem 2018b; 

Hussain et al. 2019a, Hussain et al. 2019b, Hussain et al. 

2020a, Hussain and Naeem 2020b, Sehar et al. 2020, 

Hussain et al. 2020b, c, d, Taj et al. 2020a, Taj et al. 2020a, 

b, c). Here, we will discuss wave solutions for single-walled 

carbon nanotubes. 

The solutions of system of Eqs. (30)-(32) for 

axisymmetric waves is given by Wang and Gao (2016) 

{
 
 

 
 𝑢(𝛼, 𝑡) = 𝑈e𝑖𝑘 (𝛼− 

𝜈𝑡

𝑅
)

𝑣(𝛼, 𝑡) = 𝑉e𝑖𝑘 (𝛼− 
𝜈𝑡

𝑅
)

𝑤(𝛼, 𝑡) = 𝑊e𝑖𝑘 (𝛼− 
𝜈𝑡

𝑅
)

            (35) 

where 𝑈, 𝑉 and 𝑊 are the amplitudes of waves along the 

direction of 𝑥 , 𝑦 and 𝑧 respectively, the dimensionless 

wave vector in the longitudinal direction is 𝑘 =
πmR

L
, in 

longitudinal direction m is the half axial wave number and 

ν is the wave phase velocity.  

Substituting Eq. (35) in system of Eqs. (30)-(32) and 

simplifying, in matrix form, we get the following system 

[𝑀(1)(𝑘, 𝜈)]3×3 [
𝑈
𝑉
𝑊
] = [0 0 0]𝑇    (32) 

For the nontrivial solution of above equation, we have 

𝐷𝑒𝑡[𝑀(1)(𝑘, 𝜈)] = 0              (33) 

 

 

4. Results and discussions 
 

On the basis of established DSM by practicing wave 

propagation approach, the dominance of end conditions of 

double-walled CNTs is presented. Sundry studies can be 

seen for authentic application of present technique to 

conclude governing equation system of CNTs and to 

examine the fundamental frequency of double-walled CNTs 

(Wang et al. 2006, Xu et al 2008, Rouhi et al. 2011, Ansari 

et al. 2013). The procedure proposed in the previous section 

is here applied to study the size-dependent vibration 

behavior double-walled CNTs. Wave propagation approach 

is also applied to form the presented model, whereby the 

size-dependent effect is considered by means of the 

application of the Eringen’s nonlocal differential model. 

Thus, the vibration phenomena of the nanostructure are 

solved mathematically via the suggested approach for 

different boundary conditions. The parametric study 

presented in this work analyzes the sensitivity of the size- 

 

Fig. 2 Resolution of components of stress and moments of the middle surface of CNTs 
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Table 1 Comparison of natural frequencies with Rakrak et 

al. (2016) 

Chiral 

(m, n) Rakrak et al. 2016 Present 

(12, 6) 0.94964 0.94964 

(14, 6) 0.82448 0.82448 

(16, 8) 0.95618 0.95618 

(18, 9) 0.96508 0.96508 

(20, 12) 0.97029 0.97029 

(24, 11) 0.97648 0.97648 

 

 

dependent vibration response of double-walled CNTs 

mechanical parameters (i.e., the nonlocal parameter), as 

well as to some geometrical parameters, (namely, the 

length, radius and height. The preliminary focus of the 

investigation was on the precision of the proposed 

technique with existing model, whose results are 

summarized in Table 1, a very good match was observed, 

which confirms the accuracy of the proposed formulation 

for similar problems. The influence of aspect ratio and 

chirality are discussed in the Table 1. For comparison, 

various chiral indices against distinct length-to-diameter 

ratios determined by the non-local Euler Bernoulli beam 

model are recorded in Table 1. For the current work the 

non- dimensional frequency parameters are also calculated 

to evaluate convergence rate of end supports of both chiral 

CNTs. The results generated by present model solved with 

wave propagation approach seen to have accordance with  

 

 

Table 2 Comparison of natural frequencies with 

experimental result of Raman Spectroscopy (RRS) 

f (THz) 
 Chiral 

(m, n) (16, 7) (18, 6) 

RRS (Jorio et al. 2001) 4.617 4.317 

Present 4.617 4.317 

Difference % 4.85 4.04 

 

 

those experimental outputs of Jorio et al. (2001) obtained 

by the deformation theory are specified in Table 2. The 

results obtained here specifically deal with the small scale 

effect versus length and thickness to radius of both tubes. 

For the purpose of numerical computations estimates of 

Young’s modulus and Poisson’s ratio are E=1TPA, ρ=2.3 

g/cm3 remain unchanged as used (Rouhi et al. 2011). 

Furthermore, inner tube radius R1=8.5 nm and thickness to 

radius ratio are observed along with calibrated values of 

nonlocal parameter. Carbon nanotubes structure exhibit in 

forms as i) armchair, ii) zigzag, iii) chiral, for the ongoing 

investigation of vibration spectra of chiral CNT based on 

DSM are demonstrated together with end supports clamped-

clamped (DSM-CC), clamped-simply supported (DSM-CS), 

simply supported-simply supported (DSM-SS) and 

clamped-free (DSM- CF). The curves in Fig. 3(a) and 3(b) 

are frequencies with nonlocal parameter e0a=0.45 for chiral 

double-walled CNT with indices (15, 2) versus aspect ratio. 

The other parameters remain same for these calculations.  
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Fig. 3(a) Fundamental frequency for chiral double walled 

CNT (15, 2) against h/R1 with e0a=0.45 

Fig. 3(b) Fundamental frequency for chiral double walled 

CNT (15, 2) against h/R2 with e0a=0.45 
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The frequencies are displaying increasing pattern with an 

increase in indices of chiral double-walled CNT, as (11, 2) 

exhibited less values of frequencies, whereas (15, 2) have 

shown the higher frequencies. The boundary condition 

(DSM-CF) is at a minor difference from the other three 

conditions, on the other hand (DSM-CC), (DSM-CS) and 

(DSM-SS) possess the less difference. So as indices 

increases for chiral double-walled CNT the frequencies also 

increases. The same behaviour is noticed for both aspect 

ratios as for aspect ratio h/R2 frequencies are followed by 

h/R1.  

The Fig. 4(a) and 4(b) are frequency curves of chiral 

double-walled CNT with indices (11,2), on the other hand 

Fig. 5(a) and 5(b) show the frequency graphs of (9, 4) chiral 

double-walled CNT. In Fig. 4(a) and 4(b) the calculated 

natural frequencies are shown against e0a=0.45 and aspect 

ratio L/d2 however, for Figs. 4(b) and 5(b) versus e0a=0.90. 

The aspect ratio L/d2 ranges from 13.7 to 39.5 for these four 

graphs subjected to clamped-clamped (DSM-CC), clamped 

supported (DSM-CS), simply supported -simply supported 

(DSM-SS) and clamped-free (DSM-CF). The natural 

frequency via aspect ratio L/d2 descends as length-to-

diameter expands subjected to all end supports. The 

difference between the conditions is obvious in beginning 

and vanishes as length of tube continues to extend. This 

 

 

 

behaviour and trend of curves reflects the fact that small 

scale effect becomes negligible for longer tubes and also as 

scale rises the frequency declines for all end supports. The 

frequency for chiral (9, 4) attains increasing frequency 

pattern over the chiral (8, 3) as the previous chiral doubled-

walled CNTs have been observed. 

 

 

5. Conclusions 
 

In present study, influence of four end supports against 

length-to-diameter ratio and thickness-to-radius ratio with 

varying nonlocal parameter are discussed and shown 

graphically. The free vibration analysis of chiral double-

walled CNTs is presented based on nonlocal Kelvin’s 

model by exercising wave propagation approach. Different 

indices are considered against aspect ratio to show the 

diversity of vibration characteristic of chiral. According to 

the results, it is found that nonlocal effect is more 

prominent in increasing length of tubes for chiral double-

walled CNTs. The fundamental frequency curves show an 

increasing pattern as indices of chiral increases. Also it is 

examined that if thickness- to -radius ratio expands, the 

frequency tend to increase too within specified range. In 

addition as length- to- diameter ratio increases the 
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Fig. 4(a) Fundamental frequency for chiral double- walled 

CNT (11, 2) against L/d2 with e0a=0.45 

Fig. 4(b) Fundamental frequency for chiral double- walled 

CNT (11, 2) against L/d2 with e0a=0.90 
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Fig. 5(a) Fundamental frequency for chiral double- walled 

CNT (9, 4) against L/d2 with e0a= 0.45 

Fig. 5(b) Fundamental frequency for chiral double- walled 

CNT (9, 4) against L/d2 with e0a=0.90 
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difference between end supports become negligible and 

meet all curves at end for respective four end conditions. 

The fundamental frequency curves displayed in article show 

the dependence of vibrations attributes on the chiral double 

-walled CNT and nonlocal parameter. The aspect ratio 

thickness-to-radius are compared with both radii, it is 

observed that h/R1 show the lowest frequency as compare to 

h/R2. The nonlocal parameter value with an increase show 

the reduced frequency for chiral. The adoption of wave 

propagation method sustain the fact that nonlocal effect is 

insignificant for longer carbon nanotubes and can be engage 

effectively for further work on triple-walled CNT. 
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