
Computers and Concrete, Vol. 25, No. 4 (2020) 311-325 

DOI: https://doi.org/10.12989/cac.2020.25.4.311                                                                  311 

Copyright © 2020 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=cac&subpage=8                                      ISSN: 1598-8198 (Print), 1598-818X (Online) 

 
1. Introduction 
 

The sandwich plates are a structural element composed 

of two faces sheet and one core (Thai et al. 2014, Borsellino 

et al. 2004). Because of its low weight and high rigidity, 

this type of structure element has been widely employed in 

several sectors such as construction, aerospace, transport, 

aeronautic and marine and others engineering (Wang et al. 

2010, Yeh 2013, Chakrabarti and Sheikh 2005, Pandit et al. 

2008, Kant and Swaminathan 2002, Nayak et al. 2002, 

Mantari et al. 2012, Mehar et al. 2019, Rajabi and 

Mohammadimehr 2019).The three elements of the classical 

composite sandwich plates are adhesively bonded which 

increases the delamination risk. To avoid this problem, 

Japanese researches laboratories have created the new class 

of materials called FGMs which eliminate the interfaces 

areas that represents an area of accumulation and 

concentrations of stresses. Several researchers used this this 

kind of materials in the FG-sandwich structure (Li et al. 

2008, Liu and Jeffers 2017, Xiang et al. 2011). For studying 

the various behaviors of the thick FG-sandwich plate, many 

analytical models are proposed.  
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Kiani and Eslami (2011) studied the stability of the 

porous FG-sandwich plate under thermal load using the 

first-shear deformation theory (FSDT). Mantari and 

Granados (2015) proposed a novel first shear deformation 

model based on the undetermined integral for studying the 

flexural analysis of the FG-sandwich plate with an FG core 

and isotropic skins. Sobhy (2013) investigated on the 

stability and dynamic behavior of the EFG-sandwich plates 

with various types of support using five variables shear 

deformation theory. Nguyen et al. (2014) developed an 

inverse-tangential higher-order shear-deformation theory 

for studying the bending, buckling and free-vibrational 

behaviors of the FG-sandwich plate with isotropic core and 

FG-faces sheets and FG-sandwich plate with FG-core and 

isotropic faces sheets. Based on HSDT theory, Natarajan 

and Manickam (2012) investigated on static and dynamic 

behaviors of the FG-sandwich plate using 8-noded 

quadrilateral plate element. Akavci (2016) developed a new 

hyperbolic warping function shape for the analyze of the 

various behaviors of the FG-sandwich plate seated on 

Winkler-Pasternak elastic foundation. Using the layerwise 

FE formulation based on the FSDT assumption, Pandey and 

Pradyumna (2015) have examined the free vibration of the 

FG-sandwich plate. The Natural frequencies of the 

rectangular sandwich plate with FG-face and homogeneous 

core has been computed by Xiang et al. (2011) by  
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Fig. 1 Geometry of the FGM sandwich plate 

 

 

employing the nth-order shear deformation theory. Iurlaro et 

al. (2014) has extended the refined zigzag theory for 

examining the static and dynamic analysis of the FG-

sandwich plates. Recently, several research work on 

sandwich plate are published such as (Raissi et al. 2018, 

Rezaiee-Pajand et al. 2018, Tomar and Talha 2018, Lieu et 

al. 2018, Singh and Harsha 2018, Akbas 2019a, Burlayenko 

and Sadowski 2019, Emdadi et al. 2019, Rezaiee-Pajand et 

al. 2019, Heshmati and Jalali 2019, Beni 2019, Mirjavadi et 

al. 2019b, Hamed et al. 2020, Eltaher and Mohamed 2020). 

The purpose of this work is to proposing a novel four 

unknowns hyperbolic-HSDT to examine the non-linear 

hygrothermal and mechanical stability of the simply 

supported FG-sandwich plate on elastic foundation type 

“Winkler-Pasternak”. The transverse shear effect is 

considered without any correction. The equilibrium 

equations and analytical solution of the hygrothermal and 

mechanical-buckling of the FG-sandwich plate are derived 

via virtual work principle and Navier model, respectively. 

Moreover, the efficiency an accuracy of the current theory 

is confirmed by comparing the computed results with 

published ones. Thereafter, several parametric studies are 

presented and discussed in detail. 

 

 
2. Mathematical formulation 
 

Let us consider an FG-sandwich plate of thickness “h”, 

length “a” and width “b” composed of three layers (metal-

ceramic, ceramic, and ceramic-metal) as shown in Fig. 1. 

The top and bottom faces-sheets of the plate are at z=h/2. 

The vertical positions of the top, bottom and the two 

interfaces between the layers are denoted by h0=-h/2, 

h3=h/2, h1 and h2, respectively. The FG-sandwich-plate is 

assumed to be surrounded by the elastic-foundation. 

The effective material properties for each layer, such as 

thermal conductivity “K”, Young’s modulus “E”, Poisson’s 

ratio “ν”, coefficient of thermal-expansion “α” and 

coefficient of moisture -expansion “β”, are assumed to be 

determined as  (Zenkour and Sobhy 2010, Radwan 2017, 

Ebrahimi and Barati 2017a, b, Akbas 2019b, Hadji et al. 

2019, Sahouane et al. 2019) 

𝑃(𝑗)(𝑧) = (𝑃𝑐 − 𝑃𝑚)𝑉
(𝑗)(𝑧) + 𝑃𝑚 

𝑃 = 𝐸, 𝛽, 𝛼, 𝐾 
(1) 

Where “𝑉(𝑗)” is the volume fraction of j-layer and can be 

expressed as  

{
 
 

 
 𝑉(1)(𝑧) = (

𝑧 − ℎ0
ℎ1 − ℎ0

)
𝑘

                for 𝑧 ∈ [ℎ0, ℎ1]

𝑉(2)(𝑧) = 1                                 for 𝑧 ∈ [ℎ1, ℎ2]

𝑉(3)(𝑧) = (
𝑧 − ℎ3
ℎ2 − ℎ3

)
𝑘

                for 𝑧 ∈ [ℎ2, ℎ3]

 (2) 

where the subscripts m and c denote the metallic and 

ceramic components, respectively. in the case of k equal to 

zero indicates a fully ceramic-plate, whereas k=∞ 

represents a fully metallic-plate. 

The plate is assumed to seat on two-parameter elastic-

foundation model which consists of closely spaced springs 

interconnected through a shear-layer made of 

incompressible vertical elements, which deform only by 

transverse shear. The response equation “𝑅𝑓 ” of this 

foundation is given by 

𝑅𝑓 = 𝐾𝑤𝑤 − 𝐾𝑝∇
2𝑤 (3) 

Where “𝐾𝑤” and “𝐾𝑝” are spring (Winkler) and shear 

(Pasternak) foundation stiffnesses, respectively. 

 

2.1 Kinematics and strains 
 

In this work, the classical HSDT is modified by 

considering some simplifying assumptions in which to 

reduce the unknowns-number. The displacement field 

formulation of the conventional HSDT is given by  

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤0
𝜕𝑥

+ 𝑓(𝑧)𝜙𝑥(𝑥, 𝑦) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤0
𝜕𝑦

+ 𝑓(𝑧)𝜙𝑦(𝑥, 𝑦) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 

(4) 

u0, v0, w0, Φx and Φy are the five-unknown displacements 

of the mid-plane of the plate. By considering that 𝜙𝑥 =

∫𝜃(𝑥, 𝑦)𝑑𝑥  and 𝜙𝑦 = ∫𝜃(𝑥, 𝑦)𝑑𝑦 . The displacement 

fields mentioned above can be rewritten as follows 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤0
𝜕𝑥

+ 𝑘1𝑓(𝑧)∫ 𝜃(𝑥, 𝑦) 𝑑𝑥 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤0
𝜕𝑦

+ 𝑘2𝑓(𝑧)∫𝜃(𝑥, 𝑦) 𝑑𝑦 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 

(5) 

In the present study, the shape function is proposed in 

hyperbolic form as 

𝑓(𝑧) = (0.1212𝜋𝑧) [𝜋 − (0.135)1/3 𝑐𝑜𝑠ℎ (
𝜋𝑧

ℎ
)] (6) 

The transverse shear strain function is an even function 

which is the 1st derivation of the shape function (g(z)=f’(z)). 

Therefore, the current shear shape-function satisfies the 

zero-stresses at top and bottom surfaces of the plate. 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} = {

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} + 𝑧 {

𝑘𝑥
𝑏

𝑘𝑦
𝑏

𝑘𝑥𝑦
𝑏

} + 𝑓(𝑧) {

𝑘𝑥
𝑠

𝑘𝑦
𝑠

𝑘𝑥𝑦
𝑠
},{
𝛾𝑦𝑧
𝛾𝑥𝑧
} =

𝑔(𝑧) {
𝛾𝑦𝑧
0

𝛾𝑥𝑧
0
} 

(7) 
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Where  

{

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} =

{
 
 

 
 

𝜕𝑢0

𝜕𝑥
𝜕𝑣0

𝜕𝑦

𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥}
 
 

 
 

,  {

𝑘𝑥
𝑏

𝑘𝑦
𝑏

𝑘𝑥𝑦
𝑏

} =

{
 
 

 
 −

𝜕2𝑤0

𝜕𝑥2

−
𝜕2𝑤0

𝜕𝑦2

−2
𝜕2𝑤0

𝜕𝑥𝜕𝑦}
 
 

 
 

, (8a) 

{

𝑘𝑥
𝑠

𝑘𝑦
𝑠

𝑘𝑥𝑦
𝑠
} = {

𝑘1𝜃
𝑘2𝜃

𝑘1
𝜕

𝜕𝑦
∫ 𝜃𝑑𝑥 + 𝑘2

𝜕

𝜕𝑥
∫ 𝜃𝑑𝑦

}, 

{
𝛾𝑦𝑧
0

𝛾𝑥𝑧
0
} = {

𝑘2 ∫𝜃𝑑𝑦

𝑘1 ∫ 𝜃𝑑𝑥
}, 

(8b) 

The integrals “ ∫ 𝜃 𝑑𝑥”  and “ ∫ 𝜃 𝑑𝑦” used in the above 

Eqs. (5) and (8b) shall be resolved by a Navier-procedure 

and can be given as follows 

𝜕

𝜕𝑦
∫ 𝜃 𝑑𝑥 = 𝐴′

𝜕2𝜃

𝜕𝑥𝜕𝑦
  ,  

𝜕

𝜕𝑥
∫ 𝜃 𝑑𝑦 = 𝐵′

𝜕2𝜃

𝜕𝑥𝜕𝑦
  , 

 ∫𝜃 𝑑𝑥 = 𝐴′
𝜕𝜃

𝜕𝑥
  ,  ∫ 𝜃 𝑑𝑦 = 𝐵′

𝜕𝜃

𝜕𝑦
 

(9a) 

Where the coefficients “A′” and “B′” are expressed 

according to the type of solution used, in this case is Navier 

method. Therefore, “A′, B′, k1 and k2” are expressed as 

follows 

𝐴′ = −
1

𝜇2
, 𝐵′ = −

1

𝛽2
, 𝑘1 = 𝜇

2, 𝑘2 = 𝛽
2 (9b) 

Where “μ and β” are used in expression (30). 

It should be noted that unlike the FSDT, this current 

model does not require shear correction coefficients. 

 

2.2 Constitutive relations 
 

The stresses-strains relations of the FG-plate can be 

expressed as 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦}

 
 

 
 
(𝑗)

= 

[
 
 
 
 
𝐶11 𝐶12 0 0 0
𝐶12 𝐶22 0 0 0
0 0 𝐶44 0 0
0 0 0 𝐶55 0
0 0 0 0 𝐶66]

 
 
 
 
(𝑗)

{
 
 

 
 
𝜀𝑥 − 𝛼 𝑇 − 𝛽𝐶
𝜀𝑦 − 𝛼 𝑇 − 𝛽𝐶

𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧 }

 
 

 
 
(𝑗)

 

(10) 

where “Cij (i,j=1,2,3,4,5,6)” are the  expressions in terms 

of engineering constants given as 

𝐶11
(𝑗)
= 𝐶22

(𝑗)
=
𝐸(𝑗)(𝑧)

1 − 𝜈2
, 𝐶12

(𝑗)
=
𝜈𝐸(𝑗)(𝑧)

1 − 𝜈2
, 

𝐶44
(𝑗)
= 𝐶55

(𝑗)
= 𝐶66

(𝑗)
=

𝐸(𝑗)(𝑧)

2(1 + 𝜈)
, 

(11) 

 

2.3 The stability equations 
 

The virtual-work principle for the FG sandwich-plate 

resting on elastic foundations under biaxial compression 

load can be expressed as (Zouatnia et al. 2019) 

∫[𝑁𝑥𝛿𝜀𝑥
0

𝐴

+ 𝑁𝑦𝛿𝜀𝑦
0 + 𝑁𝑥𝑦𝛿𝛾𝑥𝑦

0 +𝑀𝑥
𝑏𝛿𝑘𝑥

𝑏 +𝑀𝑦
𝑏𝛿𝑘𝑦

𝑏 

+𝑀𝑥𝑦
𝑏 𝛿𝑘𝑥𝑦

𝑏 +𝑀𝑥
𝑠𝛿𝑘𝑥

𝑠 +𝑀𝑦
𝑠𝛿𝑘𝑦

𝑠 +𝑀𝑥𝑦
𝑠 𝛿𝑘𝑥𝑦

𝑠 + 𝑆𝑦𝑧
𝑆 𝛿𝛾𝑦𝑧 

+𝑆𝑥𝑧
𝑆 𝛿𝛾𝑥𝑧 + (𝑅̅𝑓 −

𝑁𝑥
𝑏

𝜕2𝑤

𝜕𝑥2
−
𝑁𝑦

𝑎

𝜕2𝑤

𝜕𝑦2
)𝛿𝑤]𝑑𝐴 = 0 

(12) 

where, the stress and moment resultants are defined by 

(𝑁𝑖 ,𝑀𝑖
𝑏 , 𝑀𝑖

𝑠) =∑∫ (1, 𝑧, 𝑓)𝜎𝑖
(𝑗)
𝑑𝑧  , (𝑖 = 𝑥, 𝑦, 𝑥𝑦)

ℎ𝑗

ℎ𝑗−1

3

𝑗=1

 (13a) 

And 

(𝑆𝑥𝑧
𝑠 , 𝑆𝑦𝑧

𝑠 ) = ∑∫ 𝑔(𝜏𝑥𝑧 , 𝜏𝑦𝑧)
(𝑗)
𝑑𝑧

ℎ𝑗

ℎ𝑗−1

3

𝑗=1

 (13b) 

Substituting the Eq. (7) into Eq. (10) and the subsequent 

results into Eq. (13) the stress and moment resultants are 

obtained in the matrix form as 

{
 
 
 
 
 

 
 
 
 
 
𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

𝑀𝑥
𝑏

𝑀𝑦
𝑏

𝑀𝑥𝑦
𝑏

𝑀𝑥
𝑠

𝑀𝑦
𝑠

𝑀𝑥𝑦
𝑠 }
 
 
 
 
 

 
 
 
 
 

= 

[
 
 
 
 
 
 
 
 
 
𝐴11 𝐴12 0 𝐵11 𝐵12 0 𝐵11

𝑠 𝐵12
𝑠 0

𝐴12 𝐴22 0 𝐵12 𝐵22 0 𝐵12
𝑠 𝐵22

𝑠 0

0 0 𝐴66 0 0 𝐵66 0 0 𝐵66
𝑠

𝐵11 𝐵12 0 𝐷11 𝐷12 0 𝐷11
𝑠 𝐷12

𝑠 0

𝐵12 𝐵22 0 𝐷12 𝐷22 0 𝐷12
𝑠 𝐷22

𝑠 0

0 0 𝐵66 0 0 𝐷66 0 0 𝐷66
𝑠

𝐵11
𝑠 𝐵12

𝑠 0 𝐷11
𝑠 𝐷12

𝑠 0 𝐻11
𝑠 𝐻12

𝑠 0

𝐵12
𝑠 𝐵22

𝑠 0 𝐷12
𝑠 𝐷22

𝑠 0 𝐻12
𝑠 𝐻22

𝑠 0

0 0 𝐵66
𝑠 0 0 𝐷66

𝑠 0 0 𝐻66
𝑠 ]
 
 
 
 
 
 
 
 
 

 

{
 
 
 
 
 

 
 
 
 
 
𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

𝑘𝑥
𝑏

𝑘𝑦
𝑏

𝑘𝑥𝑦
𝑏

𝑘𝑥
𝑠

𝑘𝑦
𝑠

𝑘𝑥𝑦
𝑠 }
 
 
 
 
 

 
 
 
 
 

−

{
 
 
 
 

 
 
 
 
𝑁𝑥
𝑇

𝑁𝑦
𝑇

0
𝑀𝑥
𝑏𝑇

𝑀𝑦
𝑏𝑇

0
𝑀𝑥
𝑠𝑇

𝑀𝑦
𝑠𝑇

0 }
 
 
 
 

 
 
 
 

−

{
 
 
 
 

 
 
 
 
𝑁𝑥
𝐶

𝑁𝑦
𝐶

0
𝑀𝑥
𝑏𝐶

𝑀𝑦
𝑏𝐶

0
𝑀𝑥
𝑠𝐶

𝑀𝑦
𝑠𝐶

0 }
 
 
 
 

 
 
 
 

 

(14a) 

{
𝑆𝑦𝑧
𝑠

𝑆𝑥𝑧
𝑠 } = [

𝐴44
𝑠 0

0 𝐴55
𝑠 ] {

𝛾𝑦𝑧
0

𝛾𝑥𝑧
0
} (14b) 

where 𝐴11, 𝐵11 𝑒𝑡𝑐. stiffness components are expressed as 

{

𝐴11 𝐵11 𝐷11 𝐵11
𝑠 𝐷11

𝑠 𝐻11
𝑠

𝐴12 𝐵12 𝐷12 𝐵12
𝑠 𝐷12

𝑠 𝐻12
𝑠

𝐴66 𝐵66 𝐷66 𝐵66
𝑠 𝐷66

𝑠 𝐻66
𝑠
} = 

∑∫ 𝐶11
(𝑗)
(1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧 𝑓(𝑧), 𝑓2(𝑧))

ℎ𝑗

ℎ𝑗−1

{

1
𝜈

1 − 𝜈

2

}𝑑𝑧

3

𝑗=1

 

( ) ( )22 22 22 22 22 22 11 11 11 11 11 11, , , , , , , , , ,s s s s s sA B D B D H A B D B D H=  
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 
1

3
2( )

44 55 44

1

( ) ,

j

j

h

s s j

j h

A A C g z dz

−
=

= =    (14c) 

The stress and moment resultants 𝑁𝑥
Θ = 𝑁𝑦

Θ ; 𝑀𝑥
𝑏Θ =

𝑀𝑦
𝑏Θ and 𝑀𝑥

𝑠Θ = 𝑀𝑦
𝑠Θ ; (Θ=T,C) due to hygrothermal-

loading are defined as 

{

𝑁𝑥
Θ

𝑀𝑥
𝑏Θ

𝑀𝑦
𝑏Θ

} =∑∫
𝐸(𝑗)(𝑧)

1 − 𝜈

ℎ𝑗

ℎ𝑗−1

𝛶(𝑗)(z)Θ(z) {
1
𝑧

𝑓(𝑧)
} 𝑑𝑧

3

𝑗=1

 (16) 

Where 

Θ(z) = {
𝐶(𝑧)   𝑖𝑓  𝛶 = 𝛽

𝑇(𝑧)   𝑖𝑓   𝛶 = 𝛼
 (17) 

Supposing the displacement terms 𝑢0
0; 𝑣0

0; 𝑤0
0 et 𝜃0 

the equilibrium-state of the FG sandwich plate under 

hygrothermal-loads. Let the terms of displacements 𝑢0
1 ; 

𝑣0
1; 𝑤0

1 et 𝜃1 are a neighboring stable-state with respect 

to the equilibrium position. Therefore, the general 

displacements of a neighboring state (Radwan 2017) are 

𝑢0 = 𝑢0
0 + 𝑢0

1  ,   𝑣0 = 𝑣0
0 + 𝑣0

1   , 

𝑤0 = 𝑤0
0 + 𝑤0

1   ,    𝜃0 = 𝜃
0 + 𝜃1 

(18) 

Wherethe superscript 0 and 1 indicates the state of 

equilibrium conditions and the state of stability, 

respectively. By collecting the coefficients 𝑢0
1; 𝑣0

1; 𝑤0
1 et 

𝜃1 in the virtual work (Eq. (12)), the stability equations are 

obtained as 

𝜕𝑁𝑥
1

𝜕𝑥
+
𝜕𝑁𝑥𝑦

1

𝜕𝑦
= 0 

 
𝜕𝑁𝑥𝑦

1

𝜕𝑥
+

𝜕𝑁𝑦
1

𝜕𝑦
= 0 

𝜕2𝑀𝑥
𝑏1

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑏1

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑏1

𝜕𝑦2
+ 𝑁0 − 𝑅̅𝑓 = 0 

−𝑘1𝑀𝑥
𝑠1 − 𝑘2𝑀𝑦

𝑠1  − (𝑘1𝐴′ + 𝑘2𝐵′)
𝜕2𝑀𝑥𝑦

𝑠1

𝜕𝑥𝜕𝑦
 

+𝑘1𝐴′
𝜕𝑆𝑥𝑧

𝑠1

𝜕𝑥
+ +𝑘2𝐵′

𝜕𝑆𝑦𝑧
𝑠1

𝜕𝑦
= 0 

(19) 

Where 

𝑁0 = 𝑁𝑥
0
𝜕2𝑤0

1

𝜕𝑥2
+ 𝑁𝑦

0
𝜕2𝑤0

1

𝜕𝑦2
 (20) 

in which 𝑁𝑥
0 and 𝑁𝑦

0 are given as 

𝑁𝑥
0 = 𝑁𝑥

𝑀 +𝑁𝑥
𝐻,  𝑁𝑦

0 = 𝑁𝑦
𝑀 + 𝑁𝑦

𝐻, 

𝑁𝑥
𝑀 = −

𝑁𝑥
𝑏
  ,   𝑁𝑦

𝑀 = −
𝑁𝑦

𝑎
  ,    

𝑁𝑥
𝑀

𝑁𝑦
𝑀
= 𝑅, 

(21a) 

𝑁𝑥
𝐻 = 𝑁𝑦

𝐻 = −∑∫
𝐸(𝑗)(𝑧)

1 − 𝜈

ℎ𝑗

ℎ𝑗−1

(𝛼𝑗(𝑧)𝑇(𝑧)

3

𝑗=1

 (21b) 

+𝛽𝑗(𝑧)𝐶(𝑧))𝑑𝑧 (21c) 

 

2.4 Various types of hygrothermal rise 
 

In this study, the simply-supported is subjected to three 

hygrothermal distributions type through the thickness are 

non-linear, linear and uniform. Each type of the 

hygrothermal distributions is accurately depicted below. 

 

2.4.1 Uniform hygrothermal rise (UHR) 
In the first type, the FG-sandwich plate is subjected to 

an initial temperature and moisture ”𝑇𝑖” and ”𝐶𝑖”, and then 

the moisture and temperature were uniformly increased to 

the final values ”𝑇𝑓” and ”𝐶𝑓”. with  

∆Θ = Θ𝑓 − Θ𝑖    ,    Θ = T, C (22) 

 

2.4.2 Linear hygrothermal rise (LHR) 
The second type of the hygrothermal distribution is 

linear and can be presented in the following form 

Θ(z) = ∆Θ (
1

2
+
𝑧

ℎ
) + Θ𝑙  

Θ(z) = ∆Θ (
1

2
+
𝑧

ℎ
) + Θ𝑙  

(23) 

Where “Θ𝑙  and Θ𝑢” are the hygrothermal at the lower 

and upper surface of the FG-sandwich plate and ∆Θ =
Θ𝑢 − Θ𝑙 . 
 

2.4.3 Non-linear hygrothermal rise (NHR) 
In this case, the temperature distribution through-the-

thickness has been given according to the following 

approaches: 

1. In the first case, the temperature of the top surface is 

Tt and it is considered to vary from Tt to Tb in which the 

plate buckles, according to the power law variation through-

the-thickness, to the bottom surface temperature Tb in 

which the plate buckles. Therefore, the temperature rise 

through-the-thickness is given by 

Θ(z) = ∆Θ(
1

2
+
𝑧

ℎ
)
𝛾

+ Θ𝑙  (24) 

where is the hygrothermal exponent, 1 < 𝛾 < ∞ 

2. In the second case, the one-dimensional Fourier 

equation of thermal conduction, is solved. 

{
 
 

 
 
𝑑

𝑑𝑧
[𝑘(𝑧)

𝑑𝑇

𝑑𝑧
] = 0       −

ℎ

2
< 𝑧 <

ℎ

2

𝑇 = 𝑇𝑐                                 𝑧 =
ℎ

2

𝑇 = 𝑇𝑚                            𝑧 = −
ℎ

2

 (25) 

k(z) is the coefficient of thermal conduction, Tc and Tm 

denote the temperature changes at the ceramic side and the 

metal side, respectively. Similar to the coefficients of elastic 

moduli and thermal expansion, the coefficient of thermal 

conduction is also assumed as a power-form of coordinate 

variable z as 

𝑘(𝑧) = (𝑘𝑐 − 𝑘𝑚)𝑉𝑐
𝑘 + 𝑘𝑚 (26) 

The Eq. (25) can be solved using a polynomial power-

series expansion given as 

𝑇(𝑧) = 𝑇𝑚 +
(𝑇𝑐 − 𝑇𝑚) 

𝐿
 

(
𝑧

ℎ
+
1

2
)∑[(−1)𝑖

(
𝑧

ℎ
+
1

2
)
𝑖𝑝
(𝐾𝑐 −𝐾𝑚)

𝑖

(𝑖𝑝 + 1)𝐾𝑚
]

𝑁𝑇

𝑖=0

 

(27) 
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where NT is the number of series’ terms, which in the case 

of non-uniform temperature rise is obtained from a 

convergence study. L is defined as follows 

𝐿 =∑[(−1)𝑖
(𝐾𝑐 − 𝐾𝑚)

𝑖

(𝑖𝑝 + 1)𝐾𝑚
]

𝑁𝑇

𝑖=0

 (28) 

 

 

3. Analytical solution 
 

Based on the Navier procedure (Akbas 2017, Safa et al. 

2019), the following expansions of displacements 𝒖𝟎
𝟏; 𝒗𝟎

𝟏; 

𝒘𝟎
𝟏 et 𝜽𝟏 are chosen to satisfy automatically the boundary 

conditions of the FG-sandwich plate. 

{
 

 
𝑢0
1

𝑣0
1

𝑤0
1

𝜃1}
 

 

= ∑∑{

𝑈𝑚𝑛 𝑐𝑜𝑠( 𝜇𝑥) 𝑠𝑖𝑛( 𝛽𝑦)

𝑉𝑚𝑛 𝑠𝑖𝑛( 𝜇𝑥) 𝑐𝑜𝑠( 𝛽 𝑦)
𝑊𝑚𝑛 𝑠𝑖𝑛( 𝜇 𝑥) 𝑠𝑖𝑛( 𝛽 𝑦)

𝑋𝑚𝑛 𝑠𝑖𝑛( 𝜇 𝑥) 𝑠𝑖𝑛( 𝛽 𝑦)

}

∞

𝑛=1

∞

𝑚=1

 (29) 

Where Umn, Vmn, Wmn, Xmn are arbitrary parameters to be 

determined. μ and β are defined as 

𝜇 =
𝑚𝜋

𝑎
 𝑒𝑡 𝛽 =

𝑛𝜋

𝑏
 (30) 

Substituting Eq. (29) into Eq. (19) as function of 

displacements terms, the closed-form solution of buckling 

load of the FG-sandwich plate can be obtained from 

[

𝑎11 𝑎12 𝑎13 𝑎14
𝑎12 𝑎22 𝑎23 𝑎24
𝑎13 𝑎23 𝑎33 𝑎34
𝑎14 𝑎24 𝑎34 𝑎44

] {

𝑈𝑚𝑛
𝑉𝑚𝑛
𝑊𝑚𝑛
𝑋𝑚𝑛

} = {

0
0
0
0

} (31) 

where 

𝑎11 = −(𝐴11𝜇
2 + 𝐴66𝛽

2) 
𝑎12 = −𝜇 𝛽 (𝐴12 + 𝐴66) 

𝑎13 = 𝜇(𝐵11𝜇
2 + (𝐵12 + 2𝐵66)𝛽

2) 
𝑎14 = −𝜇(𝐵11

𝑠 𝐴′𝑘1𝜇
2 + 𝐵12

𝑠 𝐵′𝑘2𝛽
2 

+𝐵66
𝑠 (𝐴′𝑘1 + 𝐵′𝑘2)𝛽

2) 
𝑎22 = −𝜇

2𝐴66 − 𝛽
2𝐴22 

𝑎23 = 𝛽(𝐵22𝛽
2 + (𝐵12 + 2𝐵66)𝜇

2) 
𝑎24 = 

−𝛽 (𝐵22
𝑠 𝐵′𝑘2𝛽

2 + 𝜇2(𝐵12
𝑠 𝐴′𝑘1 + 𝐵66

𝑠 (𝐴′𝑘1 + 𝐵′𝑘2))) 

𝑎33 = −𝜇
2(𝐷11𝜇

2 + (2𝐷12 + 4𝐷66)𝛽
2) 

−𝐷22𝛽
4 +𝑁𝑥

0𝜇2 + 𝑁𝑦
0𝛽2 − 𝐾𝑤 − 𝐾𝑝(𝜇

2 + 𝛽2) 

𝑎34 = 𝐷11
𝑠 𝐴′𝑘1𝜇

4 + 𝐷12
𝑠 (𝐴′𝑘1 + 𝐵′𝑘2)𝛽

2𝜇2 

+𝐷22
𝑠 𝐵′𝑘2𝛽

4 + 2𝐷66
𝑠 (𝐴′𝑘1 + 𝐵′𝑘2)𝛽

2𝜇2 

𝑎44 = −(𝐻11
𝑠 𝜇2𝑘1 + 2𝑘1𝛽

2𝐻66
𝑠 + 2𝐻66

𝑠 𝜇2𝑘2 

+𝐻12
𝑠 𝜇2𝑘2 + 𝑘1𝛽

2𝐻12
𝑠 + 𝑘2𝛽

2𝐻22
𝑠 + 𝐴𝑠

44𝑘1 + 𝐴𝑠
55𝑘2) 

(32) 

In order to obtain the non-trivial solution, the 

determinant |𝐴| should be zero. By solving the equation 

|𝐴| = 0, we can easily obtain the buckling load 𝑁 = 𝑃𝑥  

and the buckling temperature ∆𝑇𝑐𝑟(𝑃𝑥 = 𝑃𝑦 = 0). 

 
 
4. Numerical results 

 
The numerical results of the mechanical and 

hygrothermal buckling analysis of SS-FG sandwich plate  

Table 1 properties of FG plate components 

Materials 
Silicon nitride 

(Si3N4) 

Stainless steel 

(SUS304) 

E [GPa] 348.43 201.04 

𝛼[x10−6/°C] 5.8711 12.330 

K [𝑊/𝑚𝐾] 13.723 15.379 

𝛽(𝑤𝑡 %𝐻2𝑂)
−1 0.001 0.44 

ν 0.3 

 

 

are presented in the following section. The FG-material 

continuously varies from the silicon nitride (Si3N4) to 

stainless steel (SUS304). The properties of each material 

are abstracted in the Table 1. 

The temperature in the bottom surface is taken 𝑇𝑏 =
25°C.  

All results presented in this work are computed in the 

non-dimensional form as 

𝑁𝑐𝑟 =
𝑁𝑏

𝐷𝑐
,     𝑁𝑐𝑟 =

𝑁𝑎2

𝑏ℎ3𝐸𝑚
,     𝑇𝑐𝑟 = 10−3∆𝑇𝑐𝑟  

𝐽1 =
𝐾𝑤𝑎

4

𝐷𝑐
,     𝐽2 =

𝐾𝑝𝑎
2

𝐷𝑐
,     𝐷𝑐 =

𝐸𝑐ℎ
3

12(1 − 𝜈2)
 

𝐽1̅ =
𝐾𝑤𝑎

4

𝐷𝑚
,     𝐽2̅ =

𝐾𝑝𝑎
2

𝐷𝑚
,     𝐷𝑚 =

𝐸𝑚ℎ
3

12(1 − 𝜈2)
 

𝜉 =
𝐻𝑐
𝐻𝑓

 

(33) 

The material properties used in Tables 3 and 4 are 𝐸𝑐 =
380 GPa , αc = 7.4x10

−6/°C , 𝐸𝑚 = 70 GPa , and 𝛼𝑚 =
23𝑥10−6/°𝐶; while the material properties used in Table 5 

are 𝐸𝑐 = 244.27 GPa , αc = 12.766x10
−6/°C , 𝐸𝑚 =

66.2 GPa, 𝛼𝑚 = 10.3𝑥10−6/°𝐶.  

 

4.1 Plate subjected to mechanical loads  
 

For verification of the theory used, the obtained results 

for mechanical buckling of homogeneous and FG-plate are 

compared with those found in the literature. 

The Table 2 shows the comparison of the obtained 

critical buckling load  Ncr of simply supported 

homogeneous  with those computed via first-shear 

deformation theory (FSDT) of Akhavan et al. (2009) and 

TSDT model of (Thai and Kim 2013, Yaghoobi and 

Fereidoon 2014) and RPT of Radwan (2017). From the 

Table 1, it can be seen for all aspect ratio ‘a/b’, geometry 

ratio ‘a/h’ and elastic-foundation parameter (J1,J2) that the 

current results are in good agreement with those given by  

(Akhavan et al. 2009, Thai and Kim 2013, Yaghoobi and 

Fereidoon 2014, Radwan 2017). 
The nondimensional critical buckling load ‘Ncr’ of 

simply-supported square FG-plate under compressive load 

is presented in the Table 3. The results computed using the 

present hyperbolic-HSDT are compared with refined nth-

order shear deformation theory developed by Yaghoobi and 

Fereidoon (2014), the TSDT proposed by Thai and Kim 

(2013) and RPT of Radwan (2017). It is clear from the table 

that the current model gives almost the same values as the 

other models in the literature. It is also remarkable that the 

non-dimensional critical buckling load ‘Ncr’ is in inverse  
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relation with the material index. It can be noted that the 

presence of the elastic-foundation makes the plate more 

rigid. 

The critical buckling load ‘Ncr’ of the FG-sandwich 

 

 

plate reposed on elastic-foundation versus the geometry 

ratio ‘a/h’, aspect ratio ‘b/a’ and load ratio ‘R’ is plotted in 

the Fig. 2. The FG-sandwich plate has (k=1, ξ=1, J1=100, 

J2=10). It can be seen from the plotted curves that the 

Table 2 Comparison of non-dimensional buckling load Ncr of a homogeneous rectangular plate on elastic 

foundations (R=0, n=1) 

a/b J1 J2 Theory 
a/h 

5 10 100 1000 

0.5 

0 0 

Akhavan et al. (2009) 54.3207 59.6629 61.6641 61.6848 

Thai and Kim (2013) 54.0737 59.5856 61.6633 61.6848 

Yaghoobi and Fereidoon (2014) 54.0737 59.5860 61.6633 61.6848 

Radwan (2017) 54.0780 59.5873 61.6633 61.6848 

Present 54,0859 59,5887 61,6633 61,6848 

100 10 

Akhavan et al. (2009) 144.6952 150.1910 152.1930 152.2130 

Thai and Kim (2013) 144.6022 150.1141 152.1918 152.2133 

Yaghoobi and Fereidoon (2014) 144.6022 150.1141 152.1918 152.2133 

Radwan (2017) 144.6065 150.1158 152.1918 152.2133 

Present 144,6144 150,1172 152,1918 152,2132 

1000 100 

Akhavan et al. (2009) 643.5000b 686.1710a 704.3860a 704.5890a 

Thai and Kim (2013) 640.9782b 685.5369a 704.3775a 704.5888a 

Yaghoobi and Fereidoon (2014) 640.9782b 685.5369a 704.3775a 704.5888a 

Radwan (2017) 640.8714b 685.5487a 704.3777a 704.5888a 

Present 641,3795b 685,5670a 704,3778a 704,5887a 

1 

0 0 

Akhavan et al. (2009) 32.4414 37.4477 39.4570 39.4782 

Thai and Kim (2013) 32.2276 37.3721 39.4562 39.4782 

Yaghoobi and Fereidoon (2014) 32.2276 37.3721 39.4562 39.4782 

Radwan (2017) 32.2305 37.3738 39.4562 39.4782 

Present 32,2398 37,3753 39,4562 39,4781 

100 10 

Akhavan et al. (2009) 55.0289a 67.5798 69.5891 69.6103 

Thai and Kim (2013) 54.5692a 67.5042 69.5883 69.6103 

Yaghoobi and Fereidoon (2014) 54.5692a 67.5042 69.5883 69.6103 

Radwan (2017) 54.5665a 67.5059 69.5883 69.6103 

Present 54,6116a 67,5074 69,5883 69,6103 

1000 100 

Akhavan et al. (2009) 174.9760b 204.6510a 211.9610a 212.0140a 

Thai and Kim (2013) 174.2676b 204.4040a 211.9285a 212.0145a 

Yaghoobi and Fereidoon (2014) 174.2676b 204.4040a 211.9285a 212.0145a 

Radwan (2017) 174.2320b 204.4084a 211.9285a 212.0145a 

Present 174,3907b 204,4162a 211,9286a 212,0144a 

2 

0 0 

Akhavan et al. (2009) 19.2255b 32.4414a 39.3930a 39.4776a 

Thai and Kim (2013) 18.9794b 32.2276a 39.3896a 39.4775a 

Yaghoobi and Fereidoon (2014) 18.9794b 32.2276a 39.3896a 39.4775a 

Radwan (2017) 18.9574b 32.2305a 39.3896a 39.4775a 

Present 19,0400 32,2398a 39,3896a 39,4775a 

100 10 

Akhavan et al. (2009) 22.7476c 37.5182b 45.0262a 45.1108a 

Thai and Kim (2013) 22.5785c 37.8358b 45.0228a 45.1108a 

Yaghoobi and Fereidoon (2014) 22.5785c 37.8358b 45.0228a 45.1108a 

Radwan (2017) 22.5322c 37.8377b 45.0229a 45.1108a 

Present 22,6777c 37,8580b 45,0229a 45,1107a 

1000 100 

Akhavan et al. (2009) -- 72.8290c 85.0953b 85.2563b 

Thai and Kim (2013) 50.0214d 72.3694c 85.0887b 85.2562b 

Yaghoobi and Fereidoon (2014) 50.0214d 72.3694c 85.0887b 85.2562b 

Radwan (2017) 49.9393d 72.3667c 85.0888b 85.2562b 

Present 50,1748d 72,4117c 85,0889b 85,2562b 

The superscripts a, b, c and d denote m=2, 3, 4 and 5 
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critical buckling load ‘Ncr’ is in direct correlation relation 

with geometry ratio ‘a/h’ and decrease with increasing of 

the aspect ratio ‘b/a’ to a minimum value corresponding to 

‘b/a=1.5’ then it increases. The biggest values of ‘Ncr’ is 

obtained for load ratio ‘R=0’. 

Fig. 3 shows the variation of the buckling load 

parameter ‘Ncr’ of the FG-sandwich plate without elastic- 

 

 

 

 

foundation (J1=J2=0) as function of the power index ‘k’, 

dimension ‘b/a’ and geometry ‘a/h’ ratios. From the graphs, 

it can be observed that the increasing in the power index ‘k’ 

and geometry ratio ‘a/h’ lead to an increase in the values of 

buckling load parameter ‘Ncr’, but this values decrease 

when the aspect ratio ‘b/a’ increase. 

The Effect of the layer thickness ratio ‘ξ’ and dimension  

Table 3 Comparison of non-dimensional critical buckling load Ncr of square FG-plate on elastic foundations 

(R=1, a/h=10) 

J1 J2 Theory 
K 

0 0.5 1 2 5 10 

0 0 

Thai and Kim (2013) 9.2893 6.0615 4.6695 3.6315 3.0177 2.7264 

Yaghoobi and Fereidoon (2014) 9.2893 6.0615 4.6695 3.6315 3.0177 2.7264 

Radwan (2017) 9.2897 6.0617 4.6697 3.6321 3.0195 2.7275 

Present 9,2902 6,0619 4,6699 3,6325 3,0206 2,7282 

100 10 

Thai and Kim (2013) 10.6689 7.4411 6.0492 5.0112 4.3973 4.1061 

Yaghoobi and Fereidoon (2014) 10.6689 7.4411 6.0492 5.0112 4.3973 4.1061 

Radwan (2017) 10.6693 7.4413 6.0494 5.0118 4.3992 4.1071 

Present 10,6699 7,4416 6,0496 5,0122 4,4002 4,1078 

1000 100 

Thai and Kim (2013) 23.0860 19.8582 18.4663 17.4283 16.8144 16.5232 

Yaghoobi and Fereidoon (2014) 23.0860 19.8582 18.4663 17.4283 16.8144 16.5232 

Radwan (2017) 23.0864 19.8584 18.4665 17.4289 16.8162 16.5242 

Present 23,0870 19,8587 18,4667 17,4293 16,8174 16,5250 
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Fig. 2 Buckling load parameter ‘Ncr’ of FG-sandwich plate vs. (a) the side-to-thickness ratio a/h (b/a=1) and (b) aspect 

ratio b/a (a/h=10) for various load ratios (k=1, ξ=1, J1=100, J2=10) 
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Fig. 3 Buckling load parameter ‘Ncr’ of FG-sandwich plates under biaxial compression (R=1) vs. (a) the side-to-thickness 

ratio a/h (b/a=1) and (b) aspect ratio b/a (a/h=10) for various values of the power law index k with (ξ=1, J1=J2=0) 
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Fig. 5 Buckling load parameter ‘Ncr’ of FG-sandwich plates 

under biaxial compression (R=1) vs. the aspect ratio ‘b/a’ 

for various values of the elastic foundation parameters with 

(ξ=1, k=1, a/h=10) 

 

 

 

ratio ‘b/a’ on the critical buckling load parameter ‘Ncr’ of 

the simply-supported FG-sandwich plates under uniaxial 

compressive load ‘R=0’ is presented in the Fig. 4. From the 

plotted curve, it can be observed that the values of the 

critical buckling load ‘Ncr’ of the FG-sandwich plate 

without elastic-foundations are smaller than FG-plate with 

elastic-foundation (J1=100, J2=10). It is clear also that the 

lower values of the buckling load parameter ‘Ncr’ is given 

by plate without core.  

Fig. 5 reveal the variation of the critical buckling load 

‘Ncr’ of the FG-sandwich plate under biaxial mechanical 

loads as function of the elastic-foundation parameter (J1,J2) 

and aspect ratio ‘b/a’. It is remarkable from the graphs that 

the increase of the aspect ratio ‘b/a’ leads to decrease the 

values of the critical buckling load ‘Ncr’. The FG-sandwich 

plate with elastic-foundation (J1=50, J2=10) give the greater 

values of the ‘Ncr’. 
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Fig. 4 Buckling load parameter ‘Ncr’ of FG-sandwich plates under uniaxial compression (R=0) vs. the aspect ratio b/a for 

various values of the core-to-face thickness ratio (a) without elastic foundations J1=J2=0 and (b) on elastic-foundations 

J1=100, J2=10 (k=1, a/h=10) 

Table 4 Comparison of non-dimensional critical buckling temperature ‘Tcr’ of square FG-plate on elastic 

foundations under uniform temperature rise 

k Theory 
J1=0, J2=0 J1=10, J2=0 J1=10, J2=10 

a/h=5 10 20 a/h=5 10 20 a/h=5 10 20 

0 

Yaghoobi and Torabi (2013) 5.58069 1.61862 0.42153 5.75623 1.66251 0.43251 9.22123 2.52876 0.64907 

Zenkour and Sobhy (2011) 5.58556 1.61882 0.42154 5.76109 1.66270 0.43252 9.22610 2.52896 0.64908 

Radwan (2017) 5.58394 1.61875 0.42154 5.75948 1.66264 0.43251 9.22448 2.52889 0.64907 

Present 5,56502 1,59416 0,39657 5,74056 1,63804 0,40754 9,20556 2,50429 0,62410 

1 

Zenkour and Sobhy (2011) 2.67241 0.75845 0.19627 2.83603 0.79935 0.20649 6.06558 1.60674 0.40834 

Radwan (2017) 2.67174 0.75842 0.19627 2.83535 0.79933 0.20649 6.06491 1.60672 0.40834 

Present 2,64926 0,73358 0,17128 2,81287 0,77449 0,18150 6,04243 1,58188 0,38335 

5 

Yaghoobi and Torabi (2013) 2.35948 0.68678 0.17905 2.58625 0.74347 0.19322 7.06257 1.86255 0.47299 

Zenkour and Sobhy (2011) 2.27131 0.67895 0.17851 2.49808 0.73564 0.19268 6.97440 1.85472 0.47245 

Radwan (2017) 2.27935 0.67972 0.17856 2.50612 0.73641 0.19274 6.98244 1.85549 0.47251 

Present 2,24462 0,65377 0,15350 2,47139 0,71046 0,16767 6,94771 1,82954 0,44744 

10 

Yaghoobi and Torabi (2013) 2.36822 0.70108 0.18373 2.62416 0.76507 0.19972 7.67626 2.02809 0.51548 

Zenkour and Sobhy (2011) 2.27551 0.69254 0.18313 2.53146 0.75653 0.19913 7.58356 2.01955 0.51489 

Radwan (2017) 2.27936 0.69296 0.18316 2.53531 0.75694 0.19916 7.58740 2.01997 0.51492 

Present 2,25119 0,66757 0,15814 2,50713 0,73156 0,17413 7,55922 1,99458 0,48989 
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4.2 Plate subjected to hygrothermal loads  
 
In this section, the obtained results of the critical 

buckling temperature ‘Tcr’ of functionally graded and FG-

sandwich plates are compared with those available in the 

literature.  

The Table 4 presents the critical buckling temperature 

‘Tcr’ of the FG-plate without and with elastic-foundation 

under uniform-thermal load. The computed results are 

compared with those given by Yaghoobi and Torabi (2013), 

Zenkour and Sobhy (2011) and Radwan 2017 using the 

 

 

 

FSDT, TSDT and RPT, respectively. It can be noted from 

the table that the increase in the values of material index ‘k’ 

leads to reduce the critical buckling temperature ‘Tcr’ and 

this is confirmed for FG-plate with and without elastic-

foundation. 

Table 5 demonstrates the comparison of the critical 

buckling temperature ‘Tcr’ of the FG-sandwich plate under 

non-linear thermal load with (γ=5). It can be observed from 

this table that the non-dimensional critical buckling 

temperature ‘Tcr’ is in direct correlation relation with power 

index ‘k’. it can be confirmed again that the present results  

Table 5 Comparison of non-dimensional critical buckling temperature ‘Tcr’ of the square FG-sandwich plates 

under non-linear temperature rise (γ=5) 

ξ k Theory 
a/h 

5 10 15 25 50 

0 

0.5 

Zenkour and Sobhy (2010) 21.61337 5.90995 2.58239 0.81982 0.06380 

Radwan (2017) 21.60648 5.90948 2.58230 0.81981 0.06380 

Present 21,60480 5,9093 2,58228 0,81981 0,06380 

2 

Zenkour and Sobhy (2010)  3.02926 6.12449 2.64800 0.82107 0.04052 

Radwan (2017) 23.00135 6.12245 2.64759 0.82102 0.04051 

Present 22,98800 6,12147 2,64739 0,82100 0,04050 

0.5 

0.5 

Zenkour and Sobhy (2010) 21.33821 5.83566 2.54875 0.80744 0.06048 

Radwan (2017) 21.33354 5.83536 2.54869 0.80743 0.06048 

Present 21,33300 5,83535 2,54869 0,80743 0,06048 

2 

Zenkour and Sobhy (2010) 22.35275 5.89838 2.53488 0.77011 0.01668 

Radwan (2017) 22.33166 5.89686 2.53458 0.77007 0.01668 

Present 22,32160 5,89614 2,53443 0,77005 0,01668 

1 

0.5 

Zenkour and Sobhy (2010) 21.12437 5.79091 2.53084 0.80247 0.06078 

Radwan (2017) 21.12333 5.79089 2.53084 0.80246 0.06078 

Present 21,12500 5,79100 2,53090 0,80247 0,06079 

2 

Zenkour and Sobhy (2010) 21.98303 5.81247 2.49756 0.75699 0.01363 

Radwan (2017) 21.97101 5.81161 2.49738 0.75698 0.01363 

Present 21,96600 5,81120 2,49730 0,75697 0,01363 

2 

0.5 

Zenkour and Sobhy (2010) 20.80375 5.73532 2.51144 0.79933 0.06402 

Radwan (2017) 20.80829 5.73575 2.51152 0.79935 0.06403 

Present 20,81300 5,73610 2,51160 0,79936 0,06403 

2 

Zenkour and Sobhy (2010) 21.54679 5.75368 2.48202 0.75946 0.02279 

Radwan (2017) 21.54827 5.75383 2.48206 0.75946 0.02279 

Present 21,55000 5,75400 2,48210 0,75947 0,02279 
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Fig. 6 Buckling temperature change ‘Tcr’ of FG-sandwich plates under linear temperature distribution (γ=1) vs. (a) the 

side-to-thickness ratio a/h (b/a=1) and (b) aspect ratio b/a (a/h=10) for various values of the power law index ‘k’ with 

(ξ=1, J1=J2=0) 
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are almost the same with those given by Zenkour and Sobhy 

(2010) and Radwan (2017). The lower values of the critical 

buckling temperature ‘Tcr’ are obtained when the core 

thickness of the FG-sandwich plate is twice as large as the 

faces sheet. 

 

 

 

 

The critical buckling temperatures ‘Tcr’ of the simply-

supported square FG-sandwich plate under linear and non-

linear thermal load versus the power index ‘k’, aspect  

‘a/b’ and geometry ratios ‘a/h’ are presented in the Figs. 6 

and 7, respectively. From the obtained results, it can be  
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Fig. 7 Buckling temperature change ‘Tcr’ of FG-sandwich plates under non-linear Fourier temperature distribution vs. (a) 

the side-to-thickness ratio a/h (b/a=1) and (b) aspect ratio b/a (a/h=10) for various values of the power law index ‘k’ 

with (ξ=1, J1=J2=0) 

 

 

 

 

 

 

Fig. 8 Buckling temperature change ‘Tcr’ of FG-sandwich plates under linear temperature distribution (γ=1) vs. the 

aspect ratio b/a for various values of the core-to-face thickness ratio ξ (a) without elastic foundations J1=J2=0 and (b) on 

elastic foundations J1=100, J2=10 with (k=1, a/h=10) 
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Fig. 9 Buckling temperature change ‘Tcr’ of FG-sandwich plates under non-linear Fourier temperature distribution vs. the 

side-to-thickness ratio a/h (a) thermal buckling and (b) hygrothermal buckling for various values of the core-to-face 

thickness ratio ξ with (k=1, b/a=1, J1=100, J2=10) 
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Fig. 11 Buckling temperature change ‘Tcr’ of FG-sandwich 

plate under linear temperature distribution (γ=1) vs. the 

aspect ratio ‘b/a’ for various values of the elastic foundation 

parameters with (ξ=1, k=1, a/h=10) 

 

 

concluded that the values critical buckling temperatures 

‘Tcr’ decrease with increasing of the power index ‘k’ and 

geometry ratio ‘a/h’ and the aspect ratio lead to an increase 

in the values of the buckling temperature ‘Tcr’. 

Figs. 8-10 shows the effect of the aspect ‘b/a’, geometry 

‘a/h’ and layer thickness ‘ξ’ ratios on the thermal buckling 

load of the FG-sandwich plate under hygrothermal, linear 

(γ=1) and non-linear thermal distributions. The FG-

sandwich plate is seated on the elastic-foundation with 

(J1=100, J2=10) and the power index is taken ‘k=1’. The 

current results shows that the critical buckling temperature 

‘Tcr’ increase with increasing of the ratio ‘b/a’ and decrease 

with increasing of the ratio ‘a/h’. it can be also noted that 

the larger values of the ‘Tcr’ are obtained for the FG-

sandwich plate with ξ=4. We can also conclude that the 

presence of the moisture leads to a reduction in the values 

of ‘Tcr’. 

Fig. 11 present the variation of the thermal buckling 

load ‘Tcr’ of the FG-sandwich plate under linear 

temperature distribution (γ=1) versus the aspect ratio ‘b/a’ 

and elastic-foundation parameter (J1,J2). It can be observed 

from the plotted graphs that the thermal buckling load ‘Tcr’ 

increase with increasing of the aspect ratio ‘b/a’. The FG- 

 

 

sandwich plate without elastic-foundation (J1=0, J2=0) the 

give the smaller values of the thermal buckling load ‘Tcr’. 

Figs. 12 and 13 presents the critical buckling 

hygrothermal load ‘Tcr’ of FG-sandwich plate with (ξ=1, 

k=1, J1=100, J2=10) under thermal and moisture loads 

versus non-linearity index ‘γ’ , aspect and geometry ratios. 

It can be seen from the obtained results that the critical 

buckling hygrothermal load ‘Tcr’ is in direct correlation 

relation with index ‘γ’ and this is confirmed for various 

values of the moisture. It can be also concluded that critical 

buckling hygrothermal load ‘Tcr’ decrease with increasing 

of the parameter ‘a/h’ and increase with increasing of the 

parameter ‘b/a’. 

The effect of the moisture concentration ‘∆C’, aspect 

and geometry ratios on the buckling temperature ‘Tcr’ of 

thick FG-sandwich plates (γ=1, k=1, ξ=1) resting on elastic-

foundations is presented in the Fig. 14. From the plotted 

curves, it can be noted the buckling temperature ‘Tcr’ is in 

inverse relation with the moisture concentration ‘∆C’ and 

geometry ratio ‘a/h’. It can be confirmed again that the 

increasing in the values of the parameter ‘b/a’ leads to an 

increase of the values of the ‘Tcr’. 

 

 

5. Conclusions 
 

In the present paper, the mechanical and hygrothermal 

stability of the simply-supported FG-sandwich plate seated 

on elastic-foundations is investigated using a novel 

hyperbolic shear deformation theory. The equations of 

stability of the FG-sandwich plate are derived and solved 

via virtual-work principle and Navier method, respectively. 

From the computed results and comparisons, it can be 

conclude that the current 2D-integral hyperbolic shear 

deformation theory is accurate and effective to predictthe 

critical buckling load of the FG-sandwich plate subjected to 

mechanical and hygrothermal loads. Finally several 

parametric studies are presented to show the various factors 

influencing on the stability of the simply-supported FG-

sandwich plate. Finally, an improvement of the current 

approach will be employed in the future work to consider 

other type of materials (Sedighi et al. 2012a, b, 2013,  
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Fig. 10 Buckling temperature change ‘Tcr’ of FG-sandwich plates under non-linear Fourier temperature distribution vs. 

plate aspect ratio b/a: (a) thermal buckling and (b) hygrothermal buckling for various values of the core-to-face 

thickness ratio ξ with (k=1, a/h=10, J1=100, J2=10) 
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