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1. Introduction 
 

Sandwich structures have a good ratio of stiffness to 

mass, which is why they are found in many applications. 

Many studies show that under certain conditions, these 

structures also have good energy absorption capabilities, 

making them potential candidates for protection against 

shock waves or impacts (Goldsmith et al. 1997, Radford et 

al. 2006, Katariya et al. 2017, 2018, Rajabi and 

Mohammadimehr 2019, Mehar et al. 2019, Mirjavadi et al. 

2019b, Akbas 2019, Kolahchi et al. 2020, Eltaher and 

Mohamed 2020). These plates are generally fabricated from 

three layers. The two face sheets adhesively bonded to the 

core. Since the variations in the rigidity and the material 

properties of the layers are much more severe in sandwich 

plates with soft cores in comparison to the traditional 

composite plates, influence of the transverse shear and 

normal strains and stresses are more significant in the 

mentioned sandwich plates.  

However, the sudden variation in material 

characteristics within the interface between different 
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materials can lead to face sheet/core delamination, which is 

a dangerous problem in sandwich construction. To improve 

the resistance of sandwich structures to such type of failure, 

the concept of a functionally graded material (FGM) is 

being actively applied in plate design. This continuously 

varying composition eliminates interface problems, and 

thus, the stress distributions are smooth. FGMs are now 

developed for general use as structural elements in different 

applications. An extensive range of plate theories have been 

developed to analyze the static, vibration, and buckling of 

advanced functionally graded structures due to the 

increased relevance of the FGMs structural components in 

the design of engineering structures (Kolahchi et al. 2017b, 

Hajmohammad et al. 2017, Ghorbanpour et al. 2016, 

Benferhat et al. 2016, Neves et al. 2017, Giunta et al. 2016, 

Kar and Panda 2016 and 2017, Akbaş 2018, Eltaher et al. 

2018, Faleh et al. 2018, Selmi and Bisharat 2018, Hussain 

et al. 2019, Avcar 2019). In general, these plate theories can 

be divided into three main categories, namely: classical 

plate theory (CPT), first-order shear deformation plate 

theory (FSDT) and higher-order plate theory (HSDT). The 

consequence of the Kirchhoff hypothesis is that the 

transverse shear strains are zero, and consequently, the 

transverse stresses do not enter the theory. The theory is 

known as the Kirchhoff plate theory and it is an extension 
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of Euler Bernoulli beam theory. Often Kirchhoff plate 

theory is referred to as the classical plate theory. It does not 

include shear effects and is therefore applicable to thin 

plates only (He et al. 2017, Woo et al. 2006, Abrate 2008, 

Zhang and Zhou 2008, Arefi 2015, Darilmaz 2015, Pradhan 

and Chakraverty 2015). The classical plate theory (CPT) 

will give erroneous results when being used for thick plates, 

especially plates made of advanced composites (Liu 2011). 

The first-order shear deformation plate theory (FSDT) is an 

extension of Kirchhoff plate theory. In this plate theory the 

basic equations are derived by assumption that the in-plane 

displacements are linearly distributed across the plate 

thickness. This leads to the transverse shear stresses being 

constant across the plate thickness, so the zero shear stress 

condition on the plate face is not satisfied. This forces the 

use of shear correction factors, comparable to the need for 

shear correction factors in the Timoshenko beam theory. 

Mindlin plate theory is often referred to as first order shear 

deformation plate theory, and it has been extensively used 

in the analysis of shear flexible plates and shells. But when 

Mindlin plate theory is applied to composite plates, the 

difficulty in accurately evaluating the shear correction 

factors presents the shortcomings of FSDT (Shi 2007). The 

FSDT theory allows relatively thick plates to be modelled 

and their accuracy will depend on the validity of the 

correction factor used. Thus, to better predict the behaviour 

of plates, higher order shear deformation theories (HSDTs) 

were proposed to overcome the drawback of CPT and 

FSDT. To properly approximate the nonlinear distribution 

of transverse shear strains along the plate thickness, quite a 

number of higher order shear deformation plate theories 

were developed. Such HSDTs have proven to be highly 

applicable to laminated composite plates. The HSDTs 

satisfy zero shear stress conditions at top and bottom 

surfaces of plates. A shear correction factor is, therefore, not 

required. The high-order using the polynomial shear 

functions (Reddy 1984, Nguyen et al. 2013, Nguyen et al. 

2017, Nguyen et al. 2015), trigonometric functions 

(Touratier 1991, Thai et al. 2014, Nguyen et al. 2014) and 

other theories have been developed to overcome the use of 

shear correction factor .  

In this article, a new and simple plate theory is proposed 

to study the bending and free vibration of sandwich plate 

resting on Winkler-Pasternak elastic substrate medium with 

various boundary conditions. Integral terms are included in 

the proposed displacement field to reduce the number of 

unknowns and governing equations. Implementing 

Hamilton’s principle, the equations of motion are obtained 

and they are solved using Galerkin’s method for different 

boundary conditions. Analytical solutions for bending and 

vibration four various boundary conditions resting on 

Winkler-Pasternak elastic foundation are illustrated and the 

computed results are compared with the available solutions 

in the literature. Numerical examples are illustrated to 

check the accuracy of the present formulation in predicting 

the bending and vibration behaviors and the influences of 

several parameters are discussed. 

 
 
2. Theoretical formulation 

 

Fig. 1 Geometry of the FGM sandwich plate resting on elastic 

foundations 

 
 

2.1 The material properties of FG sandwich plates 
 

Consider a composite structure made of three isotropic 

layers of arbitrary thickness h, length a and width b . The 

FGM sandwich plate is supported at four edges defined in 

the (x, y, z) coordinate system with x- and y-axes located in 

the middle plane (z=0) and its origin placed at the corner of 

the plate. The vertical positions of the two interfaces 

between the core and faces layers are denoted, respectively, 

by h1 and h2. The sandwich core is a ceramic material and 

skins are composed of a functionally graded material across 

the thickness direction. The bottom skin varies from a 

metal-rich surface (z=h0=−h/2) to a ceramic-rich surface 

while the top skin face varies from a ceramic-rich surface to 

a metal-rich surface (z=h3=h/2). It is assumed to be rested 

on a Winkler-Pasternak type elastic foundation with the 

Winkler stiffness of kw and shear stiffness of ks as illustrated 

in Fig. 1.  

The material properties of FG face sheets are assumed to 

vary continuously through the plate thickness by a power 

law distribution as (Praveen and Reddy 1998, Jha et al. 

2012, Kar and Panda 2015b, Ramteke et al. 2019, Sahouane 

et al. 2019, Zouatnia et al. 2019) 

( ) m
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where P denotes the effective material characteristic such as 

Young’s modulus E, Poisson’s ratio v, and mass density ρ; 

subscripts c and m indicate the ceramic and metal phases, 

respectively; and V is the volume fraction of the ceramic 

phase is obtained from a simple rule of mixtures as 
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where V(n), (n=1,2,3), denotes the volume fraction function 

of layer n; p is the volume fraction index (0≤p≤+∞), which 

dictates the material variation profile through the thickness. 

Note that the core of the present sandwich and any isotropic 

material can be obtained as a particular case of the power-

law function by setting p=0. The volume fraction for the 

metal phase is given as Vm=1−Vc. 
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2.2 Constitutive equations 
 

For elastic and isotropic FGMs, the constitutive 

relations can be written as 
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(3) 

where (σx, σy, σy, τxy, τyz, τyx) and (εx, εy, γxy, γyz, γyx) are the 

stress and strain components, respectively. Using the 

material properties defined in Eq. (1), stiffness coefficients, 

Qij, can be expressed as 
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In this study, further simplifying supposition are made to 

the conventional HSDT so that the number of unknowns is 

reduced. The displacement field of the conventional HSDT 

is given by 
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u0, v0, w0, ϕx, ϕy are the five unknown displacement of 

the mid-plane of the plate. By considering that 

= dxtyxkx  ),,(1  and = dytyxky  ),,(2  . The 

displacement fields mentioned above can be written as 

follows 
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The constants k1 and k2 depends on the geometry. The 

shape functions f(z) are chosen to satisfy the stress-free 

boundary conditions on the top and bottom surfaces of the 

plate, thus a shear correction factor is not required. In this 

study, the shape function is considered. 
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(7) 

It can be observed that the kinematic in Eq. (6) uses 

only four unknowns (u0, v0, w0 and θ). 

The five nonzero linear strain components compatible 

with the displacement field in Eq. (6) are 
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and g(z) is given as follows 
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The integrals defined in the above equations shall be 

resolved by a type method and can be written as follows  
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where the coefficients A′ and B′ are expressed according to 

the type of solution used, in this case for Exact solutions for 

sandwich plates for different boundary conditions. 

Therefore, A′, B′, k1 and k2 are expressed as follows:  

 

2.3 Governing equations 
 
Hamilton’s principle is used herein to derive the 

equations of motion. The principle can be stated in 

analytical form as (Mehar et al. 2015, Kar and Panda 

2015c, Kolahchi et al. 2016, 2017a, Ebrahimi and Barati 

2017a, 2019, Akbas 2017, Eltaher et al. 2018, Mouli et al. 

 

 

Table 1 value of A′, B′, k1 and k2 for different boundary 

conditions 

Boundary conditions A′ k1 B′ k2 

SSSS −1/λ2 λ2 −1/µ2 µ2 

CSCS −1/4λ2 4λ2 −1/µ2 µ2 

CCCC −1/4λ2 4λ2 −1/4µ2 4µ2 

FCFC −1/8λ2 8λ2 −1/4µ2 4µ2 
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2018, Safa et al. 2019, Hadji et al. 2019, Hamed et al. 2020, 

Barati and Shahverdi 2020, Eltaher et al. 2020) 
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F =+−+   (12) 

where U, UF, V and K are, respectively, the strain energy, 

additional strain energy induced by the elastic foundations, 

work of external (applied) forces and kinetic energy. The 

first variation of strain energy can be written as 

( ) ( ) ( )(

( ) ( ) )



dAQQkS

kSkSkMkM

kMNNN

dAdz

U

xzxzyzyz
s
xyxy

s
yy

s
xx

b
xyxy

b
yy

b
xxyy

A

xyxyxx

yz
n

yzxz
n

xz

A

h

h
xy

n
xyy

n
yx

n
x

00

000

2/

2/

 

    

   











+++

++++

+++=

++

++=



−

 (13) 

where A is the top surface. 

The stress and moment resultants of the FGM sandwich 

plate can be obtained by integrating Eq. (3) over the 

thickness, and are written as 
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where hn and hn-1 are the top and bottom z-coordinates of 

the nth layer. 

The strain energy induced by elastic foundations can be 

defined as 

=
A

0F dAwpU   (15) 

where A is the area of top surface and fe is the density of 

reaction force of foundation. For the Pasternak foundation 

model fe is given by 
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where kw is the modulus of subgrade reaction (elastic 

coefficient of the foundation) and ksx and ksy are the shear 

moduli of the subgrade (shear layer foundation stiffness). If 

foundation is homogeneous and isotropic, we will get ksx= 

ksy=ks. If the shear layer foundation stiffness is neglected, 

Pasternak foundation becomes a Winkler foundation. 

The variation of work done by transverse load q can be 

expressed as 
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The variation of kinetic energy is expressed as 
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where dot-superscript convention indicates the 

differentiation with respect to the time variable t; ρ(z) is the 

mass density; and (I0, I1, I2, J1, J2, K2) are mass inertias 

defined as 
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Substituting Eqs. (13), (15),(17) and (18) into Eq. (12) 

and integrating by parts and collecting the coefficients of 

δu0, δv0, δw0 and δθ, the following equations of motion of 

the plate are obtained as 
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(20) 

Using Eq. (3) in Eq. (14), the stress resultants of a 

sandwich plate made up of three layers can be related to the 

total strains by 
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where Aij, Bij, etc., are the plate stiffness, defined by 
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2.4 Equations of motion in terms of displacements 
 

By substituting Eqs. (8) and (21) into Eq. (20), the 

equilibrium equations can be expressed in terms of 

displacements (u0, v0, w0 and θ) as 
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where dij, dijl and dijlm are the following differential 

operators:  
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3. Exact solutions for FGMs sandwich plates 

 

The exact solution of Eq. (24) for the graded sandwich 

plate with simply supported (S), clamped (C) or free (F) 

edges is presented. These boundary conditions are defined 

as follow: 
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The following representation for the displacement 

quantities, that satisfy the above boundary conditions, is 

appropriate in the case of our problem 
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where 1−=i , Umn, Vmn, Wmn and Zmn are coefficients, and 

ω is the natural frequency. The functions Xm(x) and Ym(y) 

given in Table 2 noting that am = , bn =  to satisfy 

various boundary conditions in Eqs. (27)-(29). The plate is 

subjected to transverse load q.  

The transverse load q is also expanded in the double-

Fourier sine series as (Reddy et al. 2001) 




=



=

=
1m 1n

mn )y sin()x sin(Q)y,x(q 

 

(31) 

The coefficients Qmn for the case of uniformly 

distributed load (UDL) are defined as follows 
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where q0 represents the intensity of the load at the plate 

center. 

For the case of a sinusoidally distributed load (SDL), we 

have 

1== nm  and 011 qQ =  (33) 

Substituting expressions (30) into the governing Eqs. 

(24) and multiplying each equation by the corresponding 

eigen function then integrating over the domain of solution, 

we can obtain, after some mathematical manipulations, the 

following equations 
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Table 3 Material properties used in the FG sandwich plate 

Properties 
Metal Ceramic 

Al Al2O3 

E (GPa) 70 380 

v 0.3 0.3 

ρ (kg/m3) 2707 3800 
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The non-trivial solution is obtained when the 

determinant of Eq. (34) equals zero. For the free vibration 

problem, we have fq=0. While for the bending analysis, we 

put ω=0. 

 
 
4. Numerical results and discussions 
 

 
 

In this section, numerical results for bending and free 

vibration responses are presented for FGM sandwich plates 

resting on two-parameter elastic foundations with various 

cases of the boundary conditions. To verify the accuracy of 

present solution, obtained results are compared with the 

some existing results in the literature. Material properties of 

metal and ceramic are chosen as given Table 3. 

In the following, we note that several kinds of sandwich 

plates are used: 

• The (1-0-1) FG sandwich plate: The plate is symmetric 

and made of only two equal-thickness FG layers, i.e., 

there is no core layer. Thus, we have, h1=h2=0 

• The (1-1-1) FG sandwich plate: Here, the plate is 

symmetric and made of three equal-thickness layers. In 

this case, we have, h1=−h/6, h2=h/6 

• The (1-2-1) FG sandwich plate: The plate is symmetric 

and we have: h1=−h/4, h2=h/4 

• The (1-3-1) FG sandwich plate: The plate is symmetric 

and we have: h1=−3h/10, h2=3h/10 

• The (2-1-2) FG sandwich plate, we have: h1=−h/10, 

h2=h/10. 

• The (2-2-1) FG sandwich plate: The plate is non-

symmetric and we have: h1=−h/10, h2=3h/10 

For convenience, the following normalization is used in 

the comparison of all the numerical results  
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where the reference value is taken as E0=1 GPa
 

 

Bending analysis 
 
 

Table 2 The admissible functions Xm(x) and Ym(y) 

Boundary conditions The functions Xm(x) and Ym(y) 

SSSS 
( ) ( ) 000 == mm XX  

( ) ( ) 0== aXaX mm
 

( ) ( ) 000 == nn YY  

( ) ( ) 0== bYbY nn
 

)xsin(  )ysin(  

CSCS 
( ) ( ) 000 == mm XX  

( ) ( ) 0== aXaX mm
 

( ) ( ) 000 == nn YY  

( ) ( ) 0== bYbY nn
 )x(sin2   )ysin(  

CCCC 
( ) ( ) 000 == mm XX  

( ) ( ) 0== aXaX mm
 

( ) ( ) 000 == nn YY  

( ) ( ) 0== bYbY nn
 )x(sin2   )y(sin2   

FCFC 
( ) ( ) 000 == mm XX  

( ) ( ) 0== aXaX mm
 

( ) ( ) 000 == nn YY  

( ) ( ) 0== bYbY nn
 ( ) ]1x)[sinx(cos 22 +  )y(sin2   

- ( )' denotes the derivative with respect to the corresponding coordinates. 

Table 4 Maximum deflection w* of simply supported square and rectangular homogeneous plates under uniform 

loads 

Method 
a=b a=0.5b 

a/h=25 10 5 a/h=25 10 5 

Reddy et al. (2001) 0.410 0.427 0.490 1.018 1.045 1.043 

Cooke and Levinson (1983) 0.410 0.427 0.490 1.018 1.045 1.043 

Lee et al. (2002) 0.410 0.427 0.490 1.018 1.045 1.043 

Present 0.4010 0.427 0.490 1.018 1.045 1.143 
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To demonstrate the accuracy of the present theory in 

predicting the bending responses of Al/Al2O3 plates some 

results are tabulated here for comparison with the available 

ones in the literature (Reddy et al. 2001, Cooke and 

Levinson 1983, Lee et al. 2002). 

 

 

 
The center deflections under uniform loads (Kw=Ks=0) 

as shown in Tables 4. 

The comparisons results for deflections of homogeneous 

plates resting on two-parameter elastic foundation under 

uniform loads are presented in Table 5. The present theory 

Table 5 Nondimensional deflections 10w* of simply supported homogeneous plates resting on elastic foundations 

and subjected to uniformly distributed loads 

a/b a/h 
(10,10) (10,100) (100,10) (100,100) 

Present Ref (a) Present Ref (a) Present Ref (a) Present Ref (a) 

0.5 

5 5.5718 5.5720 1.0371 1.0371 4.0769 4.0769 0.9679 0.9679 

10 5.3562 5.3563 1.0330 1.0330 3.9791 3.9791 0.9649 0.9649 

100 5.2811 5.2811 1.0320 1.0320 3.9446 3.9446 0.9642 0.9642 

1.0 

5 2.9270 2.9271 0.6451 0.6450 2.4787 2.4788 0.6190 0.6190 

10 2.7059 2.7059 0.6383 0.6383 2.3271 2.3271 0.6132 0.6132 

100 2.6276 2.6276 0.6364 0.6364 2.2724 2.2724 0.6117 0.6117 

2.0 

5 0.7165 0.7165 0.2207 0.2207 0.6844 0.6844 0.2174 0.2174 

10 0.5736 0.5736 0.2069 0.2069 0.5536 0.5536 0.2041 0.2041 

100 0.5219 0.5219 0.2012 0.2012 0.5056 0.5056 0.1987 0.1987 

(a) Zenkour and Radwan (2018) 

Table 6 Nondimensional deflection 𝑤̂, normal 𝜎𝑥 and shear stress 𝜏𝑥̅𝑧 of simply supported functionally graded 

square sandwich plates Subjected to a Sinusoidal Load (a/h=10)  

 p Method 𝑤̂ 𝜎𝑥  𝜏𝑥̅𝑧 

1-0-1 

0 

RSDT1 Ref(b) 0.07790303811 1.995500426 0.2461800786 

RSDT2 Ref(b) 0.07790968813 1.994322048 0.2385722368 

Present 0.07790626337 1.993313666 0.2321588570 

1 

RSDT1 Ref(b) 0.1960374616 0.9440725801 0.3410283239 

RSDT2 Ref(b) 0.1960877843 0.9436998270 0.3343263458 

Present 0.1961196994 0.9433786862 0.3285935696 

2 

RSDT1 Ref(b) 0.2847866148 1.377021358 0.4142621883 

RSDT2 Ref(b) 0.2849023821 1.376618511 0.4091869511 

Present 0.2849875541 1.376265910 0.4046867384 

3 

RSDT1 Ref(b) 0.33606390476 1.625907776 0.4750163773 

RSDT2 Ref(b) 0.3362423053 1.625518635 0.4713253791 

Present 0.3363779004 1.625171832 0.4678317078 

4 

RSDT1 Ref(b) 0.3645156376 1.762667930 0.5282678443 

RSDT2 Ref(b) 0.3647438193 1.762667930 0.5254079891 

Present 0.3649187246 1.761953313 0.5224579040 

5 

RSDT1 Ref(b) 0.3554038421 1.840255874 0.5759064640 

RSDT2 Ref(b) 0.3808987521 1.839886083 0.5733659296 

Present 0.3813670328 1.839547044 0.5705423593 

1-1-1 

0 

RSDT1 Ref(b) 0.07790303811 1.995500426 0.2461800786 

RSDT2 Ref(b) 0.07790968813 1.995500426 0.2385722368 

Present 0.07790626337 1.993313666 0.2321588570 

1 

RSDT1 Ref(b) 0.1567130768 0.7538738155 0.2846232298 

RSDT2 Ref(b) 0.1567290438 0.7535245180 0.2777698981 

Present 0.1567348574 0.7532278467 0.2720344806 

2 

RSDT1 Ref(b) 0.2106743313 1.018781385 0.3048004591 

RSDT2 Ref(b) 0.2107090884 1.018389504 0.2989262010 

Present 0.2107314888 1.018056327 0.2940124336 

3 

RSDT1 Ref(b) 0.2451013158 1.187845692 0.3168735258 

RSDT2 Ref(b) 0.2451555605 1.187448435 0.3118723402 

Present 0.2451946715 1.187109491 0.3076738915 

4 

RSDT1 Ref(b) 0.2676028572 1.298330162 0.3250024098 

RSDT2 Ref(b) 0.2676739215 1.297939361 0.3207031564 

Present 0.2677272719 1.297604584 0.3170722614 

5 

RSDT1 Ref(b) 0.2829700265 1.373757679 0.3309424574 

RSDT2 Ref(b) 0.2830548580 1.373376155 0.3271941912 

Present 0.2831197749 1.373048061 0.3240047527 
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with only four unknowns gives excellent results in all cases 

with those of Zenkour and Radwan (2018).  

 

 

Table 6 exhibit the dimensionless center deflection 𝑤̂, 

normal 𝜎𝑥 and shear stress 𝜏𝑥̅𝑧 for an FG sandwich plate  

Table 6 Continued. 

 p Method 𝑤̂ 𝜎𝑥  𝜏𝑥̅𝑧 

1-2-1 

0 

RSDT1 Ref(b) 0.07790303811 1.995500426 0.2461800786 

RSDT2 Ref(b) 0.07790968813 1.995500426 0.2385722368 

Present 0.07790626339 1.993313666 0.2321588570 

1 

RSDT1 Ref(b) 0.1349817311 0.6475971685 0.2705450198 

RSDT2 Ref(b) 0.1349767793 0.6472490279 0.2628693010 

Present 0.1349655957 0.6469555714 0.2565050040 

2 

RSDT1 Ref(b) 0.1692408728 0.8158819124 0.2819062066 

RSDT2 Ref(b) 0.1692362771 0.8154785470 0.2745137059 

Present 0.1692265738 0.8151401001 0.2684288499 

3 

RSDT1 Ref(b) 0.1903941485 0.9198385532 0.2881994693 

RSDT2 Ref(b) 0.1903936675 0.9194123216 0.2811258564 

Present 0.1903880701 0.9190551778 0.2753242467 

4 

RSDT1 Ref(b) 0.2043026094 0.9882021870 0.2921729400 

RSDT2 Ref(b) 0.2043068289 0.9877663216 0.2853784402 

Present 0.2043055459 0.9874011732 0.2798160095 

5 

RSDT1 Ref(b) 0.2139890657 1.035815027 0.2949192557 

RSDT2 Ref(b) 0.2139976337 1.035375225 0.2883554168 

Present 0.2140002193 1.035006687 0.2829869587 

2-1-2 

0 

RSDT1 Ref(b) 0.07790303811 1.995500426 0.2461800786 

RSDT2 Ref(b) 0.07790968813 1.995500426 0.2385722368 

Present 0.07790626347 1.993313666 0.2321588570 

1 

RSDT1 Ref(b) 0.1734597228 0.8353570262 0.3015504090 

RSDT2 Ref(b) 0.1734932520 0.8350075555 0.2951461351 

Present 0.1735128134 0.8347083932 0.2897240909 

2 

RSDT1 Ref(b) 0.2432596500 1.177554594 0.3344535292 

RSDT2 Ref(b) 0.2433313416 1.177177220 0.3295841212 

Present 0.2433830725 1.176851545 0.3254000363 

3 

RSDT1 Ref(b) 0.2872645148 1.393221446 0.3562078083 

RSDT2 Ref(b) 0.2873727377 1.392856605 0.3526990656 

Present 0.2874549794 1.392538447 0.3495973445 

4 

RSDT1 Ref(b) 0.3148758215 1.528387607 0.3721411748 

RSDT2 Ref(b) 0.3150142476 1.528043627 0.3697033242 

Present 0.3151215501 1.527740512 0.3674435652 

5 

RSDT1 Ref(b) 0.3328492117 1.616230779 0.3845927855 

RSDT2 Ref(b) 0.3330115755 1.615906291 0.3829703775 

Present 0.3331386274 1.615617583 0.3813446243 

2-2-1 

0 

RSDT1 Ref(b) 0.07790303811 1.995500426 0.2461800786 

RSDT2 Ref(b) 0.07790968813 1.995500426 0.2385722368 

Present 0.07790626347 1.993313666 0.2321588570 

1 

RSDT1 Ref(b) 0.1457900983 0.6551706776 0.2817627605 

RSDT2 Ref(b) 0.1457976301 0.6548254747 0.2743788976 

Present 0.1457959149 0.6545323869 0.2682002042 

2 

RSDT1 Ref(b) 0.1894930926 0.8339863401 0.3002035928 

RSDT2 Ref(b) 0.1895109912 0.8335924793 0.2933103754 

Present 0.1895183739 0.8332580801 0.2875437341 

3 

RSDT1 Ref(b) 0.2166927584 0.9434577978 0.3113186472 

RSDT2 Ref(b) 0.2167221065 0.9430467085 0.3048721239 

Present 0.2167391635 0.9426970178 0.2994666116 

4 

RSDT1 Ref(b) 0.2343233353 1.013728625 0.3188535037 

RSDT2 Ref(b) 0.2343624668 1.013311427 0.3127535851 

Present 0.2343876708 1.012955788 0.3076232112 

5 

RSDT1 Ref(b) 0.2463510788 1.061363472 0.3243713954 

RSDT2 Ref(b) 0.2463980407 1.060944155 0.3185308111 

Present 0.2464297130 1.060586039 0.3136038294 

(b) Merdaci et al. (2011) 
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subjected to a sinusoidal distributed load. The resultants 

obtained are compared with the solutions given by Merdaci 

et al. (2011). It can be seen that the obtained predictions for 

deflections are in good agreement. To demonstrate the 

accuracy of the present theory in predicting the bending 

responses of FG sandwich plates under various boundary 

conditions.  

 

 

The comparisons between the obtained results and those 

developed by Abdelaziz et al. (2017) have been made in 

Table 7. It is apparent that the results of the present theory 

agree very well with those given by Abdelaziz et al. 

(2017).Table 7 provides the dimensionless values of the 

transverse deflections w  of various types of powerly 

graded sandwich plates under various boundary conditions.  

Table 7 Dimensionless deflection 𝑤̅of square plates (a/h=10)  

Boundary 

conditions 
p Method 

Scheme 

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

SSSS 

0 
Abdelaziz et al. (2017) 0.2956 0.2956 0.2956 0.2956 0.2956 

Present 0,2960 0,2960 0,2960 0,2960 0,2960 

0.5 
Abdelaziz et al. (2017) 0.5227 0.4846 0.4560 0.4366 0.4172 

Present 0,5229 0.4849 0.4564 0,4370 0.4177 

1 
Abdelaziz et al. (2017) 0.7454 0.6593 0.5954 0.5537 0.5124 

Present 0.7452 0.6593 0.5956 0.5540 0.5129 

2 

 

Abdelaziz et al. (2017) 1.0839 0.9254 0.8009 0.7200 0.6427 

Present 1.0830 0.9249 0.8008 0.7202 0.6431 

5 
Abdelaziz et al. (2017) 1.4519 1.2678 1.0767 0.9367 0.8131 

Present 1.4492 1.2659 1.0758 0.9364 0.8132 

10 
Abdelaziz et al. (2017) 1.5519 1.4053 1.2070 1.0392 0.8998 

Present 1.5489 1.4026 1.2055 1.0387 0.8996 

CSCS 

0 
Abdelaziz et al. (2017) 0.1836 0.1836 0.1836 0.1836 0.1836 

Present 0.1875 0.1875 0.1875 0.1875 0.1875 

0.5 
Abdelaziz et al. (2017) 0.3205 0.2972 0.2799 0.2682 0.2565 

Present 0.3251 0.3016 0.2842 0.2726 0.2608 

1 
Abdelaziz et al. (2017) 0.4546 0.4020 0.3634 0.3384 0.3134 

Present 0,4595 0,4066 0,3678 0,3429 0,3179 

2 
Abdelaziz et al. (2017) 0.6886 0.5615 0.4863 0.4379 0.3913 

Present 0,6637 0,5659 0,4908 0,4426 0,3960 

5 
Abdelaziz et al. (2017) 0.8835 0.7670 0.6513 0.5676 0.4931 

Present 0,8891 0,7708 0,6554 0,5722 0,4977 

10 
Abdelaziz et al. (2017) 0.9492 0.8503 0.7294 0.6290 0.5448 

Present 0,9569 0,8538 0,7331 0,6336 0,5494 

CCCC 

0 
Abdelaziz et al. (2017) 0.1606 0.1606 0.1606 0.1606 0.1606 

Present 0,1595 0,1595 0,1595 0,1595 0,1595 

0.5 
Abdelaziz et al. (2017) 0.2777 0.2576 0.2427 0.2327 0.2226 

Present 0,2766 0,2566 0,2418 0,2320 0,2219 

1 
Abdelaziz et al. (2017) 0.3922 0.3468 0.3137 0.2924 0.2710 

Present 0,3908 0,3458 0,3129 0,2917 0,2705 

2 
Abdelaziz et al. (2017) 0.5666 0.4825 0.4182 0.3770 0.3371 

Present 0,5641 0,4809 0,4171 0,3763 0,3367 

5 
Abdelaziz et al. (2017) 0.7610 0.6577 0.5584 0.4873 0.4236 

Present 0,7557 0,6545 0,5566 0,4861 0,4229 

10 
Abdelaziz et al. (2017) 0.8208 0.7292 0.6249 0.5396 0.4676 

Present 0,8139 0,7249 0,6224 0,5381 0,4667 

FCFC 

0 
Abdelaziz et al. (2017) 0.1038 0.1038 0.1038 0.1038 0.1038 

Present 0.1027 0.1027 0.1027 0.1027 0.1027 

0.5 
Abdelaziz et al. (2017) 0.1784 0.1655 0.1560 0.1496 0.1432 

Present 0.1771 0.1644 0.1550 0.1487 0.1423 

1 
Abdelaziz et al. (2017) 0.2512 0.2221 0.2010 0.1875 0.1739 

Present 0.2497 0.2209 0.2000 0.1866 0.1731 

2 
Abdelaziz et al. (2017) 0.3622 0.3082 0.2672 0.2411 0.2158 

Present 0.3598 0.3065 0.2660 0.2402 0.2150 

5 
Abdelaziz et al. (2017) 0.4868 0.4195 0.3561 0.3110 0.2705 

Present 0.4821 0.4166 0.3543 0.3097 0.2696 

10 
Abdelaziz et al. (2017) 0.5265 0.4651 0.3983 0.3442 0.2984 

Present 0.5203 0.4613 0.3960 0.3426 0.2973 
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The results are compared with those obtained using 

hyperbolic shear deformation theory developed by 

Abdelaziz et al. (2017).  

Good agreement is achieved between the present results 

obtained by using the present shear deformation theory and 

those of Zenkour and Radwan (2018) and Abdelaziz et al. 

(2017). It is remarked that the stiffer and softer plates 

correspond to the FCFC and SSSS ones, respectively. With 

the increase of the inhomogeneity parameter p, the plate 

becomes softer and hence, leads to an increase of 

deflection. This due to the fact that when the parameter p 

increases the plate tends to be metallic. 

 

 

 

In Fig. 2, the variations of deflection of FG sandwich 

square plates versus the inhomogeneity parameter are 

presented, respectively. Different layer configurations are 

employed for multi-layered FGM plates. The thickness ratio 

of the plate is considered equal to 10. It can be observed 

that increasing the inhomogeneity parameter pleads to 

increase in deflection (Fig. 2). This behavior can be 

attributed to the fact that higher inhomogeneity parameter p 

corresponds to lower volume fraction of the ceramic phase. 

Thus, increasing the inhomogeneity parameter makes the 

plate softer because of the high portion of metal in 

comparison with the ceramic part, and consequently, results  

 

  

 

 (a) simply supported plate (b) clamped plate  

Fig. 2 Effect of the inhomogeneity parameter (p) on dimensionless deflection (𝑤̅) of square FG sandwich plates (a/h=10) 

 

  

 

 

  

 

Fig. 3 Dimensionless center deflection 𝑤̅ versus side-to-thickness ratio a/h FGM sandwich square plates on Elastic 

Foundations (Kw=100, Ks=10) 

235



 

Mohammed Cherif Rahmani et al. 

 

 

 

 

in an increase in deflection. It is observed from results that 

the hardest and softest plates correspond to the (1-2-1) and 

(1-0-1) schemes, respectively. Such behavior is due to the 

fact that the (1-2-1) and (1-0-1) FG sandwich plates 

correspond to the highest and lowest volume fractions of 

the ceramic phase, and thus makes them become the hardest 

and softest ones. In addition, it can be seen from Fig. 2, that 

when clamped boundary conditions (CCCC) are considered, 

the plate becomes stiffer; this has led to a reduction of the 

deflection (Fig. 2(b)).  

Fig. 3 shows the variation of the center deflection 𝑤̅ 

with side-to-thickness ratio (a/h) for different types of FGM 

sandwich plates resting on Elastic Foundations (Kw=100, 

Ks=10). It can be seen that the center deflection 𝑤̅ increase 

monotonically as p increases. It decreases with the increase 

of a/h ratios. The difference is almost constant with the 

increase of side-to-thickness ratio. It is also observed that 

the center deflection 𝑤̅ is reduced as the thickness of the 

core increases.  

Fig. 4 depict the through-the-thickness distributions of 

the axial stress 𝜎𝑥 in the FGM (p=2) square plates under 

the sinusoidal loads. As exhibited in Fig. 4 the axial stress, 

is compressive throughout the plate up to z/h=0 for 

 

 

 

symmetric FGM sandwich square plates and then they 

become tensile. On the other hand for unsymmetric FGM 

sandwich square plates, is compressive throughout the plate 

up to z/h=0.05 and then they become tensile. 

The maximum compressive stresses occur at a point on 

the bottom surface and the maximum tensile stresses occur, 

of course, at a point on the top surface of the FGM 

sandwich plate. In addition, it can be seen from this figure 

that the elastic foundation has a significant effect on the 

maximum values of the axial stress. It is observed that 

normal stress (𝜎𝑥) increases gradually with decreasing Kw.  

Fig. 5 depict the through-the-thickness distributions of 

the shear stresses 𝜏𝑥̅𝑧 in the square FGM sandwich plate 

under sinusoidal distributed load. The volume fraction 

exponent of the FGM sandwich plate is taken as p=2 in this 

figure. It is observed that transverse shear stress (𝜏𝑥̅𝑧 ) 

increases gradually with decreasing Kw.  

It is indicated that large moduli of elastic foundation can 

enhance bending rigidity of the sandwich plate. It should be 

noted that the maximum value is reached at the center of the 

symmetrical FGM sandwich plate. But not at the center, in 

the case of the unsymmetric FGM sandwich plate. 

The dimensionless deflection 𝑤̅ of the (1-2-1) FGM 

 

  

 

Fig. 4 The axial stress 𝜎𝑥 through the thickness of symmetric and unsymmetric simply-supported FGM sandwich 

square plates (p=2) for different values of Winkler modulus parameter Kw with Ks=10 and a/h=10 

 

  

 

Fig. 5 The axial stress, 𝜏𝑥̅𝑧, through the thickness of symmetric and unsymmetric simply-supported FGM sandwich 

square plates (p=2) for different values of Winkler modulus parameter Kw with Ks=10 and a/h=10 
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Table 8 Comparison of free vibration ( Dh
b 




2

2

) of a 

simply supported homogeneous square plate  (a/b=1, p=0) 

resting on Pasternak’s elastic foundations (Ks=10)  

m n b/h Kw Sobhy (2013) Present 

1 1 

100 
100 2.6551 2.6551 

500 3.3400 3.3400 

10 
200 2.7842 2.7842 

1000 3.9806 3.9806 

2 1 

100 
100 5.5718 5.5718 

500 5.9287 5.9287 

10 
200 5.3051 5.3049 

1000 6.0085 6.0083 

2 2 

100 
100 8.5405 8.5405 

500 8.7775 8.7775 

10 
200 7.7311 7.7303 

1000 8.2237 8.2229 

 

 

sandwich square plate resting on Winkler’s elastic 

foundation with various boundary conditions are illustrated 

in Fig. 6. It is noted that 𝑤̅ decrease gradually as the side-

to-thickness ratio a/h increases. The result of the simply-

supported sandwich plate is great than that of CCCC, CSCS 

and FCFC sandwich plate.  

Fig. 7 illustrate the variations of dimensionless 

deflection as functions of the aspect ratio b/a of the SSSS 

and CCCC plate for various values of the elastic foundation 

parameters. The dimensionless deflection increase directly 

as b/a increases, as shown in Fig. 7. Obviously, the 

dimensionless deflection is increasing with the increasing of 

the foundation stiffnesses. 

 
Free vibration analysis 
 

The non-dimensionalized natural frequencies of general 

rectangular isotropic, and FG Al/Al2O3 plates are taken for 

comparison. Tables 8 and 9 give the nondimensionalized 

values of the natural frequencies for homogeneous isotropic 

plates (p=0) resting on elastic foundations. The results are 

compared with those obtained by Sobhy (2013). It can be 

seen that the present results are in good agreement with the 

solutions given by Sobhy (2013). It is also noted that the 

 

Table 9 Comparison of free vibration ( Dhb 



2

2 ) of a 

clamped homogeneous square plate (a/b=1, p=0) resting on 

Winkler’s elastic foundation (m=n=1, h/b=0.015, v=0.15, 

Ks=0) 

Kw Sobhy (2013) Present 

1390.2 5.3330 5.3332 

2780.4 6.5349 6.5351 

 

 

Fig. 7 dimensionless deflection w versus the aspect ratio b/a 

of simply-supported and clamped sandwich plate for 

different values of foundation stiffnesses Kw and Ks 

(a/h=10, p=5) 

 

 

natural frequencies of simply-supported and clamped 

homogeneous square plates increase as Winkler’s 

foundation parameter Kw increases. 

Table 10 give the nondimensionalized values of the 

natural frequencies of various types of simply supported 

functionally graded sandwich square plates. The results are 

compared with those obtained using various shear 

deformation plate theories (Sobhy 2013). Good agreement 

is achieved between the present solutions and the published 

ones. It can be observed from Table 10 that the increase of 

the core thickness of the FGM sandwich plates leads to the 

increase of the frequencies, except for the case of the plates 

resting on Pasternak’s foundations where the variation of  

 

  

 

Fig. 6 dimensionless deflection w versus the side-to-thickness ratio a/h of the (1-2-1) FGM sandwich square Plate resting 

on Winkler’s elastic foundation with various boundary conditions (p=0.5) 
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them is reversed. In addition, the vibration frequencies are 

increasing with the existence of the elastic foundations. The 

inclusion of the Pasternak’s foundation parameters gives 

results more than those with the inclusion of Winkler’s 

foundation parameter. 
Table 11 provides the nondimensionalized values of the 

natural frequencies 𝜔̅ of various types of powerly graded 

sandwich plates under various boundary conditions. The 

results are compared with those obtained by Abdelaziz et al. 

(2017). Good agreement is achieved between the present 

 

 

 

results obtained by using the present refined theory with 

only a four-unknown and those of Abdelaziz et al. (2017). It 

is remarked that the stiffer and softer plates correspond to 

the FCFC and SSSS ones, respectively. With the increase of 

the inhomogeneity parameter p, the plate becomes softer 

and hence, leads to a reduction of the frequency. This due to 

the fact that when the parameter increases the plate tends to 

be metallic. 

In Fig. 8, the variations of fundamental natural 

frequency of FG sandwich square plates versus the 

Table 10 Effects of elastic foundation stiffnesses Kw and Ks and side-to-thickness ratio a/h on the free vibration 𝜔̅ 

of various types of simply supported sandwich square plates (p=1.5) 

Scheme Theory 
kw=ks=0 kw=100, ks=0 kw=100, ks=100 

a/h=5 10 20 a/h=5 10 20 a/h=5 10 20 

1-0-1 

FPTc 0,9547 1,0167 1,0347 1,4061 1,461 1,4775 4,7803 4,8851 4,9134 

TPTc 0,9647 1,0198 1,0356 1,4121 1,4631 1,4781 4,7807 4,8854 4,9135 

SPTc 0,9655 1,02 1,0356 1,4125 1,4633 1,4781 4,7808 4,8854 4,9135 

EPTc 0,9663 1,0203 1,0357 1,4131 1,4635 1,4782 4,7808 4,8854 4,9135 

HPTc 0,9643 1,0196 1,0355 1,4119 1,463 1,4781 4,7805 4,8854 4,9135 

Present 0,9600 1,0152 1,0310 1,4057 1,4566 1,4716 4,7600 4,8640 4,892 

1-1-1 

FPTc 1,0717 1,1367 1,1555 1,1563 1,5227 1,5401 4,6538 4,7513 4,7788 

TPTc 1,0807 1,1395 1,1563 1,4695 1,5247 1,5407 4,6537 4,7517 4,7789 

SPTc 1,0817 1,1396 1,1563 1,4697 1,5248 1,5407 4,6537 4,7517 4,7789 

EPTc 1,0815 1,1398 1,1563 1,47 1,5249 1,5407 4,6537 4,7517 4,779 

HPTc 1,0816 1,1398 1,1563 1,4703 1,5249 1,5407 4,6538 4,7518 4,779 

Present 1,0774 1,1363 1,1531 1,4652 1,5204 1,5364 4,6408 4,7386 4,7658 

1-2-1 

FPTc 1,0717 1,1367 1,1555 1,1563 1,5227 1,5401 4,6538 4,7513 4,7788 

TPTc 1,0807 1,1395 1,1563 1,4695 1,5247 1,5407 4,6537 4,7517 4,7789 

SPTc 1,0817 1,1396 1,1563 1,4697 1,5248 1,5407 4,6537 4,7517 4,7789 

EPTc 1,0815 1,1398 1,1563 1,47 1,5249 1,5407 4,6537 4,7517 4,779 

HPTc 1,0816 1,1398 1,1563 1,4703 1,5249 1,5407 4,6538 4,7518 4,779 

Present 1,0774 1,1363 1,1531 1,4652 1,5204 1,5364 4,6408 4,7386 4,7658 

1-3-1 

FPTc 1,2605 1,346 1,371 1,5912 1,6688 1,692 4,5914 4,6898 4,719 

TPTc 1,2666 1,348 1,3716 1,5956 1,6704 1,6924 4,5911 4,6901 4,7192 

SPTc 1,2663 1,3479 1,3716 1,5954 1,6703 1,6924 4,591 4,6901 4,7192 

EPTc 1,2662 1,3478 1,3715 1,5953 1,6703 1,6924 4,5909 4,69 4,7192 

HPTc 1,2753 1,3506 1,3723 1,6024 1,6724 1,693 4,5921 4,6907 4,7194 

Present 1,2648 1,3459 1,3694 1,5933 1,6678 1,6898 4,5836 4,6827 4,7118 

cSobhy (2013). EPT: exponential shear deformation plate theory; FPT: first-order shear deformation plate theory; HPT: 

hyperbolic shear deformation plate theory; SPT: sinusoidal shear deformation plate theory; TPT: third-order shear deformation 

plate theory 

Table 11 Dimensionless fundamental frequency 𝜔̅ of sandwich square plates (a/h=10) with various boundary 

conditions 

Boundary 

conditions 
p Method 

Scheme 

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

SSSS 

0 
Abdelaziz et al. (2017) 0.2956 0.2956 0.2956 0.2956 0.2956 

Present 0,2960 0,2960 0,2960 0,2960 0,2960 

0.5 
Abdelaziz et al. (2017) 0.5227 0.4846 0.4560 0.4366 0.4172 

Present 0,5229 0.4849 0.4564 0,4370 0.4177 

1 
Abdelaziz et al. (2017) 0.7454 0.6593 0.5954 0.5537 0.5124 

Present 0.7452 0.6593 0.5956 0.5540 0.5129 

2 
Abdelaziz et al. (2017) 1.0839 0.9254 0.8009 0.7200 0.6427 

Present 1.0830 0.9249 0.8008 0.7202 0.6431 

5 
Abdelaziz et al. (2017) 1.4519 1.2678 1.0767 0.9367 0.8131 

Present 1.4492 1.2659 1.0758 0.9364 0.8132 

10 
Abdelaziz et al. (2017) 1.5519 1.4053 1.2070 1.0392 0.8998 

Present 1.5489 1.4026 1.2055 1.0387 0.8996 
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inhomogeneity parameter p are presented. Different layer 

configurations are employed for multi-layered FGM plates. 

The thickness ratio of the plate is considered equal to 10.  

It can be observed that increasing the inhomogeneity 

parameter p leads to a reduction of natural frequency. This 

behavior can be attributed to the fact that higher 

inhomogeneity parameter p corresponds to lower volume 

fraction of the ceramic phase. Thus, increasing the 

inhomogeneity parameter makes the plate softer because of 

the high portion of metal in comparison with the ceramic 

part, and consequently, results in a reduction of natural 

frequency. It is observed from results that the hardest and 

softest plates correspond to the (1-2-1) and (1-0-1) schemes, 

respectively. Such behavior is due to the fact that the (1-2- 

 

 

 

1) and (1-0-1) FG sandwich plates correspond to the highest 

and lowest volume fractions of the ceramic phase, and thus 

makes them become the hardest and softest ones. 

In addition, it can be seen, that when clamped boundary 

conditions (CCCC) are considered, the plate becomes 

stiffer; this has led to increasing the natural frequency. 

Fig. 9 display the variations of the eigenfrequencies 𝜔̅ 

the inhomogeneity parameter p. It can be seen that the 

frequencies 𝜔̅ increase monotonically as p increases. It is 

also observed that the differences between curves are 

reduced as the core thickness increases. 

The eigenfrequencies of the (1-2-1) EGM sandwich 

square plate resting on Winkler’s elastic foundation with 

various boundary conditions are illustrated in Fig. 10  

Table 11 Continued 

Boundary 

conditions 
p Method 

Scheme 

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

CSCS 

0 
Abdelaziz et al. (2017) 0.1836 0.1836 0.1836 0.1836 0.1836 

Present 0.1875 0.1875 0.1875 0.1875 0.1875 

0.5 
Abdelaziz et al. (2017) 0.3205 0.2972 0.2799 0.2682 0.2565 

Present 0.3251 0.3016 0.2842 0.2726 0.2608 

1 
Abdelaziz et al. (2017) 0.4546 0.4020 0.3634 0.3384 0.3134 

Present 0,4595 0,4066 0,3678 0,3429 0,3179 

2 
Abdelaziz et al. (2017) 0.6886 0.5615 0.4863 0.4379 0.3913 

Present 0,6637 0,5659 0,4908 0,4426 0,3960 

5 
Abdelaziz et al. (2017) 0.8835 0.7670 0.6513 0.5676 0.4931 

Present 0,8891 0,7708 0,6554 0,5722 0,4977 

10 
Abdelaziz et al. (2017) 0.9492 0.8503 0.7294 0.6290 0.5448 

Present 0,9569 0,8538 0,7331 0,6336 0,5494 

CCCC 

0 
Abdelaziz et al. (2017) 0.1606 0.1606 0.1606 0.1606 0.1606 

Present 0,1595 0,1595 0,1595 0,1595 0,1595 

0.5 
Abdelaziz et al. (2017) 0.2777 0.2576 0.2427 0.2327 0.2226 

Present 0,2766 0,2566 0,2418 0,2320 0,2219 

1 
Abdelaziz et al. (2017) 0.3922 0.3468 0.3137 0.2924 0.2710 

Present 0,3908 0,3458 0,3129 0,2917 0,2705 

2 
Abdelaziz et al. (2017) 0.5666 0.4825 0.4182 0.3770 0.3371 

Present 0,5641 0,4809 0,4171 0,3763 0,3367 

5 
Abdelaziz et al. (2017) 0.7610 0.6577 0.5584 0.4873 0.4236 

Present 0,7557 0,6545 0,5566 0,4861 0,4229 

10 
Abdelaziz et al. (2017) 0.8208 0.7292 0.6249 0.5396 0.4676 

Present 0,8139 0,7249 0,6224 0,5381 0,4667 

 

  

 

 (a) simply supported plate  (b) clamped plate  

Fig. 8 Effect of the inhomogeneity parameter (p) on dimensionless frequency (𝜔̅) of square FG sandwich plates (a/h=10) 
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without elastic foundation and resting on Winkler’s elastic 

foundation, respectively. It is noted that 𝜔̅  increase 

gradually as the side-to-thickness ratio a/h increases. The 

results of the simply-supported sandwich plate are less than 

that of the CCCC, CSCS and FCFC sandwich plate. For the 

FGM sandwich plate with intermediate boundary 

conditions, the results take the corresponding intermediate 

values. 

Fig. 11 illustrate the variations of the natural frequencies 

as functions of the aspect ratio b/a of the SSSS and CCCC 

plate for various values of the elastic foundation 

 

 

 

parameters. As it is well known, the clamped boundary 

condition always overpredicts the vibration frequencies. 

The frequencies decrease directly as b/a increases. 

Obviously, the frequencies are increasing with the 

increasing of the foundation stiffnesses. 

 

 

5. Conclusions 
 

A new shear deformation theory for bending and free 

vibration analysis of various types of FGM sandwich a plate  

 

  

 

 

  

 

Fig. 9 Free vibration 𝜔̅ versus the ratio a/h various values of the inhomogeneity parameter p and various types of 

simply-supported FGM sandwich square plates resting on elastic foundations (Kw=Ks=100)  

 

  

 

Fig. 10 Free vibration 𝜔̅ versus the side-to-thickness ratio a/h of the (1-2-1) EGM sandwich square Plate resting on 

Winkler’s elastic foundation with various boundary conditions (p=0.5) 
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Fig. 11 Free vibration 𝜔̅ versus the aspect ratio b/a of 

simply-supported and clamped sandwich plate for different 

values of foundation stiffnesses Kw and Ks (a/h=10, p=0.5) 

 

 

with different cases of boundary conditions is proposed in 

this paper employing a simple hyperbolic shear deformation 

theory with only four unknowns. The sandwich plates are 

assumed to be leaned on two-parameter elastic foundations. 

Hamilton’s principle is used herein to derive the equations 

of motion. To solve the problem for different boundary 

conditions, Galerkin’s approach is utilized for symmetric 

and anti-symmertic FGM sandwich plates. The results 

obtained by the present formulation are compared with 

other results available in literature. Based on the results 

obtained, the following conclusions can be drawn from the 

present analysis: 

1. The present results are very agreement with those 

being in literature. 

2. The vibration frequencies for FG sandwich plates are 

generally lower than the corresponding values for 

homogeneous ceramic plates, while the deflections are 

higher than those of homogeneous ceramic plates. 

3. The vibration frequencies increase as the side-to-

thickness ratio increases, while the deflections decrease. 

4. The vibration frequencies for simply supported 

powerly graded sandwich plates are lower than those for 

free and clamped powerly graded sandwich plates. 

5. The deflections for simply supported powerly graded 

sandwich plates are higher than those for free and 

clamped powerly graded sandwich plates.  
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