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1. Introduction 
 

The scatter and width of cracks are major parameters to 

determine the serviceability behavior of reinforced concrete 

(RC) structures. The initiation and propagation of cracks 

play a very important role in the determination of nonlinear 

behavior of RC members. Thus, the damage and failure 

mechanism of structures depends on the behavior of their 

cracked members. Moreover, the crack directions change 

according to loading history and so the behavior of a 

structure depends on the behavior of the cracks existing on 

its structural members (Bazant and Oh 1983, Vecchio and 

Collins 1986, Rots 1988). Therefore, monitoring the 

initiation, propagation, and width of cracks is essential to 

observe the strength and serviceability behavior of RC 

structures. 

The cracking and serviceability of RC members are 

generally investigated via experimental studies. Many 

empirical design recommendations are proposed to ensure a 

safe design of structures under different loading conditions 

according to the findings obtained in those studies. While 

conducting an experimental study is one of the most 

reliable, accurate and globally accepted techniques to 

investigate the cracking behavior of RC members, it has 

some disadvantages in terms of inconvenience, time, labor, 

and budget. However, conducting a numerical study 

including a reliable finite element (FE) modeling technique 

and appropriate constitutive material models is an 
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alternative, accurate, and robust tool to simulate the 

nonlinear behavior of RC members. Therefore, the FE 

method is one of the widely preferred techniques by 

researchers for their scientific studies (Jin et al. 2007, 

Demir et al. 2016a, Ferrotto et al. 2018). Consequently, a 

numerical investigation opportunity of the cracking 

behavior of RC members provides an alternative convenient 

way for researchers to conduct more feasible, fast and 

accurate research. 

In the literature, there is an insufficient study on the 

numerical prediction of concrete crack widths. However, 

this subject recently takes attention among researchers 

along with improvement in computer technology. On the 

other hand, there are some empirical formulations in past 

design codes such as BS:8110 (1989) and ACI 318-14 

(2014) to calculate maximum crack widths to control the 

serviceability behavior of RC members. Those expressions 

have been used basically for flexural beams and thus they 

were defined as a function of concrete cover thickness, the 

stress in reinforcement, and the configuration of 

longitudinal reinforcement, etc. However, the crack widths 

are defined as a function of average crack spacing and 

reinforcement strain as an alternative method (Chowdhury 

2001, Vidal 2004). Theiner and Hofstetter (2009) applied 

this method to predict crack widths on RC structures as 

well. Similarly, this method can also be applied to 

conventional FE analysis to obtain crack widths 

numerically (Vidal 2004, Marecki et al. 2007, Birrcher et 

al. 2009). On the other hand, that method has some 

fundamental deficiencies. Namely, the determination of the 

crack spacing is a very difficult job since it varies under 

different circumstances as well (Gopinath et al. 2009). 

An alternative technique and formulas were proposed by  
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Fig. 1 Uniaxial tensile behavior of concrete (ABAQUS 

Documentation 2018) 

 

 

Gopinath et al. (2009) to obtain crack widths numerically 

using the results of an FE model. In that method, crack 

widths can be calculated as a function of tension softening 

behavior of concrete. It comprises the conversion of strain 

into width in smeared models of an FE analysis. The 

method is based on the fact that the concrete cracks upon 

strains on it reach to the strain (𝜀𝑡0 ) corresponding to 

maximum tensile stress (𝜎𝑡0). Once the applied load is 

increased, the cracks propagate perpendicular to the 

direction of maximum principal tensile strains (rotating 

crack model). That directional relationship of crack 

characteristics with maximum principal tensile strains 

enables estimation of nonlinear behavior of different RC 

members after cracking. Moreover, despite the method 

proposed by Gopinath et al. (2009) appears quite practical 

and convenient in essence to calculate crack widths using 

the results of a numerical FE model, the proposed formulas 

have some important deficiencies. Firstly, the use of the 

proposed expressions is restricted to the model which was 

derived from the tension softening model of Petersson 

(1981). Therefore, it is necessary to propose new 

expressions for any other tension softening models given in 

the literature, and their accuracy must be checked. It is 

apparent that this process is not feasible because it requires 

conducting new additional experimental and numerical 

studies needing a high amount of budget, time and labor. 

Secondly, in the related study (Gopinath et al. 2009), the 

accuracy of the proposed method has not been verified 

sufficiently. Therefore, it requires more additional 

experimental studies to check its reliability. 

On the other hand, Liu et al. (2018) developed a 

numerical model to calculate the crack width in RC beams 

depending on the bond-slip theory. The proposed model was 

verified using experimental data, and the results were 

compared to some code formulas. Consequently, the results 

obtained from code formulas found to be more 

conservative. Additionally, Yang et al. (2018) proposed a 

numerical method to predict crack width for concrete 

structures under the corrosion effect. The initiation and 

propagation of the cracks in concrete were simulated in a 

numerical formulation via a cohesive crack model for 

concrete. Moreover, the surface crack width was determined 

as a function of service time. 

When the existing studies in the literature are evaluated 

  
(a) Linear (b) Bilinear 

 
(c) Exponential 

Fig. 2 Tensile behavior of concrete after cracking (Demir et 

al. 2016b) 

 

 

together, it is apparent that a new general expression 

requires to predict crack widths numerically on an FE 

model irrespective of any tension softening model specified 

in the literature. By this means the numerical cracking and 

serviceability analysis of RC members can be made simpler 

via the FE method. Therefore, the first motivation of the 

present study to make a significant contribution to the 

literature so as to eliminate the need in the literature. For 

this objective, a new, simple, and alternative formula to 

calculate crack widths on an FE model irrespective of any 

specific tension softening model existing in the literature is 

proposed. Moreover, the second motivation of the study is 

to check the accuracy of the method of Gopinath et al. 

(2009) via a new experimental and numerical study. 

Therefore, the accuracy of the newly proposed formula and 

the method of Gopinath et al. (2009) is verified via the test 

results of a recent existing experimental study conducted by 

the authors of the present study. In the study, lastly, 

numerical FE models of the tested specimens are created by 

using an FE code ABAQUS (2018), and they are verified 

sufficiently according to the test results. The crack widths 

calculated with respect to the results of the numerical 

models are compared with the test results in order to see the 

performance of the proposed formula. 

 

 

2. Determination of crack widths on a nonlinear finite 
element model 

 

A typical uniaxial ‘stress vs. strain behavior of concrete 

under tension (𝜎𝑡 − 𝜀𝑡)’ which is characterized by damage 

plasticity is displayed in Fig. 1. Concrete behaves linear 

elastic up to maximum tensile strength (𝜎𝑡0). The slope of 

the elastic part of the curve is defined as the initial modulus 

of elasticity (𝐸0) and strains corresponding to 𝜎𝑡0 can be 

calculated by dividing maximum tensile strength by 𝐸0. 

Upon reaching maximum tensile strength, tensile cracks 

initiate on the concrete. Later on, the tensile strength of 

concrete drops rapidly along with the initiation and 

propagation of tensile cracks. As a result, a sudden and 

brittle behavior is observed (ABAQUS Documentation  
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2018). This behavior of concrete is defined as a softening 

‘stress vs. strain’ response including strain localization. The 

tension softening response of concrete can generally be 

defined numerically by a smeared crack model approach. In 

this model, the cracks are represented as parallel micro 

cracks smeared over finite elements. This method is very 

reliable and convenient to model RC members numerically 

due to the fact that cracks are defined as a function of 

material properties. It allows the cracks to propagate in any 

orientation as well (Karayannis 2000, Cerioni et al. 2008). 

Moreover, the tensile behavior of concrete after peak stress 

can generally be defined as linear, bilinear, or exponential 

forms as depicted in Fig. 2 (Demir et al. 2016b). 

The post-failure ‘stress vs. strain’ behavior of concrete 

in tension is mesh sensitive (Van Mier 1986, Hillerborg 

1989). Therefore, the post-peak tensile behavior of concrete 

should be specified in terms of ‘stress vs. crack width (𝑤)’ 

to avoid that unreasonable mesh sensitivity (Hillerborg 

1989, Karayannis 2000, ABAQUS Documentation 2018). 

Moreover, the energy requiring to form a single crack for a 

unit crack plane area is defined as fracture energy (𝐺𝑓). The 

area under the curve of 𝜎𝑡 − 𝑤 gives the fracture energy 

(Fig. 2(c)) which is 

Gf= ∫ σ.dw
0

𝜎𝑡0

 (1) 

considering that the average fracture strain, 𝜀𝑡
𝑐𝑘, over the 

front of the crack band is equal to 𝑤 𝑙𝑤⁄  then 

Gf=lw ∫ σ.d𝜀𝑡
𝑐𝑘

0

𝜎𝑡0

 (2) 

where, 𝑙𝑤 , the width of the fracture process zone 

(representative length) corresponding to mesh size in the FE 

method. The total strain; 𝜀𝑡 is defined as the sum of the 

elastic strain (𝜀𝑡0
𝑒𝑙) with respect to the undamaged material 

where 𝜀𝑡0
𝑒𝑙 = 𝜎𝑡0 𝐸0⁄  and fracture (inelastic) strain 

components (𝜀𝑡
𝑐𝑘) (Eq. (3)) (Birtel and Mark 2006, Alfarah 

et al. 2017). 

𝜀𝑡=𝜀𝑡0
𝑒𝑙+𝜀𝑡

𝑐𝑘=
𝜎𝑡0

𝐸0

+
w

lw
 (3) 

The unloading response of concrete is weakened upon a 

specimen is unloaded from any point on the strain-softening 

branch of the 𝜎𝑡 − 𝜀𝑡 curves. The degradation of the elastic 

stiffness is characterized by a damage variable, 𝑑𝑡 which is 

assumed to be functions of plastic strains (𝜀𝑡
𝑝𝑙

). The damage 

variable can take values from zero to one, the former 

represents the undamaged material and the latter 

 

 

corresponds to the total loss of strength (Sena Cruz et al. 

2006, ABAQUS Documentation 2018). Eventually, tensile 

stresses can be calculated by using Eq. (4). Moreover, 𝜀𝑡
𝑝𝑙
 

refers to principal tensile plastic strains and controls the 

evolution of the failure mechanism. The cracking strains 

can be converted to plastic strains using the relationship 

given in Eq. (5) (ABAQUS Documentation 2018). 

𝜎𝑡 = (1 − 𝑑𝑡)𝐸0(𝜀𝑡 − 𝜀𝑡
𝑝𝑙

) (4) 

𝜀𝑡
𝑝𝑙

= 𝜀𝑡
𝑐𝑘 −

𝑑𝑡

(1 − 𝑑𝑡)

𝜎𝑡

𝐸0

 (5) 

If 𝜀𝑡
𝑐𝑘 is substituted in Eq. (5), then Eq. (6) is obtained. 

If 𝑤 is transferred and left alone on one side of Eq. (6), the 

expression for crack width is derived as given in Eq. (7). 

𝜀𝑡
𝑝𝑙

=
𝑤

𝑙𝑤

−
𝑑𝑡

(1 − 𝑑𝑡)

𝜎𝑡

𝐸0

 (6) 

𝑤 = [𝜀𝑡
𝑝𝑙

+
𝜎𝑡𝑑𝑡

(1 − 𝑑𝑡)𝐸0

] 𝑙𝑤 (7) 

where, 𝜀𝑡
𝑝𝑙
: principal tensile plastic strain obtained from an 

FE model, 𝜎𝑡 : tensile stress corresponding to 𝜀𝑡
𝑝𝑙

, 𝑑𝑡 : 

damage parameter corresponding to 𝜎𝑡, and 𝑙𝑤: mesh size. 

If tensile damage is ignored in an FE analysis, 𝜀𝑡
𝑝𝑙
 

becomes equal to 𝜀𝑡
𝑐𝑘 (Sena Cruz et al. 2006, ABAQUS 

Documentation 2018). Therefore, crack widths can be 

calculated by using Eq. (8). Nevertheless, it should be noted 

that Eq. (7) can give more sensitive and accurate results 

then Eq. (8) as well. 

𝑤 = 𝜀𝑡
𝑐𝑘 . 𝑙𝑤 (8) 

Consequently, the crack widths can be calculated by 

reading principal tensile strain values on an element at the 

desired step on an FE model, and by using the proposed 

formula (Eq. (7) or Eq. (8)). In every step of an analysis, a 

curve of ‘load vs. crack width (𝑃 − 𝑤)’ can be constituted 

by a combination of applied load and crack width values 

calculated by using one of the proposed expressions. 

The proposed crack width formula (Eq. (7)) has very 

significant advantages over those available in the literature. 

Namely, it does not rely on an estimate of average crack 

spacing which is very difficult to determine and has no 

physical meaning. Alternatively, the strains computed from 

a conventional nonlinear finite element analysis are directly 

used to calculate the crack width numerically. Since the 

strains are predicted in an FE analysis by accounting for a 

variety of geometry, loading and material conditions, the  

Table 1 Dimensional and material properties of the specimens 

# Specimen ID 
ℎ 

[mm] 

𝑏𝑤 

[mm] 

𝑎 

[mm] 
𝑎 𝑑⁄  

𝑙𝑡 

[mm] 
𝜌𝑙 𝜌𝑣  𝜌ℎ 

𝑓𝑐𝑘 

[MPa] 

1 DB50/1.40-C1 500 200 600 1.40 1700 0.02201 0 0 18.1 

2 DB50/1.86-C1 500 200 800 1.86 2100 0.02201 0 0 18.1 

3 DB60/1.86-C1 600 200 1000 1.86 2500 0.02113 0 0 18.1 

4 DB60/1.86-C1/SR 600 200 1000 1.86 2500 0.02113 0.00279 0.00320 18.1 

5 DB40/1.86-C1 400 200 600 1.86 1700 0.02348 0 0 18.1 

6 DB40/1.86-C2 400 200 600 1.86 1700 0.02348 0 0 25.3 
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derived expression is considered to be more general in 

nature. Moreover, the use of the proposed expression is not 

restricted to any constitutive tensile material model. 

Therefore, any concrete tension softening model in the 

literature can be used conveniently with the proposed 

formula during calculations. 

On the other hand, since the proposed formula depends 

on the conversion of the strain into width via a 

representative length which is the mesh size of an FE 

model, an accurate determination of the mesh size is the 

most important issue in this method. Once 2D plane or 3D 

solid elements are used for concrete in an FE model, the 

aspect ratio of the elements should be selected properly as 

meshing the concrete. In the literature, the selection of the 

aspect ratio of the elements as 1 with equal dimensions has 

been proposed as the most appropriate way to eliminate 

numerical deficiencies (Birtel and Mark 2006, Demir et al. 

2016b). Moreover, a parametric sensitivity analysis should 

be conducted to determine the optimum mesh size of the FE 

models because no certain mesh size has been proposed in 

the literature. 

 

 

3. Experimental study 
 

A recent existing experimental study of the authors 

(Demir et al. 2019) is selected as a reference study so as to 

verify the accuracy of the method and proposed formula to 

predict numerically crack widths on an FE model. The 

results of six RC deep beam specimens having different 

section heights (ℎ), the ratio of shear span to effective depth 

(𝑎 𝑑⁄ ) and compressive strength of concrete (𝑓𝑐𝑘 ) are 

chosen from the reference study. The selected specimens 

were designed according to the requirements given in ACI 

318-14 (2014) code, and some of them do not contain any 

shear reinforcement in their shear zones. The dimensional 

and material properties of the selected specimens are given 

in Table 1. In the table, 𝑓𝑐𝑘 , 𝑏𝑤 , 𝑙𝑡 , 𝜌𝑙 , 𝜌𝑣 , and 𝜌ℎ 

represent 28-day characteristic cylindrical compressive 

strength of concrete, section width, the total length of the 

specimen, the ratio of tension, stirrup, and horizontal web 

reinforcement respectively. Moreover, a detailed drawing of 

the geometry and reinforcing details of DB60/1.86-C1/SR 

specimen is shown in Fig. 3 as a sample. 

The produced RC deep beam specimens were tested 

under a 3-point loading condition with a pinned and a roller 

 

Table 2 Results of the material tests (Demir et al. 2019) 

Strength type 

of concrete 

Average maximum 

compressive strength 

Diameter of 

reinforcement 

Average yield 

strength 

C1 18.1 MPa ∅8 ve ∅12 421 MPa 

C2 25.3 MPa ∅18 454 MPa 

  ∅22 482 MPa 

 
 

support. During tests, a quasi-static monotonic loading was 

applied manually to the specimens via a hydraulic cylinder. 

The applied load was measured via a load cell placed 

between the hydraulic cylinder and specimens. Vertical 

displacements occurring bottom of specimens were 

measured by linear potentiometers. Two linear crack gauges 

are placed on the back surface of the specimens to measure 

diagonal crack widths (Demir et al. 2019). Moreover, the 

reported compressive strength of concrete and yield 

strength of reinforcement are given in Table 2. The 

explanation of the naming convention and further details 

about the specimens and tests can be found in the reference 

study. 

 

 
4. Numerical study 

 
In the study, numerical simulations are carried out via an 

FE code ABAQUS (2018) which can simulate a wide range 

of linear and nonlinear problems. ABAQUS is a widely 

preferred software to solve many civil engineering 

problems by researchers as well (Khennane 2013, Panto et 

al. 2017, Ozturk et al. 2019, Liu and Bai 2019). In the FE 

models, instead of considering the restraint effect of stirrups 

in the constitutive equation of concrete, concrete and steel 

bars are modeled as separate parts. Later, the interaction 

between them is defined in the models with a full 

interaction assumption. Therefore, concrete and steel bars 

are simulated as a 3-dimensional (3D) solid and a truss part 

respectively. The reinforcement is assumed as fully 

embedded into the concrete as well. Thus, the confinement 

effect of reinforcement is ensured numerically in the models 

(Demir et al. 2016b, Ferrotto et al. 2018, Kaya and Yaman 

2018). Accordingly, an 8-node linear 3D brick (C3D8R) and 

a 2-node linear 3D truss (T3D2) are used as element types 

from the ABAQUS element library. Later on, load and 

support plates are modeled as analytically rigid elements to 

simplify nonlinear equations to improve the convergence  

 

Fig. 3 Detailed drawings of DB60/1.86-C1/SR specimen (units in cm) (Demir et al. 2019) 
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(a) For dilation angle 

 
(b) For mesh 

Fig. 4 The sensitivity analysis results of DB60/1.86-C1 

specimen 

 

 

performance of the models. A tie constraint representing full 

contact interaction is assigned to surfaces between concrete 

and steel plate elements. A pin and a roller restraint are 

defined on the support plates similar to the test setup. The 

load is applied as a displacement-based procedure on the 

loading plate.  

The nonlinear material behavior of concrete is defined 

by using concrete damage plasticity (CDP) model which is 

a built-in material model in ABAQUS. CDP can be used 

conveniently to model concrete and other quasi-brittle 
materials since it considers the isotropic damaged elasticity 

concept with isotropic tensile and compressive plasticity. 

Moreover, it takes into account the degradation of the 
elastic stiffness induced by plastic straining both in tension 

and compression. A viscoplastic regularization is applied to 

the FE model by defining a small value of viscosity 
parameter (𝜇) as 0.0001 to improve the convergence  

Table 3 The values used to constitute the CDP material 

model in ABAQUS. 

Parameter Value 

𝜇 0.0001 

𝜖 0.10 

𝜎𝑏0 𝜎𝑐0⁄  1.16 

𝛫 0.667 

 

Table 4 The parameters used to create the constitutive 

material models 

𝜎𝑐𝑢 

[MPa] 

𝜎𝑐𝑚 

[MPa] 
𝜀𝑐1 

𝐸𝑐1 

[MPa] 

𝐸𝑐0 

[MPa] 
𝛼𝐸 

𝐸0 

[MPa] 
𝑏𝑐 

𝐺𝑐𝑙 

[N/mm] 

18.1 26.1 0.00205 12750 
21500 1 

25398 
0.5 

20 

25.3 33.3 0.00220 14900 28008 25 

 

 

performance of the FE models. The necessary values 

required to constitute the CDP material model in ABAQUS 

are defined by considering default values recommended in 

the literature. Therefore, the eccentricity (𝜖), the ratio of 
initial equibiaxial compressive yield stress to initial uniaxial 

compressive yield stress (𝜎𝑏0 𝜎𝑐0⁄ ), and the ratio of the 

second stress invariant on the tensile meridian (𝛫) are taken 

as 0.10, 1.16, and 0.667 respectively (ABAQUS 

Documentation 2018). Additionally, as an optimum value of 

dilation angle (𝛹), representing the volumetric change in 

brittle materials, the values around 50-degree have been 

proposed in the literature for RC deep beams (Demir et al. 

2016a, Demir 2017). Therefore, a parametric study is 

performed to determine the most accurate values of dilation 

angles. As a result, 48-degree is determined as an optimum 

value for the dilation angle of the FE models in the present 

study. Results of the sensitivity analysis of dilation angle for 

the DB60/1.86-C1 specimen are given in Fig. 4 as a sample. 

Additionally, a parametric sensitivity analysis is 

conducted to determine the optimum mesh size of the 

models by using the mesh sizes of 20, 33, 50 and 65 mm 

with an aspect ratio of 1. The results of the parametric study 

performed for the specimen of DB60/1.86-C1 are 

demonstrated in Fig. 4. The analysis result of the numerical 

model with a 20 mm mesh size is not shown in the figure 

because the analysis cannot be completed due to abortion of 

the job which may stem from the model having a very small 

mesh size. As a result of the sensitivity analysis, the 

optimum mesh size is determined as 50 mm for all models, 

and both concrete and steel bars are meshed accordingly. 

Lastly, the values used to constitute the CDP material model 

during parametric studies to determine dilation angle and 

mesh size in ABAQUS are summarized in Table 3. 

Moreover, a meshed FE model of a specimen is depicted in 

Fig. 5 as a sample. 

A typical uniaxial ‘stress vs. strain behavior of concrete 

under compression (𝜎𝑐 − 𝜀𝑐)’ is depicted in Fig. 6. The 

compressive behavior of concrete until the maximum 

compressive stress of concrete (𝜎𝑐𝑢) is calculated by using 

the unconfined concrete model of FIB MC2010 (2013) 

model code. Here, concrete behaves linearly elastic up to 

𝜎𝑐0, and 𝜎𝑐0 can be calculated as 0.4𝜎𝑐𝑢. The slope of the 

elastic part of the curve is defined as the initial modulus of  
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(a) The model of concrete, load and support plates 

 
(b) The model of reinforcement 

Fig. 5 A sample meshed FE model of a specimen 

 

 

Fig. 6 Uniaxial compressive behavior of concrete 

(ABAQUS Documentation 2018) 

 

 

elasticity (𝐸0), and the strain corresponding to 𝜎𝑐0 can be 

calculated by dividing 𝜎𝑐0 by 𝐸0. Moreover, the maximum 

compressive stress of concrete is determined via material 

tests reported previously in Table 2. The behavior of 

concrete between 𝜎𝑐0 and 𝜎𝑐𝑢 is calculated according to 

the expression defined in FIB MC2010 (2013) as given in 

Eq. (9). 

𝜎𝑐 = 𝜎𝑐𝑚 (
𝑘. 𝜂 − 𝜂2

1 + (𝑘 − 2)𝜂
) (9) 

where, 𝜎𝑐𝑚 = 𝜎𝑐𝑢 + 8  in MPa, 𝜂 = 𝜀𝑐 𝜀𝑐1⁄ , and 𝑘 =
𝐸𝑐𝑖 𝐸𝑐1⁄ . Here, 𝐸𝑐𝑖  can be calculated via Eq. (10). The 

parameters of 𝜀𝑐1, 𝐸𝑐1, 𝐸𝑐0, and 𝛼𝐸 are selected from the 

tables defined in FIB MC2010 (2013) depending on the 

grade of concrete used in the study. Moreover, 𝐸0 equals to 

𝛼𝑖 . 𝐸𝑐𝑖 , and 𝛼𝑖 can be calculated by using Eq. (11). 

𝐸𝑐𝑖 = 𝐸𝑐0 . 𝛼𝐸(𝜎𝑐𝑚 10⁄ )1/3 (10) 

𝛼𝑖 = 0.8 + 0.2(𝜎𝑐𝑚 88⁄ ) ≤ 1.0 (11) 

Additionally, the post-peak compressive response of 

concrete is determined via the post-peak compression 

model of Vonk (1993). This behavior is defined as in Eq. 

(12) and the parameter of 𝛾𝑐 used in that equation can be 

calculated via Eq. (13). 

 

Fig. 7 The uniaxial response of concrete under compression 

 

 

𝜎𝑐 = (
2 + 𝛾𝑐 . 𝜎𝑐𝑚. 𝜀𝑐1

2𝜎𝑐𝑚

− 𝛾𝑐. 𝜀𝑐 +
𝛾𝑐. 𝜀𝑐

2

2. 𝜀𝑐1

)

−1

 (12) 

𝛾𝑐 =
𝜋2. 𝑓𝑐𝑚. 𝜀𝑐

2 (
𝐺𝑐𝑙

𝑙𝑤
− 0.5. 𝜎𝑐𝑚 (𝜀𝑐(1 − 𝑏𝑐) + 𝑏𝑐

𝜎𝑐𝑚

𝐸0
))

2 
(13) 

where, 𝑏𝑐 = 𝜀𝑐
𝑝𝑙

𝜀𝑐
𝑖𝑛⁄ , and 𝐺𝑐𝑙  is the crushing energy of 

concrete material. Kratzig and Polling (2004) proposed as 

𝑏𝑐 = 0.5 and 10 ≤ 𝐺𝑐𝑙 ≤ 25  in their study. Therefore, 𝑏𝑐 

is taken as 0.5, and a parametric study is performed to 

determine the optimum value of 𝐺𝑐𝑙  in the present study. 

Moreover, the parameters used in calculations to create the 

compressive behavior of concrete are tabulated in Table 4. 

On the other hand, ABAQUS enforces uniaxial compressive 

behavior of concrete to be assigned to a model in terms of 

‘stress vs. inelastic strain (𝜎𝑐 − 𝜀𝑐
𝑖𝑛)’ response. Therefore, 

𝜀𝑐
𝑖𝑛  is calculated via the equation given in Eq. (14) 

(ABAQUS Documentation 2018). A sample compressive 

material behavior of concrete assigned to the FE models is 

displayed in Fig. 7. 

𝜀𝑐
𝑖𝑛 = 𝜀𝑐 − (𝜎𝑐 𝐸0⁄ ) (14) 

The tensile strength of concrete (𝜎𝑡0) is calculated with 

an empirical equation (Eq. (15)) defined in FIB MC2010 

(2013) by using the maximum compressive strength of 

concrete. Moreover, a typical uniaxial stress vs. strain 

behavior of concrete under tension is depicted in Fig. 1 and 

its details are explained above in chapter 2. The tensile 

behavior of concrete up to maximum stress is assumed 

linear elastic and determined as maximum tensile stress 

divided by 𝐸0. Moreover, the post-peak tension softening 

response is created by using the exponential tension 

softening model of Hordijk (1992). This relationship is 

defined in Eq. (16). 

𝜎𝑡0 = 0.3. (𝜎𝑐𝑢)2/3 (15) 

𝜎𝑡 = 𝜎𝑡0 [(1 + (𝑐1

𝑤

𝑤0
)

3

) 𝑒−𝑐2.𝑤/𝑤𝑐 −
𝑤

𝑤0

(1 + 𝑐1
3)𝑒−𝑐2] (16) 

here, 𝑐1 and 𝑐2 are defined as constant values as 3.0 and 

6.93 respectively. The maximum crack width (𝑤0) can be 

calculated as 5.14. 𝐺𝑓 𝜎𝑡0⁄ . Fracture energy of concrete (𝐺𝑓)  
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Table 5 The parameters used to create the tensile 

constitutive material models 

𝜎𝑐𝑢 [MPa] 𝜎𝑡0 [MPa] 𝐺𝑓 [MPa] 𝑏𝑡 Poisson's ratio 

18.1 2.06 0.131 0.1 0.221 

25.3 2.56 0.137 0.3 0.260 

 

 

Fig. 8 The uniaxial response of concrete under tension 

 

 

can be calculated according to the expression given in FIB 

MC2010 (2013) as in Eq. (17) as well. Moreover, the 

parameters used in calculations to create the tensile 

behavior of concrete are tabulated in Table 5. A sample 

tensile behavior of concrete assigned to the FE models is 

also depicted in Fig. 8. 

𝐺𝑓  = 0.073(𝜎𝑐𝑚)0.18 (17) 

The damage parameters representing stiffness 

degradation during unloading from any point in the post-

peak stress behavior of concrete for both compression (𝑑𝑐) 

and tension (𝑑𝑡) are calculated according to Eq. (18) and 

Eq. (19) respectively (Birtel and Mark 2006, Kamali 2012). 

𝑑𝑐 = 1 −
𝜎𝑐 𝐸0⁄

𝜎𝑐 𝐸0⁄ + 𝜀𝑐
𝑖𝑛(1 − 𝑏𝑐)

 (18) 

𝑑𝑡 = 1 −
𝜎𝑡0 𝐸0⁄

𝜎𝑡0 𝐸0⁄ + 𝜀𝑡
𝑐𝑘(1 − 𝑏𝑡)

 (19) 

where, 𝑏𝑐, 𝜀𝑐
𝑖𝑛, and 𝜀𝑡

𝑐𝑘 are previously defined above and 

𝑏𝑡 equals to 𝜀𝑡
𝑝𝑙

𝜀𝑡
𝑐𝑘⁄ . For 𝑏𝑡, different values have been 

proposed in the literature in between 0.1 and 0.7 (Birtel and 

Mark 2006, Kamali 2012). Therefore, a parametric study is 

conducted to determine its value for different types of 

concrete having different compressive strengths. The 

acquired optimum values of them are reported in Table 5. 

Later, they are assigned to the FE models. Sample responses 

of damage parameters of concrete under compression and 

tension are depicted in Fig. 9 as well. Moreover, Poisson's 

ratio calculations are based on the equations proposed by 

Klink (1985), and their calculated values are given in Table 

5. The further details about the definition, selection, and 

calculation of all parameters used to create the constitutive 

material model of concrete can be found in the relevant 

studies. 

The constitutive material models of steel bars in terms  

 
(a) Under compression 

 
(b) Under tension 

Fig. 9 Damage response of concrete 

 

 

Fig. 10 A sample true stress – true plastic strain response 

curve of a steel bar 

 

 

of ‘stress vs. strain (𝜎𝑠 − 𝜀𝑠)’ are calculated according to the 

reinforcement material model proposed by Mander et al. 

(1984) and later developed by Pipa (1993). The yield 
strength of the steel bars used in the calculation is 

determined experimentally as given above in Table 2. The 

strain hardening properties of the steel bars are also taken 

into account. This behavior is converted later into true stress 

vs. true strain to consider the plastic behavior of the steel 

due to the change in dimension of reinforcement (Kamali 

2012). The constituted material models of steel bars are 

defined to the FE models in terms of ‘true stress vs. true 

plastic strains (𝜎𝑠 − 𝜀𝑠
𝑝𝑙
)’ behavior as in the form which  

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4

σ
t 
(M

P
a)

w (mm)

0

0.2

0.4

0.6

0.8

1

0 0.004 0.008 0.012 0.016

d
c

εc
in

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4

d
t

w (mm)

0

100

200

300

400

500

600

700

0 0.03 0.06 0.09 0.12

σ
s 
(M

P
a)

εs
pl

199



 

Aydin Demir and Naci Caglar 

 

 

 

 

 

ABAQUS enforces. A sample 𝜎𝑠 − 𝜀𝑠
𝑝𝑙
 response curve of a 

steel bar assigned to the FE models is demonstrated in Fig. 

10. 

After completion of the FE models, they are verified 

with test results in terms of their ‘load vs. mid-

displacement' responses. Upon sufficient convergence is 

successfully achieved in between test and numerical results, 

𝑃 − 𝑤 curves are constituted by the proposed formula (Eq. 

(7)) using the strain values obtained from the numerical 

models. Later on, they are compared with the test results. 

Additionally, the numerical result of an FE model is 

depicted in Fig. 11 as a sample to demonstrate the 

procedure of how to obtain crack widths numerically. 

Firstly, the principal tensile strains should be obtained from 

the analysis results of an FE model. This operation can be 

performed in ABAQUS by reading equivalent plastic strain 

in tension (PEEQT) values on the concrete parts (Fig. 11). 

The maximum crack is obtained on an element in which 

maximum PEEQT occurs. By selecting that related element, 

the time history of PEEQT values at the integration point of 

that element can be obtained as a curve of ‘time vs. 

PEEQT’. Later on, crack widths can be calculated by using 

one of the proposed Eq. (7) or Eq. (8) depending on 

whether the tensile damage is considered. 

 

 

 

 

5. Results and discussion 
 

On the specimens, no crack occurrence was observed in 

both flexural region and shear spans up to critical cracking 

load (𝑃𝑐𝑟). Beyond that point, diagonal cracks were initiated 

simultaneously in both shear zones throughout strut axes. 

Along with an increase in the applied load, widths of 

diagonal cracks were increased gradually. Ultimately, a 

sudden and brittle shear failure was experienced on the 

specimens due to reaching the ultimate load-bearing 

capacity of struts. A similar failure mechanism was 

experienced on all specimens (Demir et al. 2019). The 

failure mode of DB50/1.40-C1 specimen after the test are 

depicted in Fig. 12 as a sample. 

Results of the numerical models verified according to 

their corresponding test results in terms of ‘load vs. mid-

displacement (𝑃 − 𝑢)’ behavior are demonstrated between 

Figs. 14-16. In the figures, the letters of ‘T’ and ‘N’ at the 

end of specimen names designate the words of ‘test’ and 

‘numerical’ respectively. It is apparent from the graphs that 

the results of numerical models match very well with the 

results of the tested specimens. Moreover, the numerical 

tensile damage distribution of the specimen, whose failure 

mode after the test is depicted above in Fig. 12, is shown in  

 

Fig. 11 The equivalent plastic strains in tension (PEEQT) on an FE model 

 

Fig. 12 The failure mode of the specimen after the tests 

 

Fig. 13 Tensile damage distribution of the specimen on its FE model 
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Fig. 14 Comparison of the test and numerical results for 

DB60/1.86-C1 and DB60/1.86-C1/SR specimens 

 

 

Fig. 13 as a sample. A very similar behavior is also 
observed in another specimens. It can be seen clearly from 

the figure that stress concentrations are observed between 

loading and support plates in the directions of diagonal 

cracks as experienced in the test. Ultimately, it can be 

deduced from the results that numerical models are highly 

successful and accurate to represent the nonlinear behavior 

of the tested specimens. 

 

 

 

Fig. 15 Comparison of the test and numerical results for 

DB50/1.86-C1 and DB50/1.40-C1 specimens 

 

 

Moreover, as stated above, the specimens represent a 

sudden reduction in their load capacities due to shear failure 

during the tests. Therefore, the falling parts of 𝑃 − 𝑢 

curves are shown in the relevant figures to show this 
behavior. However, diagonal crack widths of the specimens 

increase dramatically and reach very high values beyond the 

point the specimens reach their ultimate load-bearing 

capacities. In other words, no decrease is observed in crack  

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12

P
(k

N
)

u (mm)

DB60/1.86-C1 T
DB60/1.86-C1 N
DB60/1.86-C1/SR T
DB60/1.86-C1/SR N

0

100

200

300

400

500

600

700

0 0.2 0.4 0.6 0.8 1 1.2

P
(k

N
)

w (mm)

DB60/1.86-C1 T
DB60/1.86-C1 N
DB60/1.86-C1/SR T
DB60/1.86-C1/SR N

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12

P
(k

N
)

u (mm)

DB50/1.86-C1 T
DB50/1.86-C1 N
DB50/1.40-C1 T
DB50/1.40-C1 N

0

100

200

300

400

500

600

700

0 0.2 0.4 0.6 0.8 1 1.2

P
(k

N
)

w (mm)

DB50/1.86-C1 T

DB50/1.86-C1 N

DB50/1.40-C1 T

DB50/1.40-C1 N

Table 6 The test and numerical results of the specimens 

Name of 

Specimen 

Experimental Numerical Ratio of errors 

𝑃𝑐𝑟 

[kN] 

𝑃𝑢 

[kN] 

𝑢𝑢 

[mm] 

𝑤0 

[mm] 

𝑃𝑐𝑟 

[kN] 

𝑃𝑢 

[kN] 

𝑢𝑢 

[mm] 

𝑤𝑜 

[mm] 
𝑃𝑐𝑟 𝑃𝑢 𝑢𝑢 𝑤0 

DB50/1.40-C1 270 645 3.82 0.57 285 645 3.44 0.54 0.95 1.00 1.11 1.06 

DB50/1.86-C1 240 500 4.71 0.94 255 504 4.72 0.95 0.94 0.99 1.00 0.99 

DB60/1.86-C1 235 529 5.22 0.96 230 538 5.32 0.87 1.02 0.98 0.98 1.10 

DB60/1.86-C1/SR 245 664 5.06 0.92 245 650 5.72 0.82 1.00 1.02 0.88 1.12 

DB40/1.86-C1 200 459 4.56 0.88 195 460 4.43 0.88 1.03 1.00 1.03 1.00 

DB40/1.86-C2 215 529 4.06 0.78 190 525 4.50 0.57 1.13 1.01 0.90 1.37 
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width measurements, and very large crack widths are 

obtained experimentally. Therefore, crack width 

measurements after maximum load capacity (𝑃𝑢) is reached, 

do not give meaningful result since the specimens exceed 

their capacities and fail rapidly. Because of this reason, the 

rest of the 𝑃 − 𝑤 curves after the ultimate load capacity of 

the specimens are cut and not shown throughout in Figs. 14-

16.  

Later, the diagonal crack widths are calculated by the 

proposed expression (Eq. (7)) using PEEQT results 

obtained from the numerical models. They are compared 

with the test results, and the comparisons are depicted in 

between Figs. 14-16. It can be seen from the graphs that the 

proposed formula gives very accurate results in a 

comparison with the test results of RC deep beams having 

different ℎ , 𝑎 𝑑⁄ , and 𝑓𝑐𝑘 . Similarly, a very successful 

match is also observed on the specimen including shear 

reinforcement (Fig. 14). 

Finally, the test and numerical results of the specimens 

in terms of critical cracking load (𝑃𝑐𝑟 ), maximum load 

capacity (𝑃𝑢), corresponding maximum displacement (𝑢𝑢), 

and maximum crack width at ultimate load ( 𝑤0 ) are 

reported in Table 6. In the table, the ratios of errors 

calculated according to the division of the test results with 

the numerical results are given as well. It is clear in the 

table that the ratios of errors stay commonly at an 

acceptable level. They similarly show that the numerical 

models are highly successful to represent the nonlinear 

response of RC deep beams. The maximum crack width 

values calculated by using the proposed expression match 

very well with the test results as well. However, while the 

general numerical cracking behavior of the numerical 

model of DB40/1.86-C2 specimen matches very well with 

its conjugate test specimen in terms of 𝑃 − 𝑢 response, a 

minor difference (37 %) has occurred in the maximum 

crack width results (Fig. 16). Since the maximum crack 

width is very low around 0.78 mm on that specimen, it is 

thought that this difference may stem from an unexpected 

deviation that occurred on the measurement devices used to 

measure crack widths. 

 

 

6. Conclusions 
 

In the study, a new, simple, and alternative expression is 

proposed to calculate crack widths of concrete on an FE 

model. By considering a more general tension softening 

behavior of concrete, the proposed formula is derived 

irrespective of any tension softening model which is given 

in literature or design codes. Moreover, the test results of 

six RC deep beam specimens having different geometrical 

and material properties selected from a recent existing study 

are used to verify the accuracy and reliability of the 

proposed formula. Consequently, the following conclusions 

are deduced from the study: 

• The results of the numerical simulations show that 

numerical models are highly successful to represent the 

nonlinear behavior of the tested specimens in terms of 

𝑃 − 𝑢 behavior. 

• The proposed formula can give very accurate results in 

terms of diagonal crack widths in a comparison with the 

test results on RC deep beams having different ℎ, 𝑎 𝑑⁄ , 

and 𝑓𝑐𝑘.  

• A very successful match is also observed in crack 

widths on the specimen including shear reinforcement. 

• The ratio of errors calculated according to the division 

of the test and numerical results stay commonly at an 

acceptable level.  

• The proposed expression is quite simple, unique, and 

robust to determine crack widths on an FE model.  

• The method, proposed in the literature and involving 

conversion of the strain into width in smeared models of 

an FE analysis, can be used conveniently for RC deep 

beams to predict crack widths numerically. 

Lastly, the proposed formula can be conveniently used 

in different RC members such as columns, shear walls, etc. 

under different loading conditions. However, new 

researches are needed to determine the accuracy and 

performance of it on those members. Moreover, the 

influence of bond-slip behavior on the crack width formula 

should be investigated in future studies. 

 

 

  

 

Fig. 16 Comparison of the test and numerical results for DB40/1.86-C1 and DB40/1.86-C2 specimens 
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