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Abstract.

This work investigates a new type of quasi-3D hyperbolic shear deformation theory is proposed in this study to

discuss the statics and free vibration of functionally graded porous plates resting on elastic foundations. Material properties of
porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. By
including indeterminate integral variables, the number of unknowns and governing equations of the present theory is reduced,
and therefore, it is easy to use. The present approach to plate theory takes into account both transverse shear and normal
deformations and satisfies the boundary conditions of zero tensile stress on the plate surfaces. The equations of motion are
derived from the Hamilton principle. Analytical solutions are obtained for a simply supported plate. Contrary to any other theory,
the number of unknown functions involved in the displacement field is only five, as compared to six or more in the case of other
shear and normal deformation theories. A comparison with the corresponding results is made to verify the accuracy and
efficiency of the present theory. The influences of the porosity parameter, power-law index, aspect ratio, thickness ratio and the
foundation parameters on bending and vibration of porous FG plate.
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1. Introduction

Functionally graded materials (FGMs) are a class of
composites in which the properties of materials vary
continuously from one point to another. This is achieved by
varying the volume fraction of the constituents, for example
ceramic and metal, in a predetermined manner. This
constantly changing composition eliminates interface
problems and, as a result, the stress distribution is smooth.
Over the last few years, FGMs are now developed for
general use as structural elements in different applications.
The reason for the increasing use of FGMs in various
aerospace, automotive, civil and mechanical structures is
that their material properties can be adapted to different
applications and work environments. The evidence is the
very big amount of literature on these materials (Qian and
Batra 2005, Darlmaz 2015, Ebrahimi and Dashti 2015,
Bouguenina et al. 2015, Akbas 2015, Arefi 2015, Pradhan
and Chakraverty 2015, Kar and Panda 2015, Ebrahimi and
Habibi 2016, Moradi-Dastjerdi 2016, Laoufi et al. 2016).
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As a result, various theories have been developed by
researchers to predict the good bending behavior of FGM
material plates. Kirchhoff has developed a classical plate
theory (CPT) for thin plate analysis, which is based on the
Kirchhoff hypothesis where transverse shear deformations
are zero and therefore transversal stresses do not enter the
theory. This theory does not include shear effects and
therefore only applies to thin plates (Abrate 2008, Arefi
2015, Pradhan 2015, Darilmaz 2015). Conventional plate
theory will give erroneous results when used for thick plates
(Liu 2011).

To account for the transverse shear stress, Reissner
(Reissner 1945) and Mindlin (Mindlin 1951) developed a
first order shear deformation plate theory (FSDT) by
considering the effect of transverse shear deformation for
analysis the plates. In this theory the basic equations are
derived by assumption that the in-plane displacements are
linearly distributed across the plate thickness. This leads to
constant transverse shear stresses over the entire thickness
of the plate, so that the condition of zero shear stress on the
face of the plate is not satisfied and requires a shear
correction factor difficult to find because it depends on the
geometries, the material properties and the boundary
conditions of each problem (Ferreira et al. 2009).

Following the limitations of the CPT and FSDT
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theories, a significant number of higher order shear
deformation plate theories (HSDT) that do not require a
shear correction factor and satisfy zero shear stress
conditions on the upper and lower surfaces of the plates
have been developed and this, to correctly approximate the
nonlinear distribution of transverse shear deformations
along the thickness of the plate (Bensaid 2017, Belkacem et
al. 2018, Karami and Janghorban 2019).

Often 2-D plate theories mentioned above (CPT, FSDT
and HSDT, and RHSDTs) overlook the influence of
thickness stretching effect (i.e.,e, = 0) due to assuming
constant transverse displacements through the thickness.
Recently, many quasi-3D theories have been proposed in
the literature where the effect of thickness stretching (g,) in
FG plates was investigated by different investigators
(Akavci and Tanrikulu 2015, Adim and Daouadji 2016, Kar
and Panda 2016, Hadji et al. 2018) to reach accurate results.
It should be noted also that experimental study are
conducted together with HSDTs to investigate the
mechanical behaviors of structures (Sahoo et al. 2016,
Hirwani et al. 2016a, 2018a, b, ¢, Mehar et al. 2017, Sahoo
et al. 2017a, b, 2018, Hirwani and Panda 2018, Chandra
Mouli et al. 2018, Bisen et al. 2018, Mehar and Panda 2018
and 2019, Pandey et al. 2019, Sahoo et al. 2019, Mehar et
al. 2019).

These theories which looks like higher-order theory uses
only five unknown functions in order to derive five
governing equations for functionally graded plates. The
thickness stretching effect becomes very valuable for thick
plates analysis and hence has to be taken into consideration.
Many quasi-3D theories have been proposed in the
literature (Thai and Kim 2013, Thai ef al. 2014, Neves et al.
2012, Neves et al. 2013). Thai and Kim (2012) proposed a
simple quasi-3D sinusoidal-shear-deformation theory to
analyze the bending behavior of FG plates by utilizing five
unknown variables. Bourada et al. (2015) proposed a new
simple shear and normal deformations theory for
functionally graded beams. A refined plate theory was
developed to account for the thickness stretching effect in
functionally graded plates by Thai et al. (2012).

With the rapid advancement in technology of structure
components, structures with graded porosity can be
considered as one of the latest developments in FGMs.
For example, Amar ef al. (2017) presented a new hyperbolic
shear deformation beam theory is proposed based on a
modified couple stress theory (MCST) to investigate the
bending and free vibration responses of functionally graded
(FG) micro beam made of porous material. Ehyaei et al.
(2017) studied the effect of porosity and axial preload on
vibration behavior of rotating FG nanobeam. Zenkour
(2018) presented a quasi-3D refined theory for functionally
graded single-layered and sandwich plates with porosities.
Faleh er al. (2018) investigated the vibration response of
porous FG nanoshells. Salari et al. (2019) examined the
porosity-dependent asymmetric thermal buckling of
inhomogeneous annular nanoplates resting on elastic
substrate. Avcar (2019) studied recently the free vibration of
imperfect sigmoid and power law functionally graded
beams.

The interaction action between structures and supporting
soil media is of fundamental importance in foundation

design and it has always attracted the attention of both
researchers and engineers. There are many studies on elastic
foundation modeling Winkler in literature. This is the
simplest model was introduced by Winkler in 1867 known
as the one-parameter model concerning the elastic base,
which considers the base as a series of separate springs
without mating effects. This was later improved by
Pasternak who took into account the interactions between
the separate springs. Therefore, the Pasternak model was
widely used for describe the mechanical behavior of elastic
structure-base interactions (Pasternak 1954). As a
generalization of the Pasternak concept, Kerr (1964)
proposed a three-parameter foundation model that consists
of two layers of elastic springs interconnected by an elastic
shear layer.

This work aims to develop a simple quasi-3D theory
with just five unknown displacement functions are used in
the present theory against six or more unknown
displacement functions used in the corresponding ones for
analyzed bending and free vibration analysis of FG plates
with graded porosity can be considered as one of the latest
developments in FGMs embedded within elastic
foundation. The effects due to transverse shear and normal
deformations are both included. Analytical solutions are
obtained for FG plate, and its accuracy of the Winkler,
Pasternak and Kerr models measured against the elastic
continuum model is verified by comparing the obtained
results with those reported in the literature.

2. Constitutive relations

Assume that the FG plate is made of a mixture of metal
and ceramic, the material properties of the plate like the
Young’s modulus E, the mass density p and Poisson’s ratio
v are considered to change continuously through the
thickness according to a distribution power law. However,
the influence of porosities, which may exist inside the FG
plate materials during production, is included. The modified
rule of mixtures for the two-phase FG plate with even
porosities can be expressed as (Amar et al. 2017,
Wattanasakulpong and Ungbhakorn 2014, Benferhat et al.

2016).
P(z) = PC(VC —%}L Pm(vm —%) (1)

Where a is the volume fraction of porosity (a<<l), for
perfect FGM, «a is set to zero, P. and P, are the material
properties of ceramic and metal and V. and V,, are the
volume fraction of ceramic and metal respectively; the
compositions are represented in relation to

V. +V, =1 )

The material properties of imperfect FG plate with even
porosities FGM-I can be rewritten as follow

E(Z) = (Ec - Em)‘/c + Em _%(Ec + Em) (3a)
p(z):(pc _pm)\/c+pm _%(pc_‘_pm) (3b)
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Fig. 1 variations of Young’s modulus of perfect FGM and
porous FGM with the thickness coordinate: (a) p=0.5; (b)

p=1; (¢c) p=5

where V.=(0.5+z/h)’is the volume fraction of ceramic.

For FGM-II defined as uneven distribution model, the
properties of the actual materials are in the following form
as follow (Wattanasakulpong and Ungbhakorn 2014)

E(Z):(Ec _Em)‘/c+Em _%(EC'FEm)(l_%] (4a)

a 2z
p(z):(pc_pm)‘/c+pm_5(pc+pm)( _%J (4b)
For FGM-III defined as uneven distribution model
expanded with a logarithmic function is expanded for
porosities distribution as follow

E(z)=(E,—E, N, +E, - |og[1+%](Ec + Em)[l—zhzj (5a)

p(2)= (,Dc ~Pnm )‘/c +pp —log [1"'%](:% * Pm )( _zhzj (5b)

Fig. 1 shows the through-the-thickness variation of the
Young’s modulus for different power-law indexes and the
porosity volume fraction is set as a=0.2. It is observed that
the perfect FGM has the highest Young’s modulus while the
even porosities FGM-I are smallest. The Young modulus of
uneven porosities FGM-II and FGM-III model expanded
with a logarithmic function is between those of perfect
FGM and even porosities FGM-I. In addition, the Young’s
modulus of FGM for uneven porosities FGM-II and III has
discontinuous characteristics; it coincides with that of FGM
porosity-I at the median surface of the plate and coincides
with that of the perfect FGM at the upper and underlying
surface of the plate, respectively.

3. Theoretical formulation
3.1 Kinematic relations and constitutive relations

The present indeterminate integral variables plate theory
used by Amar et al. (2018) where the number of unknowns
and governing equations of the present theory is reduced,
and therefore, it is easy to use. The theory presented is
variationally consistent, does not require shear correction
factor, and gives rise to transverse shear stress variation
such that the transverse shear stresses vary parabolically
across the thickness satisfying shear stress free surface
conditions.

U YD) =Uy(x,Y) -2 22tk O[O Y)IX  (6a)

v .2) =% () -2 Z ks @[O0 )dy  (6b)

W(X, Y, 2) =W, (X, Y) + 9(2)e, (6¢)

The coefficients ki and k> depend on the geometry.
where (uo,v0,w0,8,0-) are five unknown displacements of the
mid-plane of the plate; and % is the plate thickness. In this
study, f(z) is a hyperbolic shape function chosen in the form
(Ukanovic ef al. 2018)

f(2)= z(cosh(%)—1.388j 7)
and g(z) is given as follows
9(2)='(2) (®)
The nonzero linear strains are
£, &l kP ks
g, r=16y p+z3kd b+ f(2)k; (9a)
Vxy 73y k)?y kxsy
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0 0
7y Yz &, YA
{ y }:g(z){yg } (@) (9b)
where
2
o, At
g’ 85\;( k, 662)§N
0 So ky p=9——3" (" 10a
Al W E
w) Mo 0 v, 00,
oy X oXoy
ks k,0 10b
kSt = k,0 (106)
X 8 o
Ky klajedx+k2&j9dy
o kzjady+%
{yﬂ}: SR (10¢)
0 aw
Yxa |<lj¢9dx+—Z
OX
and
, dg(z
g'(5)- 92 (1)

The integrals used in the above equations shall be
resolved by a Navier type method and can be written as
follows:

—je dx = A —j
o 8” (12)

ae
jedx A >

_[Hd -

where the coefficients A' and B' are expressed according
to the type of solution employed, in this case by using
Navier. Therefore, A' and B' are expressed as follows:

1 1
A:_?’ B'=——, k,=a*, k,=p (13)

where a and f are defined in expression (35).
The constitutive relations of a FG plate can be expressed

as
o [Cu Cp Cy 0 0 0 |[ e
o, C, C, Cpy O 0 0 y
o, C, C, C 0 0 0 |le
_| vtz b (14)
Ty, 0 0 C,O0 0 0 |7y,
Ty 0 0 O 0 Cyx 0 ||7x
] [0 0 0 0 0 Cg |7y

where (o- 0105 Ty Tn Ty ) and (ex,gy,gz,yyz,yxz,;/xy) are

stress and strain components, respectively.

The computation of the elastic constants C;; depends on
which assumption of . are considered. If =0, then Cj; are
the plane stress-reduced elastic constants

E(z
Cu=Cy, :ﬁv Cp=vCy (15a)

E(2)
2(1+v)’

If &#0 (thickness stretching), then Cj; are 3D elastic
constants, given by

Cu=Cy=Cq =G(2) = (15b)

C11 = sz = C33 ( ) ﬂ,( ) = = C23 = /1(2) (163)
Car =Cas =Cys =G(2) = p(2) = =2 16b

44 55 66 H 2(1+ v)’ ( )
Where 22)=[vE@)]/[2-2v)1+v)] and

w(2)=G(2) = E(Z)/[2(1+ V) = Lame’s coefficients.
The module £ and G and the elastic coefficients Cj; vary
through the thickness, according to Egs. (3)-(5).
Next, Hamilton’s energy principle is applied for
deriving the equations of motion of the imperfect FG plates
T
0=[(0U; +0Ug +oV - Kt (17)
0
Where 60U is the virtual strain energy, dUr additional
strain energy induced by the elastic foundations and 6V is

the virtual work done by external applied forces and 0K
The virtual strain energy is expressed by

b2 [ 0,06, + 0,08, + 0,06, + 0,0, +
s T .[ jfh/z 5 5 dAdz
A gxz ]/x + Gyz ]/yz
0su, _\y 0°0W, oo _ |
*oox e

65W

y

M Sk@N N
o kN [

oou, 65v0

oy oX

)

(18)

:I , , dxdy
A ZancSW 48, kiA‘a5€+zB'a§0
Y ooxoy " oxdy oxoy
d , 0 .
+QXZ( 2 +kA j+Qyz(£ +k,B ayj

Where N,M.S and Q are the stress resultants defined by

(oM S)=[ (L2, Poydz i=xyxy  (19)
Q Jh/ (z)o,dz, i =Xy, yz (19b)

h/2
= Iaz g'(2)dz (19¢)

-h/2

The strain energy induced by elastic foundations can be
defined as

h/2

SU=[ [ (U

A-h/2

inkler +U asternal +U err dAdZ
Winkl Pasternak K ) (20)

= PWinklsr + PPasternak + I:)Kerr

In the case of Winkler foundation model, the distributed
load can be defined by

I:)Winkler = KW(WO + g(pz) (21)
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where K,, is the modulus of subgrade reaction (elastic
coefficient of the foundation).

The Pasternak model foundation is a two-parameter
elastic model, which consists of a shear layer parameter
with stiffness Gy, G, are the shear moduli of the subgrade
(shear layer foundation stiffness). If the foundation is
homogeneous and isotropic, we will get G:=G,=G and K,, is
the modulus of subgrade reaction (springs stiffness). So, the
distributed reaction between Pasternak foundation model
and the lower surface of FG plate can be defined by

PPastemak = Kw (WO + g¢z)
0*(w+94) . 0(w+94) (22)
T o Ty 6y2

Clearly, the Pasternak model can reduce to the Winkler
foundation model when considering G,=G,=0. The Kerr
model foundation is a three-parameter elastic model
consists of a shear layer (with stiffness K) independent
upper (with stiffness K,,) and lower (with stiftness K)) elastic
layers (modeled by distributed springs). The distributed
reaction of Kerr foundation model is defined as follow
(Kneifati 1985)

KK,
PKerr = [KITKUJ(WO + g¢z)
_( KK, J{az(wo+g¢z)+62(wo+g¢z)}

K, +K, o’ oy?

(23)

Since the employed Kerr foundation has not been
considered for the displacement field of quasi-3D plate
theories, it is a novel work in the open literature.

The variation of the work done by the external applied
forces can be expressed as

N = —jq&Ndxdyz —I(&NO +9(2)dp), dxdy (24)
A A

The variation of kinetic energy is expressed as

h

—

SK=[ [ p@)[us i+Vs v+isw] dzdQ
Q

NES

Iy [UgSUy +V SV, +Viy Sy |

ox ox oy oy

klA'uoagﬁmA'&uﬂ? 25)
— a&; aéx @
+k2\‘/ow+ kZBI(WDE

+|2[%aswo +%a(swﬂ

Il
De—

7Oy 000\ 00W, 00
OX 0Ox

OX OX
. A - . -3
kB M 00\ 5. 00W, 06
oy oy oy oy
+K, kalz%@‘szzBQ%@ +
oX OXx oy oy

33 [, + 6,0, |+ K34,04,

+k,A

1
+J,

where  dot-superscript ~ convention  indicates  the
differentiation with respect to the time variable #; p(z) is the
mass density; and (lo, /1, Ji, J;, L, J2, K2, K;) are the
mass inertias defined as

(1011, 31,35015,3,,35,35 ) =

(26)

— i

(1,z, f,g,22,2f, fz,gz)p(z)dz

NS

Substituting Egs. (18), (20), (24) and (25) into Eq. (17)
and integrating by parts, and collecting the coefficients of
(8.10,&/0,§N0,$,c5‘¢72), the following equations of motion are
obtained
N, Ny Oy | Ow 3%

x oy Cat adtt Toxat?
N, oN Ry ow, %0
5V°:Txy+ﬁy:'°?0_ 1c7y3t02 e

oM, oM, &M
+

ouy

. Xy
oWy - o o +2 o0y + Puyinider + Prasternak
o%w, Py,
JrPKerrJrqzloinrll P 2
ot oxot”  oyot

o'w,  o'w, o' o' %
-1y 202+ 202 +J, 2 T2 ""]1S 2Z
axzt?  oylot axzot?  oylot
2 27)
0°S 0
80:-kS, —k,S, +2—2 0y Ry _
oxoy  Ox oy

3, 3, 4, 4
-, 0 u02 N 0 v02 3, 02w02 N 62w02
oxot® oyt ox“ot™  oy“ot

2o, 20
3 axzatz ayZatZ
:anz +6Qﬂ
OX oy

A
atz

4,

- Nz + PWinkler + PPasternak + PKerr =

A2
0w,
atZ

3 +J;

and the following boundary conditions are obtained at
(x=0,a) and (=0,b)

=0, atx=0,a (28a)

aty=0,b (28b)

Substituting Eq. (9) into Eq. (14) the subsequent results
into Eq. (19), the stress resultants are obtained as

N, A, A, 0O B, B, 0 By B, 0 L|lg
N y A, A, 0 B, B, 0 B, B, 0 Ljle 3
N, 0 0 A, 0 0 By, O 0 By O }/gy
M X Bll Blz 0 Dll Dlz 0 Dlsl Dlsz 0 La k)?
M, _ B, B, 0 D, D, 0 D, D, 0 L k? ( 29a)
M, 0 0 B, 0 0 Dy O 0 D 0|k
S| |By B, 0 D D, 0 H) H, 0 RIk
S,| |By By 0 D, D; 0 H; H; 0 Rk
Sy 0 0 By; 0 0 Dg O 0 Hg 0|k,
NJ L L o I* I* 0 R R 0 Zflg
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{Q”}= A 0 (29b)
sz 0 A‘SSS 782
where
Ail Bl 1 Dl 1 Blsl Dlsl H 15 1
A12 BlZ D12 Blsz Dlsz Hlsz =
A\ss BGG DGG BSSB DE?B H 26
i 1-v (30a)
2 14
I/l(z)[l,z,zz,f,zf,fz] 1 tdz
—2 1-2v
2v
L) , 1
La 2 VA
R( I/I(Z) f 9'dz (30b)
h d-v
Z 2 g
Vv
Where
E(2)v(2) E(2)
A(z) = d -_ =2
= oh—2o] O T e 300

By substituting Eq. (29) into Eq. (27), the equations of
motion can be expressed in terms of displacements

(a"o'&o’&vo'dgl&”z) as
00, oo,

oW,
Oug i Lug + ALy, —L,—+L,—+ =0
o - Lilg + ALy, x o
OV - Ay Lolg + LsVo — Ly ﬂ"’ |-6%+La(pZ =0
oy oy
ou, ov
aNO : L3(a_;+EOJ_ L7W0 + L30+ Lg(”z :O (31)

ou oV,
$ :—L4 a—XO—LG 6_y0+ ngo —L106+ L11¢Z :0
ou, 0oV,
o, .L( 8)? +EJ+L Wy + L0+ L0, =0

where the operator L; are given by
2 82 o2

0 _
L, =AV5 -1, Pk L, :(V+V)8x_6'y’l'3 =BV’ - |1¥

5 o a0 , 07
L, = B“((kl +k2v)+v(k1A+sz)yJ—JlklAg,

62

2

at 2 S
Ly —Bn((k v+k, )+ (k, Ak B)aa J J.k B'gt

Ls = AuV3 = 1o

2
K, K
Ly =DV +(1o - |2v2)%+ Ky —G,V? +[4j

K, +K,
_ Ks Ku VZ
K +K,

2 64
(ky +kov)—5+2(kgA'+k,B")V N
Ls = Dlsl X0y
2
+(kyv +ky) 5
2 2 A2
~3 [klA . +kZB'§yZJ§t2
2 !
(ki +kv)—5 +2(k A+ kB )V ——;
Lg =Dp; o
2
(k1v+k2) 5

K —GV2+ &
h K, +K,

KS KU ]VZ

Lg—l_avz—ﬁi+
- 161:2 g [

K, +K,

Lo = H51 (K€ + 2vicley + K¢ )

+[[VHM(kA+kB)§; (KA A ] (klA)szst2 ;szz
2 2 2
+[[VHM(kA+kB);( (kB A ](kB) ;2];2

ol o°
Ly, = A°| K,A'— +k,B'— |- R(k, +k;,)
o’ oy*
KK
Ky =GV +| -
v +(K,+Kuj

KK, o
K| +K,

L, —ASVZ—Ra—KSi+
12 = 250 g {

2 2
L13—A{k Akl ]
ox?

oy*?
KWGWz{M]
0 K, +K
L, =AV2+Z-K5—+g v
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at _[ KKy V2
K, +K,
in which
2 2 2 2
Vie_4v—, V§=a—2+va—2,
ox* o oy? oy oX (33)
2 2
2 a_z+a_z’ v VZ(VZ), 7:1—‘/
ox2 oy 2

3.2 Analytical solutions

In this section, analytical solutions for bending and free
vibration are presented for a simply supported rectangular
plate under transverse load ¢g. Based on the Navier
approach, the solutions are assumed as

Up (x,¥,) U cos{ex)sin(3y "
Vo (%, y,t) =i G~ |Vn sin(ax) cos( By " (34)
WO(Xv yvt) m=1n=1 \NmnSin(oo()sm(ﬂy)elwt
0(x, y,t) O iy Sin(ax)sin(By '
where Uun, Vin, Wmn, Omn, are Fourier coefficients to be
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determined for each pair of m and n.
with

a=mrf/a, f=nzx/b (35)

The transverse load ¢ is expanded in the double-Fourier
sine series as

q(x,y)= ZZansin axsin By (36)
m=1n=1
Where
sl in crxsin Aydxd
Qum = EL IO q(x, y)sinaxsin Bydxdy
g, for sinusoidally distributed load, (37)
- &%2 for uniformaly distributed load
mnz

Substituting Eqs. (34) and (36) into Eq. (31), the
analytical solutions can be obtained from the following
equations
Su S22 Sz S S5
S12 S22 S23 S S

S S S S
S13 Sz23 S33 S3y S35 U, 0
S14 S24 Sza Sas Sss Vv 0
mn
S15 Sp5 S35 Sp5 Sss W _
mn =93 Qmn 1 (38)
m; 0 my; m, O
(©) 0

0 my my; My

—W" | My Myz Mgz Mgy Mgy
My My Mg my 0

0 0 mgpy 0 mg

Where
s = Ay (@ +Vp%)
Sy =0f Ay (v+V)
S13 =—Bp[(v + 217)aﬂ2 +a’]
S14 =Bhal(ky +vky) -V (k Ak, B) %]
S5 =—La
S22 = Au (B +va?)
Sp3 =Bup(a® + B%)
Sa4 = BBl Ky +Kp) =V (ki A4k, B’
S5 =—LS (39)
S33 = Dll(az + /32)2 + Proundatios
Saq = D[k (@ +vB2) + 27 (k,A'+ k,B Yo 2
—k; (va® + )]
S35 = L° (052 + p? )+ 9Pfoundatios
Su = Hfl(kf K2+ 2vkgK, + 7 (KAt kB 'Y azﬂz)
+A (kA% o +Kk3B7 47
sis =—A( A e +K,B8 %)~ R(k; +k,)

Sg5 = AS (0{2 + ,82 )+ Z + 9Psoundatios

Table 1 Material properties of FGM constituents

Material Properties
Material ~ Elasticity Modulus,  Density, Poisson’s
E [GPa] o [kg/m3] Ratio, v
Aluminum (Al) En=70 pm=2702 v=0.3
Alumina _ _ _
(ALO3) E~=380 pc=3800 v=0.3

where mj; are the elements of generalized mass matrix and
the specific expressions of them are also given by
Mgy =1y,
m13 = —0!| 1>
My, = Iy,
Mg ==Bl1, My ==J1K,B' B,
2, p2
Mye =3,k A'a? +K,8 B2),

(40)

Mg =J7
My =I5 (K2 A2 &? +kZB2 2,
Mg =J3

4. Numerical results and discussions

In this section, Numerical results for are presented and
discussed to verify the accuracy of the present theory in
predicting the bending and free vibration responses of
simply supported of porous FG plates resting on elastic
foundations chosen as Winkler, Pasternak or Kerr
foundation. The present results are computed using the
present quasi-3D theory with only 5 unknowns. To illustrate
the proposed approach, a ceramic-metal functionally graded
plate is considered. Material properties of the used materials
are shown in Table 1.

For convenience, the following dimensionless forms are

used:
7=2_ s—a/h, j_100E W(E,E,O],
h qohs4 2 2
&, = 120{3,9, j PR [3,9,2]
QoS 2 0oS? 27272

. 1 b
) remgsnloze)

P [i,o,oj, 6:100[} u(o,g,—ﬁj,
0o 2 2

~_100D; (a b h? ab h
W— 4 1 b X:_ZO-X v |
o 2 2 oS 22 2

h? h - 1 b
=——7,00-=1 , =—7,0—-,0],
Y gea? Txy( 2) Fa o TXZ( 2 )

_ 100E, u[ﬁ b E] ~_10E, fab Ej
qas® \2°2° )" " geas® (2727 )

Q1

all

<l
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Table 2 Effect of normal strain &. on the dimensionless stresses and transversal displacement for isotropic square

plate (a/h=10) subjected to a UD

Theory W(al2,b/20) 6,(h/2) ,(h/2) 7, (n/2) 7,(0,b120) 7,(al200)
Exact 3D (Srinivas ef al. 1970a) 4.639 0.290 0.290 / 0.488 /
Shimpi ez al. (2003) €, # 0 4.625 0.307 0.307 0.195 0.505 0.505
Hebali et al. (2014) &, # 0 4.631 0.276 0.276 0.197 0.481 0.481
Benahmed ef al. (2017) &, # 0 4.633 0.302 0.302 0.197 0.481 0.502
Present €, # 0 4.639 0.288 0.288 0.197 0.491 0.491

Table 3 Dimensionless in-plane longitudinal stress &, and displacement w for FG square plate subjected to a

sinusoidal load

, Theory o (h/3) W (al2, b2, 0)
a/h=4 a/h=10 a/h=100 a/h=4 a/h=10 a/h=100
Carrera et al. (2011) g, # 0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625
| Neves et al. (2012) &, # 0 0.5925 1.4945 14.969 0.6997 0.5845 0.5624
Hebali et al. (2014) €, # 0 0.5952 1.4954 14.963 0.6910 0.5686 0.5452
Present €, # 0 0.5848 1.4623 14.619 0.6916 0.5695 0.5461
Carrera et al. (2011) &, # 0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
4 Neves et al. (2012) €, # 0 0.4404 1.1783 11.932 1.1178 0.8750 0.8286
Hebali et al. (2014) €, # 0 0.4507 1.1779 11.871 1.0964 0.8413 0.7926
Present €, # 0 0.4375 1.1396 11.478 1.0983 0.8424 0.7934
Carrera et al. (2011) g, # 0 0.1478 0.8965 8.9077 1.3745 1.0072 0.9361
10 Neves et al. (2012) &, # 0 0.3227 1.1783 11.932 1.3490 0.8750 0.8286
Hebali et al. (2014) €, # 0 0.3325 0.8889 8.9977 1.3333 0.9791 0.9114
Present €, # 0 0.3136 0.8549 8.6648 1.3506 0.9791 0.9143
- 1 ( ab Ej =R (00 z) agreement to thgse predicted using theories that consider
qS \2'2"7) Y AP thickness stretching.
. ) ) Table 4 exhibit the effects of foundation stiffness and
- 1 b - . Ka" . Ka® Kb . 4 . :
T =——T, (0,_, zj e e power index p on non-dimensional displacement and stress
oS 2 h® hv by components of simply supported rectangular plate under
- K, — Gpaz 7 Ka* - K.’ - K.a2 uniformly distributed load and as compared with those
" p, P D, > M D, ' D, ° D, given by Thai and Choi (2011) and Zenkour and Sobhy

_ 2
a):a)a? Pm! En

4.1 Results of bending analysis

In order to verify the numerical precision of the theory
and the formulation, we obtained the results of stresses and
transversal displacement for homogeneous isotropic plates
(»=0) subjected to uniform load by the current theory and
compared to those obtained for bending by the exact
solution carried out by Srinivas et al. (1970) and quasi-3D
solutions given by Shimpi et al. (2003), Hebali et al. (2014)
and Benahmed et al. (2017) as shown in Table 2. The
agreeability between the present results and the published
ones can be clearly noted.

Table 3 shows the non-dimensional transverse
displacement w and axial stress &, for thick square plates
subjected to a sinusoidal load. The obtained results are
compared with quasi-3D solutions given by Neves et al.
(2012), Hebali et al. (2014) and with those obtained using
finite element approximations by Carrera et al. (2011). It
can be observed that our results are in an excellent

(2013) in which the thickness stretching effect is neglected
(&, =0), we see that the results overestimates the
deflections and stresses, and this is attributable to the
thickness stretching effect, which is omitted in the theories
developed by these references. Also,it can be observed from
the table that the results of quasi-3D shear deformation
theories given by Benahmed ef al. (2017) are in an excellent
agreement for all values of the power-law index and
foundation stiffness.

Afterhaving proceeded to the validation of the current
quasi-3D theory of the plates. We wish to study the
influence of the effect of normal deformation (stretching
effect) on the performance of imperfect plates containing
porosities. Table 5 shows the effect of power index p on the
non-dimensional displacement and stress components of
square plates subjected to sinusoidal loading (a/A=10) and
non-porous functional levels (¢=0) and compared to those
given by Zenkour (2006), Thai and Kim (2013), Mantari. et
al. (2012) and Nguyen et al. (2014) without stretching
effect (¢, = 0) and quasi-3D solutions with stretching effect
(e, # 0 ) given by Carrera et al, 2008 and Wu and Chiu,
2011. Table 5 shows that excellent agreement is obtained
for all values of the power law index. Then, the results of
the non-dimensional displacement and stress components of
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Table 4 Comparison of the displacements and stresses of simply supported rectangular plate under uniformly

distributed load (a=10h, b=3a)

p ky, ks Theory i(—h/2) w(0) Gy(—h/2) Ty (=h/2) Ty (0)
Thai and Choi (2011) 0.3491 1.9345 0.2337 0.0941 -
0 0 Zenkour and Sobhy (2013) 0.34919 1.93441 0.23372 0.09415 7.68354
Benahmed et al. (2017) 0.33498 1.90215 0.23941 0.09007 7.56253
Present €,, # 0 0.33516 1.90422 0.23272 0.09026 7.38728
Thai and Choi (2011) 0.3358 1.8590 0.2242 0.0916 -
05 100 0 Zenkour and Sobhy (2013) 0.33586 1.85907 0.22424 0.09167 7.42978
Benahmed et al. (2017) 0.32246 1.82955 0.22989 0.08774 7.31675
Present €,, # 0 0.32261 1.83143 0.22346 0.08793 7.14708
Thai and Choi (2011) 0.3012 1.6640 0.1999 0.0850 -
100 100 Zenkour and Sobhy (2013) 0.30131 1.66399 0.19989 0.08503 6.76069
Benahmed et al. (2017) 0.28991 1.64138 0.20536 0.08151 6.66745
Present €,, # 0 0.29000 1.64282 0.19961 0.08168 6.51483
Thai and Choi (2011) 0.6564 3.2266 0.4395 0.1766 -
0 0 Zenkour and Sobhy (2013) 0.65655 3.22672 0.43961 0.17666 6.91072
Benahmed et al. (2017) 0.60340 3.07560 0.44695 0.16202 6.79513
Present €,, # 0 0.60465 3.08188 0.43926 0.16248 6.60914
Thai and Choi (2011) 0.6156 3.0218 0.4105 0.1690 -
) 100 0 Zenkour and Sobhy (2013) 0.61576 3.02190 0.41060 0.16906 6.53895
Benahmed et al. (2017) 0.56771 2.88981 0.41881 0.15538 6.44548
Present €,, # 0 0.56881 2.89532 0.41156 0.15582 6.26874
Thai and Choi (2011) 0.5186 2.5364 0.3423 0.1501 -
100 100 Zenkour and Sobhy (2013) 0.51872 2.53642 0.34233 0.15020 5.63882
Benahmed et al. (2017) 0.48189 2.44460 0.35187 0.13875 5.59033
Present €,, # 0 0.48267 2.44849 0.34570 0.13911 5.43906
Thai and Choi (2011) 0.7802 3.8506 0.5223 0.2103 -
0 0 Zenkour and Sobhy (2013) 0.78046 3.85174 0.52237 0.21044 6.14557
Benahmed et al. (2017) 0.72061 3.69376 0.53104 0.19389 6.03129
Present €,, # 0 0.72112 3.69681 0.52200 0.19418 5.82417
Thai and Choi (2011) 0.7230 3.5620 0.4816 0.1996 -
5 100 0 Zenkour and Sobhy (2013) 0.72323 3.56296 0.48167 0.19975 5.75485
Benahmed et al. (2017) 0.66999 3.42857 0.49132 0.18445 5.66241
Present €,, # 0 0.67041 3.43116 0.48295 0.18472 5.46811
Thai and Choi (2011) 0.5922 2.9046 0.3897 0.1740 -
100 100 Zenkour and Sobhy (2013) 0.59231 2.90518 0.38971 0.17410 4.84302
Benahmed et al. (2017) 0.55294 2.81786 0.40060 0.16159 4.79288
Present €,, # 0 0.55318 2.81942 0.39373 0.16182 4.63122

perfect and imperfect FG plates with a symmetric
distribution (FGM I) are calculated and tabulated in Table 5.
The comparisons between the current results and the
available results obtained by Zenkour (2019) are in good
agreement for all cases.

Table 6 exhibit the effects of the elastic foundation
parameters (K, Gp) and side-tothickness ratio a/h on the
deflections W. For this, three types of pore distribution
were considered, uniform distribution of porosities (FGM
I), unequal distribution of porosities (FGM II) and
imperfect materials with logarithm unequal distribution of
porosities (FGM III). It is clear that for uneven porosity
distributions the deflections W increase with the increase
of the porosity volume fraction @ without or resting on
elastic foundation and deflections w decrease when a/h
increase. In addition, the deflections are decreasing with the
existence of the elastic foundations. The inclusion of the

Pasternak’s foundation parameters gives results more than
those with the inclusion of Winkler’s foundation parameter

Table 7 exhibit the effects of the Kerr foundation
parameters (K,,K;), volume fraction indices p and side-
to-thickness ratio a/k on the non-dimensional deflection w,
of square isotropic and FG plates resting on Kerr foundation
(K, = 100)on the basis of the present quasi-3D shear
deformation plate theories. As it can be seen, that upper
spring and shear layer parameter have rising effects. The
shear parameter has more effect than the lower and upper
spring constants. As another verification attempt, it can seen
that the non-dimensional deflection w of FG plate
embedded in Kerr foundation are small than those
embedded in Winkler and Pasternak foundations due to an
extra upper spring.

The variations of Non-dimensional stress &, of
nonporous and porous FG square plates versus the Kerr
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Table 5 Comparisons of dimensionless stresses and displacements of functionally graded porous square plates
subjected to sinusoidal load

Method a/h=10

P ehocs a(=h/9) w0 5(1h/3)  Tyuy(h/6)  Tuy(=h/3)
a=00 0216337 0293938  1.303085  0.212331 0.700122

o Zenkour (2019) &7, # 0 a=01 0229953  0.312438  1.303085  0.212331 0.700121
Present a=00 0216724 0294236 1.322308 0211924 0.701028

a=01 0.230364 0312754 1322308  0.211924 0.701028

Nguyen ef al. (2014) ¢,, = 0 0.641300  0.589000  1.489000  0.261100 0.611100

Carrera et al. (2008) &,, # 0 0.643600  0.587500  1.506200  0.251000  0.608100

Wu and Chiu (2011) &, # 0 0.643600  0.587600  1.506100  0.251100 0.611200

Zenkour (2006) &,, = 0 0.662600  0.588900  1.489400  0.262200 0.611000

X Mantari ef al. (2012) &,, = 0 0.639800  0.588000  1.488800  0.256600  0.610900
Thai and Kim (2013) &,, = 0 0.641400  0.589000  1.489800  0.260800 0.611100

a=00 0.587959  0.569038  1.434203  0.261088 0.565518

Zenkour (2019) &5, # 0 a=01 0701623  0.655782  1.458887  0.266506 0.546517
Present a=00 0.588612  0.569540  1.462255  0.260588 0.566008

a=0.1 0702349  0.656340  1.487920  0.265995 0.546960

Neguyen ez al. (2014) 0.898200  0.757300  1.395900  0.274200  0.544200

Carrera et al. (2008) &,, # 0 0.901200  0.757000  1.414700  0.249600  0.542100

Wu and Chiu (2011) &,, # 0 0.901300  0.757100  1.413300  0.249500  0.543600

Zenkour (2006) &,, = 0 0.928100  0.757300  1.395400  0.276300  0.544100

5 Mantari et al. (2012) &,, = 0 0.895700  0.756400  1.394000 0274100  0.543800
Thai and Kim (2013) &,, = 0 0.898400  0.757300  1.396000  0.273700  0.544200

Zenkour (2019) &, # 0 a=00 0.807013  0.721361  1.325404  0.274742 0.493683
a=0.1 1.049624  0.885498  1.332625  0.284519 0.453813

Present a=00 0.808897  0.722455  1.358142  0.273311 0.494670

a=0.1 1.052371  0.887131  1.366945  0.282911 0.454865

Neguyen ez al. (2014) 1.050000  0.881600  1.179200  0.254600  0.566900

Carrera et al. (2008) &,, # 0 1.054100  0.882300  1.198500  0.236200  0.566600

Wu and Chiu (2011) &,, # 0 1.054100  0.882300  1.184100  0.236200  0.567100

Zenkour (2006) &,, = 0 1.094100  0.881900  1.178300  0.258000  0.566700

A Mantari ef al. (2012) £, = 0 1.045700  0.881400  1.175500  0.262300  0.566200
Thai and Kim (2013) &,, = 0 1.050200  0.881500  1.179400  0.253700  0.566900

a =00 0.942715  0.841682  1.103477  0.255831 0.514100

Zenkour (2019) &, # 0 a=01 1310574  1.082177  1.043439  0.267216 0.479271
Prosent a =00 0.944523  0.842353  1.139552  0.253065 0.514878

a=0.1 1313739 1.083384  1.081856  0.263691 0.480244

Nguyen et al. (2014) 1.075900  0.974600  0.947300 _ 0209400  0.585700

Carrera et al. (2008) &,, # 0 1.083000  0.973800  0.968700  0.226200  0.587900

Wu and Chiu (2011) &,, # 0 1.083000  0.973900  0.962200  0.226100  0.588300

Zenkour (2006) &,, = 0 1.134000  0.975000  0.946600 0212100  0.585600

; Mantari ef al. (2012) £, = 0 1.070900  0.973700  0.943100  0.214000  0.585000
Thai and Kim (2013) &,, = 0 1.076300  0.974600  0.947700  0.208800  0.585800

Zenkour (2019) &, % 0 a =00 0.982899  0.944138  0.886117 0210366  0.540509
a=01 1393026 1.232257  0.785381  0.210846 0.511665

Prosent a =00 0.982757 0943841  0.920533  0.208281 0.540263

a=01 1393060  1.231426  0.822481  0.208014 0.511488

Table 6 Variations of deflection W(0)of perfect and imperfect FG square plates versus the Winkler-Pasternak
foundation stiffness (p=1)

- Perfect Imperfect I (even) Imperfect II (uneven) Imperfect 111 (logarithmic-uneven)
(Kw,Gp) (a/h) — — — - — — —

a=0 a=0.2 a=0.5 a=0.2 a=0.5 a=0.2 a=0.5
5 0.6397 0.8675 2.4657 0.6995 0.8243 0.6963 0.7976
(0,0) 10 0.5695 0.7797 2.3254 0.6180 0.7173 0.6155 0.6963
20 0.5518 0.7576 2.2899 0.5974 0.6903 0.5951 0.6707
5 0.5785 0.7585 1.7473 0.6269 0.7253 0.6244 0.7046
(100,0) 10 0.5200 0.6897 1.6721 0.5601 0.6404 0.5580 0.6236
20 0.5049 0.6719 1.6523 0.5428 0.6184 0.5409 0.6027
5 0.2001 0.2177 0.2584 0.2055 0.2149 0.2052 0.2130
(100,100) 10 0.1913 0.2103 0.2554 0.1965 0.2054 0.1962 0.2037

20 0.1886 0.2078 0.2544 0.1936 0.2024 0.1934 0.2007
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Table 7 Non-dimensional deflection W of square isotropic and FG plates resting on Kerr foundation (K; = 100)

— — Isotropic plate FG plate

Ky Ks a/h Ceramic Metal =05 =1.0 »=2.0 =5.0
20 0.277131 1.363622 0.416313 0.527335 0.658800 0.778160

100 0 10 0.287172 1.409126 0.429470 0.543630 0.681242 0.814469
5 0.326733 1.584470 0.481184 0.607582 0.769141 0.959577
20 0.189785 0.417700 0.246124 0.281089 0.314517 0.339377

100 100 10 0.194842 0.423748 0.251300 0.286419 0.320423 0.347141
5 0.213199 0.441534 0.269583 0.304953 0.340607 0.372736
20 0.170918 0.336057 0.215300 0.241581 0.265859 0.283409

200 100 10 0.175123 0.340379 0.219420 0.245704 0.270285 0.289054
5 0.190054 0.352272 0.233574 0.259616 0.284942 0.307042
20 0.123992 0.192678 0.145788 0.157371 0.167313 0.174101

200 200 10 0.126414 0.194602 0.147957 0.159423 0.169379 0.176566
5 0.134441 0.198825 0.154778 0.165710 0.175567 0.183642

Table 8 Variations of Non-dimensional stress a, (h/3) of perfect and imperfect FG square plates versus the Kerr

foundation stiffness (p = 1,K; = 100)

(R,K) a/h Perfect Imperfect I (even) Imperfect I (uneven)  Imperfect 111 (logarithmic-uneven)
ws a=0 a=0.2 a=0.5 a=0.2 a=0.5 a=02 a=0.5
20 2.794258 2.869319 3.541020 2.710523 2.529268 2.714962 2.568618
(100, 0) 10 1.395791 1.432925 1.767293 1.352675 1.259340 1.354961 1.279601
5 0.694908 0.712684 0.876936 0.670874 0.618868 0.672148 0.630149
20 1.489524 1.314269 0.844666 1.393629 1.213730 1.398478 1.250109
(100, 100) 10 0.736002 0.649063 0.418658 0.686925 0.594999 0.689407 0.613566
5 0.352375 0.310496 0.203453 0.325913 0.276706 0.327249 0.286593
20 1.280190 1.104625 0.666849 1.190994 1.026720 1.195476 1.059631
(200, 100) 10 0.631562 0.544821 0.330469 0.586028 0.502311 0.588315 0.519061
5 0.300999 0.259829 0.160822 0.276675 0.232297 0.277894 0.241128
20 0.834003 0.687288 0.370190 0.766648 0.647145 0.769990 0.670641
(200, 200) 10 0.410234 0.338304 0.183540 0.376041 0.315489 0.377736 0.327377
5 0.194416 0.161145 0.090022 0.176474 0.144945 0.177362 0.151101
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Fig. 2 Through-the-thickness distribution of wof isotropic FG non-porous and porous square plates resting on Kerr elastic
foundations (a) for different parameters of foundations and for different porosity factor (a) Imperfect I (even), (c) Imperfect 11
(uneven) and (d) Imperfect I1I (logarithmic-uneven) (=10 h, p=5, K, = 100)



48 Miloud Kaddari et al.

Fig. 3 Variation of w versus the side-to-thickness ratio a/h of FG non-porous and porous square plates resting on kerr
foundations (a) for different parameters of foundations and for different porosity factor (b) Imperfect I (even), (c) Imperfect II
(uneven) and (d) Imperfect III (logarithmic-uneven) (p=5, K; = 100)
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Fig. 4 Variation of W versus the aspect ratio a/b of FG non-porous and porous square plates resting on Kerr foundations (a)
for different parameters of foundations and for different porosity factor (b) Imperfect I (even), (¢) Imperfect II (uneven) and
(d) Imperfect III (logarithmic-uneven) (a=10 h, p=5, K; = 100)

foundation stiffness (p = 1,K; = 100) is considered to are investigated. Various length to thickness ratio and
study the influence of increasing porosity volume index. porosity parameter are presented. The results are listed in
For the porous FG plate, three kinds of porosity distribution Table 8. It is noted that the non-dimensional stress of the
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Fig. 5 In-plane normal stress a, through-the-thickness distributions of FG non-porous and porous square plates resting on
Kerr foundation (a) for different parameters of foundations and for different porosity volume index (b) Imperfect I (even), (c)
Imperfect II (uneven) and (d) Imperfect 111 (logarithmic-uneven) for different porosity volume index (a=10h, p=5, K, = 100)

Table 9 Non-dimensional natural frequencies &=wh,/p/G of an isotropic square plate with v=0.3 and a/A=10

Mode (m, n)
Model WL (L) 22 23 (.3 (24 (1,5)
Exact 3D (Zhou et al. 2002) 00932 02226 03421 05239  0.6889 07511  0.9268
Jha et al. (2013) &, # 0 00932 02226 03421 05240 0.6892 07515  0.9275
Akavei and Tanrikulu (2015) &, # 0 00932 02227 03424 05247  0.6902  0.7526  0.9290
Benahmed et al. (2017) &, # 0 00932 02229 03425 05248  0.6904 07528  0.9294
Farzam-Rad et al. (2017) &, # 0 00932 02227 03423 05243 0.6896 07520  0.9284
Shahsavari et al. (2018) &, # 0 00932 02226 03421 05240 06892  0.7514  0.9274
Present &, # 0 00932 02226 03421 05240  0.6891  0.7513  0.9273

plate FG decreases as the parameters of the upper layer
(K,) and the shear layer (K;) of the spring increase. It is
important to note that the shear layer parameter is more
efficient than the other two parameters of the upper and
lower layer (K,,K;). We note that for a logarithmic
distribution of uneven porosity, the stress &, increases.
The logarithmic function has a significant effect on high
porosity volume indices and has no significant effect on low
porosity volume indices. Also, it is important to point out
that the Kerr elastic foundation plays an important role in
imperfect FG plate responses.

As another verification attempt, it can seen that the
fundamental frequencies @ of FG plate embedded in Kerr
foundation are bigger than those embedded in Winkler and
Pasternak foundations due to an extra upper spring.

Fig. 2 shows the deflection w through-the-thickness of
FG non-porous and porous square plates resting on Kerr
foundations (a=10h, p=5, K; = 100). The deflection w
decreases as as the parameters of the upper layer ( K,) and
the shear layer (K,) of the spring and porosity volume

fraction a increase.

Fig. 3 display the variations of the the non-dimensional
deflection w versus the side-to-thickness ratio a/h of FG
non-porous and porous plates resting on Kerr foundations
(p=5, K, = 100). It is also observed that the deflection w
decreases with increase two parametres ( K,,, K;), porosity
volume fraction « and ratio a/h.

Fig. 4 illustrate the wvariations of the the non-
dimensional deflection W as functions of the aspect ratio
a/b of FG non-porous and porous plates resting on Kerr
foundations (a=10h, p=5, K, = 100). It can be noticed that
the w decreases with increase two parametres ( K, K;)
and decrease directly as a/b increases, as shown in Fig. 4a.
It can be noticed that when porosity volume fraction o
increase, non-dimensional deflection w increase. Also, it
observed that the deflection w for even porosité is bigger
than an other distribution.

Fig. 5 displays the in-plane normal stress &, of FG
non-porous and porous square plates through the thickness
resting on Kerr foundations (a=10 h, p=5, K, = 100). The
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Fig. 6 The shear stress T,, through-the-thickness distributions of FG non-porous and porous square plates resting on Kerr
foundation (a) for different parameters of foundations and for different porosity volume index (b) Imperfect I (even), (c)
Imperfect II (uneven) and (d) Imperfect I1I (logarithmic-uneven) for different porosity volume index (a=10h, p=5, K; = 100)

Table 10 Non-dimensional natural frequencies

w=wh\p,!E,

of FG plate ¢, #0

ai Model a/b=0.5 a/b=1
p=0 p=1 p=2 p=20 p=1 p=2
Exact 3D (Jin et al. 2014) 0.9570 0.7937 0.7149 1.8470 1.4687 1.3095
Mantari et al. (2014) e, # 0 1.3040 1.0346 0.9293 1.8505 1.4774 1.3219
2 Farzam-Rad et al. (2017) €, # 0 0.9570 0.7961 0.7193 1.8528 1.4788 1.3226
Shahsavari et al. (2018) €, # 0 1.3039 1.0345 0.9293 1.8503 1.4772 1.3218
Present &, # 0 1.3038 1.0344 0.9292 1.8500 1.4770 1.3216
Exact 3D (Jin et al. 2014) 0.00713 0.2088 0.1888 0.4169 0.3222 0.2905
Mantari et al. (2014) ¢, # 0 0.2712 0.2115 0.1926 0.4168 0.3260 0.2961
5 Farzam-Rad et al. (2017) &, # 0 0.2714 0.2116 0.1926 0.4170 0.3262 0.2961
Shahsavari et al. (2018) €, # 0 0.2712 0.2115 0.1926 0.40068 0.3260 0.2961
Present €, # 0 0.2712 0.2115 0.1926 0.4168 0.3260 0.2961
Exact 3D (Jin et al. 2014) 0.0719 0.0550 0.0499 0.1135 0.0870 0.0789
Mantari et al. (2014) €, # 0 0.0718 0.0557 0.0510 0.1135 0.0882 0.0806
10 Farzam-Rad et al. (2017) €, # 0 0.0719 0.0558 0.0510 0.1136 0.0882 0.0806
Shahsavari et al. (2018) €, # 0 0.0718 0.0557 0.0510 0.1135 0.0882 0.0806
Present €, # 0 0.0718 0.0557 0.0510 0.1135 0.0882 0.0806

tensile stress &, increases along the lower half-plane by
increasing the two parametres ( Ky, K;) and is increase
with the increase of the porosity volume fraction a. But,
the tensile in-plane normal stress &, decrease along the
upper half-plane by increasing the two parametres
(Ku, Ks).

Fig. 6 shows the shear stress 7,, in FG non-porous and
porous plates through-the-thickness for different values of
the foundation stiffnesses (K, K;) and the porosity

volume fraction a, respectively (a=10h, p=5, K, = 100).
One can note that the shear stress T,, decreases by
increasing the foundation stiffnesses (K, K;) and
increases in 0.2h < z < 0.5h and decreases in —0.5h <
z < 0.2h by increasing the porosity volume fraction a.

4.2 Results of vibration analysis

Table 9 shows the non-dimensional natural frequencies
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Table 11 Non-dimensional fundamental frequencies @=w h‘[ pn ! By of square isotropic and FG plates resting on

Winkler-Pasternak foundations

K., Gy a/h Model 0 G rl) 2 5
Benahmed et al. (2017) &, # 0 0.0291 - 0.0226 0.0207 -
20 Baferani e al. (2011) e, =0 0.0290 0.0249 0.0227 0.0209 0.0197
Shahsavari et al. (2018) &, # 0 0.0291 0.0248 0.0226 0.0206 0.0195
Present £, # 0 0.0291 0.0248 0.0226 0.0206 0.0195
Benahmed et al. (2017) &, # 0 0.1136 - 0.0883 0.0807 -
0 0 10 Baferani et al. (2011) 0.1134 0.0975 0.0891 0.0819 0.0767
Shahsavari et al. (2018) €, # 0 0.1135 0.0970 0.0882 0.0806 0.0755
Present ¢, # 0 0.1135 0.0970 0.0882 0.0806 0.0755
Benahmed et al. (2017) &, # 0 0.4174 - 0.3264 0.2965 -
5 Baferani et al. (2011) 0.4154 0.3606 0.3299 0.3016 0.2765
Shahsavari et al. (2018) &, # 0 0.4168 0.3586 0.3260 0.2961 0.2722
Present £, # 0 0.4168 0.3586 0.3260 0.2961 0.2722
Benahmed et al. (2017) €, # 0 0.0298 - 0.0236 0.0218 -
20 Baferani et al. (2011) 0.0298 0.0258 0.0238 0.0221 0.0210
Shahsavari ef al. (2018) &, # 0 0.0298 0.0257 0.0236 0.0218 0.0208
Present ¢, # 0 0.0298 0.0257 0.0236 0.0218 0.0208
Benahmed et al. (2017) €, # 0 0.1164 - 0.0924 0.0854 -
100 0 10 Baferani et al. (2011) 0.1162 0.1012 0.0933 0.0867 0.0821
Shahsavari et al. (2018) &, # 0 0.1163 0.1006 0.0923 0.0853 0.0809
Present ¢, # 0 0.1163 0.1006 0.0923 0.0853 0.0809
Benahmed et al. (2017) €, # 0 0.4286 - 0.3431 0.3158 -
5 Baferani et al. (2011) 0.4273 0.3758 0.3476 0.3219 0.2999
Shahsavari et al. (2018) &, # 0 0.4284 0.3734 0.3431 0.3159 0.2950
Present £, # 0 0.4282 0.3731 0.3428 0.3155 0.2946
Benahmed et al. (2017) &, # 0 0.0411 - 0.0386 0.0383 -
20 Baferani et al. (2011) 0.0411 0.0395 0.0388 0.0386 0.0388
Shahsavari et al. (2018) €, # 0 0.0411 0.0393 0.0386 0.0383 0.0385
Present ¢, # 0 0.0410 0.0393 0.0386 0.0383 0.0385
Benahmed et al. (2017) &, # 0 0.1614 - 0.1521 0.1509 -
100 100 10 Bafer‘ani etal. (2011) 0.1619 0.1563 0.1542 0.1535 0.1543
Shahsavari ef al. (2018) &, # 0 0.1616 0.1551 0.1525 0.1512 0.1521
Present &, # 0 0.1613 0.1548 0.1521 0.1509 0.1517
Benahmed et al. (2017) €, # 0 0.6089 - 0.5794 0.5752 -
5 Baferani et al. (2011) 0.6162 0.6026 0.5978 0.5970 0.5993
Shahsavari ef al. (2018) &, # 0 0.6137 0.5940 0.5856 0.5815 0.5843
Present g, # 0 0.6101 0.5898 0.5811 0.5769 0.5792

of a simply supported homogeneous square plate for
a/h = 10 using the present theory. The present solutions
which takes into account both the transverse shear and
transverse normal deformation are compared to those
obtained by Zhou et al. 2002 based on three-dimensional
elasticity solutions and those given by the quasi-3D shear
deformation theories by Jha et al. 2013, Akavci and
Tanrikulu 2015, Benahmed et al. 2017, Farzam-Rad et al.
2017 and Shahsavari et al. 2018. Good agreement is
achieved between the present solution and the published
ones.

Also, comparison of non-dimensional natural
frequencies is achieved in table 10 for various values of the
ratios a/b and a/h. Excellent correlation is observed
between the fundamental frequency obtained from the
present study and that of exact 3D (Jin ef al. 2014) and
quasi-3D (Mantari et al. 2014, Farzam-Rad et al. 2017 and
Shahsavari et al. 2018) results.

The non-dimensional natural frequency @ of isotropic
and FG plates versus the shear and Winkler parameters,

power law index p and thickness-length ratio a/h are
listed in Table 11. These results are predicted by the shear
and normal deformation theory which takes in account the
stretching effect as well as theories of Refs (Benahmed et
al. 2017, Shahsavari et al. 2018). It is obvious that the
current results concerning the non-dimensional fundamental
frequency of the FG plates integrated into the Winkler -
Pasternak foundations are almost identical.

Table 12 exhibit the effects of the elastic foundation
parameters (K, G,) and side-tothickness ratio a/h on the
natural frequencies @. For this, three types of pore
distribution were considered, uniform distribution of
porosities (FGM 1), unequal distribution of porosities (FGM
II) and imperfect materials with logarithm unequal
distribution of porosities (FGM III). It is clear that for
uneven porosity distributions the natural frequencies @
increase with the increase of the porosity volume fraction o
without or with elastic foundation and natural frequencies
@ increase when a/h increase. In addition, natural
frequencies @ increase with the existence of the elastic
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Table 12 Variations of frequency parameters wof perfect and imperfect FG square plates versus the Winkler-

Pasternak foundation stiffness (p=1)

o Perfect Imperfect I Imperfect 11 In‘lperf.‘ect I

(KW, Gp) a/h Model (even) (uneven) (logarithmic-uneven)
a=0 a=02 a=05 a=02 a=05 a=02 a=05

20 Shahsavari et al. (2018)  9.020 8.370 5.738 9.052 9.117 9.050 9.106

Present €, # 0 9.020 8.370 5.738 9.051 9.116 9.053 9.105

0,0) 10 Shahsavari et al. (2018)  8.818 8.203 5.659 8.845 8.896 8.843 8.889

’ Present ¢, # 0 8.818 8.203 5.659 8.842 8.895 8.859 8.887

5 Shahsavari ef al. (2018)  8.151 7.641 5.378 8.164 8.178 8.163 8.178

Present &, # 0 8.151 7.641 5.378 8.153 8.177 8.225 8.177

20 Shahsavari et al. (2018)  9.430 8.917 6.933 9.505 9.655 9.501 9.626

Present €, # 0 9.429 8.917 6.933 9.503 9.653 9.504 9.624

(100, 0) 10 Shahsavari et al. (2018)  9.231 8.753 6.850 9.301 9.438 9.298 9.412

’ Present £, # 0 9.228 8.750 6.848 9.296 9.434 9.312 9.408

5 Shahsavari et al. (2018)  8.577 8.203 6.559 8.636 8.738 8.632 8.719

Present &, # 0 8.569 8.196 6.553 8.617 8.729 8.709 8.711

20 Shahsavari et al. (2018) 15439  16.320 18.625 16.011 17.098 15.982 16.800

Present £, # 0 15430 16.313 18.621 16.002 17.089 15.975 16.871

(100,100) 10 Shahsavari et al. (2018) 15245  16.148 18.464 15.812 16.883 15.783 16.668
’ Present &, # 0 15211  16.118 18.446 15.777 16.850 15.758 16.635

5 Shahsavari et al. (2018) 14.640  15.595 17.872 15.192 16.221 15.164 16.016

Present &, # 0 14.528 15.477 17.731 15.073 16.100 15.080 15.896

Table 13 Non-dimensional fundamental frequencies @ of square isotropic and FG plates resting on Kerr

foundation (K; = 100)

Isotropic plate FG plate

K, K a’/h Model

Ceramic Metal p=05 p=10 p=20 p=50

Shahsavari ef al. (2018) 0.0294 0.0157 0.0253  0.0231  0.0212  0.0202

20 Present €, # 0 0.0294 0.0158 0.0253  0.0231  0.0212  0.0202

100 0 10 Shahsavari et al. (2018) 0.1149 0.0615 0.0988  0.0903  0.0830 0.0783
Present £, # 0 0.1149 0.0624 0.0988  0.0903  0.0830 0.0782

5 Shahsavari et al. (2018) 0.4226 0.2278 0.3661 0.3347 0.3061 0.2838

Present ¢, # 0 0.4225 0.2375 0.3659 0.3345 0.3060 0.2836

20 Shahsavari et al. (2018) 0.0356 0.0285 0.0329  0.0316 0.0308 0.0305

Present €, # 0 0.0356 0.0285 0.0329  0.0316 0.0307 0.0305

100 100 10 Shahsavari ef al. (2018) 0.1396 0.1125 0.1294  0.1245  0.1212  0.1201
Present €, # 0 0.1395 0.1137 0.1292  0.1243  0.1210  0.1198

5 Shahsavari ef al. (2018) 0.5246 0.4332 0.4906  0.4739  0.4615 0.4560

Present ¢, # 0 0.5226 0.4492 04883 0.4714 0.4589 0.4531

20 Shahsavari et al. (2018) 0.0375 0.0317 0.0351  0.0341 0.0335 0.0334

Present ¢, # 0 0.0375 0.0318 0.0351  0.0341  0.0334 0.0334

200 100 10 Shahsavari et al. (2018) 0.1473 0.1255 0.1385 0.1345 0.1320 0.1316
Present €, # 0 0.1471 0.1269 0.1382 0.1342  0.1317 0.1313

5 Shahsavari et al. (2018) 0.5559 0.4850 0.5273  0.5139  0.5047  0.5024

Present €, # 0 0.5533 0.5026 0.5243  0.5107 0.5014  0.4988

20 Shahsavari et al. (2018) 0.0440 0.0419 0.0427  0.0423  0.0422  0.0426

Present &, # 0 0.0440 0.0420 0.0427 0.0422  0.0422  0.0426

200 200 10 Shahsavari et al. (2018) 0.1735 0.1660 0.1687 0.1670  0.1668  0.1684
Present &, # 0 0.1731 0.1678 0.1683  0.1666 0.1663  0.1680

5 Shahsavari et al. (2018) 0.6617 0.5511 0.6484  0.6436  0.6431  0.6494

Present ¢, # 0 0.6572 0.5511 0.6431  0.6380 0.6372  0.6430

foundations. The inclusion of the Pasternak’s foundation
parameters gives results more than those with the inclusion
of Winkler’s foundation parameter

Table 13 exhibit the effects of the Kerr foundation
parameters (K, ,K,), volume fraction indices p and side-

to-thickness ratio a/h on the fundamental frequencies @ of
square isotropic and FG plates resting on Kerr foundation
(K, = 100) on the basis of the present quasi-3D shear
deformation plate theories. As it can be seen, that upper
spring and shear layer parameter have rising effects. The
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Table 14 Variations of frequency parameters @ of perfect and imperfect FG square plates versus the Kerr
foundation stiffness (p = 1,K; = 100)

o Perfect Imperfect I Imperfect 11 In‘lperf.‘ect I
(Ky Ks) a/h Model (even) (uneven) (logarithmic-uneven)
a=0 a=02 a=05 a=02 a=05 a=02 a=05
20 Shahsavari ef al. (2018) 9.227 8.648 6.364 9.281 9.390 9.278 9.369
Present &, # 0 9.227 8.648 6.363 9.280 9.388 9.281 9.368
(100, 0) 10 Shahsavari et al. (2018) 9.027 8.482 6.282 9.076 9.171 9.073 9.154
’ Present &, # 0 9.026 8.481 6.282 9.072 9.169 9.089 9.151
5 Shahsavari et al. (2018) 8.367 7.927 5.997 8.403 8.462 8.401 8.453
Present ¢, # 0 8.363 7.923 5.994 8.388 8.457 8.457 8.448
20 Shahsavari ef al. (2018)  12.643 12969 13.780 13.006  13.702  12.987 13.562
Present &, # 0 12.638 12965 13.778 12999  13.696  12.984 13.556
(100,100) 10 Shahsavari et al. (2018)  12.454 12.807 13.656 12.811  13.494  12.793 13.357
’ Present €, # 0 12.433 12.7890 13.646 12.789 13474 12.783 13.337
5 Shahsavari et al. (2018) 11.849 12.281 13216  12.196 12.847 12.178 12.718
Present &, # 0 11.786 12218  13.153  12.126  12.780  12.164 12.651
20 Shahsavari et al. (2018)  13.639 14.174 15564 14.079 14920 14.056 14.751
Present £, # 0 13.632 14.169 15.561 14.072 14913  14.052 14.744
(200,100) 10 Shahsavari et al. (2018)  13.449 14.009 15426 13.884 14.710  13.862 14.545
’ Present £, # 0 13.423 13987 15414 13.857 14.686 13.846 14.520
5 Shahsavari et al. (2018)  12.847 13.477 14934 13270 14.063  13.249 13.905
Present &, # 0 12.767 13395 14.847 13.183  13.977 13.209 13.820
20 Shahsavari et al. (2018)  16.901 18.040 21.010 17.575 18.851 17.541 18.595
Present £, # 0 16.890 18.032 21.006 17.564 18.841 17.532 18.584
(200.200) 10 Shahsavari et al. (2018)  16.704 17.861  20.832 17.372  18.630  17.338 18.377
’ Present £, # 0 16.662 17.825 20.807 17.330 18.589 17.304 18.337
5 Shahsavari et al. (2018)  16.089 17.286  20.147 16.739 17.947 16.706 17.706
Present &, # 0 15.950 17.136  19.956 16.592 17.795 16.587 17.556
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Fig. 7 Free vibration & versus the ratio a/h of FG non-porous and porous square plates resting on kerr foundations (a) for
different parameters of foundations and for different porosity factor (b) Imperfect I (even), (c) Imperfect II (uneven) and (d)
Imperfect IIT (logarithmic-uneven) (p=1, K, = 100)
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Fig. 8 Free vibration @ versus the aspect ratio a/b of FG non-porous and porous square plates resting on Kerr foundations
(a) for different parameters of foundations and for different porosity factor (b) Imperfect I (even), (c) Imperfect II (uneven)

and (d) Imperfect III (logarithmic-uneven) (p=1, K; = 100)

shear parameter has more effect than the lower and upper
spring constants.

The wvariations of frequency parameters @ of
nonporous and porous FG square plates versus the Kerr
foundation stiffness (p = 1,K; = 100) is considered to
study the influence of increasing porosity volume index.
For the porous FG plate, three kinds of porosity distribution
are investigated. Various length to thickness ratio and
porosity parameter are presented. The results are listed in
Table 14. It is noted that the frequency parameters @ of the
plate FG increases as the parameters of the upper layer
(K,) and the shear layer (K,) of the spring increase. It is
important to note that the shear layer parameter is more
efficient than the other two parameters of the upper and
lower layer (K, K,). Table 14 shows the influence of the
porosity volume index for the various porosity distribution
models in a simply supported FG plate resting on a Kerr-
type elastic foundation. We note that for a logarithmic
distribution of uneven porosity, the frequency @
decreases. The logarithmic function has a significant effect
on high porosityvolume indices and has no significant effect
on low porosity volume indices. Also, it is important to
point out that the Kerr elastic foundation plays an important
role in imperfect FG plate responses.

The non-dimensional fundamental natural frequency
w of simply supported square FG plates resting on Kerr
foundation (K, = 100) for various values of side-to

thickness ratios a/h is plotted in Fig. 7 based on the present
new quasi-3D hyperbolic shear deformation theory. As can
be seen, the frequency decreases significantly with the
increase elastic foundation parameters (K,,K;) and
porosity volume index.

Fig. 8 illustrate the variations of the natural frequencies
w as functions of the aspect ratio a/b of simply supported
square FG plates resting on Kerr foundation (K| =
100,p = 1) for various values of the elastic foundation
parameters (K, K;) and porosity volume index. It is noted
that the frequency parameters @ of the plate FG increases
as the parameters of the upper layer ( K,) and the shear
layer (K) of the spring increase. The frequencies increase
directly as a/b increases and porosity volume index.

5. Conclusions

A novel quasi-3D hyperbolic shear deformation theory
for bending and free vibration analysis of FG porous plates
resting on elastic foundations is proposed in this paper. It
contains only five unknowns, accounts for a hyperbolic
distribution of transverse shear stress and satisfies the
traction free boundary conditions. Equations of motion
derived from the Hamilton principle are analytically solved
for bending and free vibration problems of a simply
supported plate. Benchmark comparisons of the solutions
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obtained for a degradation model with ones in literature are
conducted to verify the accuracy and efficiency of the
present theory. The following main points may be drawn
from the present study:

(1) Comparative studies reveal that the present theory is
not only accurate, but also more efficient since the
number of unknown functions involved in the present
theory is only five, compared with other theories
containing six or more unknown functions.
(2) The effects of shear and Winkler parameters, power
law index p and thickness-length ratio a/h in
bending and free vibration analysis. These results are
predicted by the shear and normal deformation theory
which takes in account the stretching effect. It is
obvious that the current results of the FG plates
integrated into the Winkler - Pasternak foundations are
almost identical.
(3) The influence of the effect of normal deformation
(stretching effect) on the performance of imperfect
plates containing porosities are in good agreement for
all cases.
(4) The effects of the Kerr foundation parameters,
volume fraction indices p and side-to-thickness ratio
a/h on bending and free vibration is analysis, then we
seen that the non-dimensional deflection w of FG plate
embedded in Kerr foundation are small than those
embedded in Winkler and Pasternak foundations due to
an extra upper spring while fundamental frequencies @
is reversed.

An improvement of the present formulation will be
considered in the future work to consider other type of
materials (Hirwani et al. 2016b, Keikha et al. 2018, Al-Osta
2019, Fadoun 2019, Rajabi and Mohammadimehr 2019,
Kunche ef al. 2019).
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