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1. Introduction 
 

Concrete-filled steel tubular (CFST) columns are a type 

of composite structure, made of hollow steel tubes filled 

with concrete. These steel tubes can be of various cross-

sections: circular hollow sections (CHS), square hollow 

sections (SHS), and rectangular hollow sections (RHS). The 

CFST column system has mechanical advantages over 

either reinforced concrete or pure steel members due to the 

confining effect of the surrounding steel which provides 

increased strength and greatly improves the ductility of 

normal concrete. Moreover, the steel tube acts as a 

permanent formwork that leads to reduced construction 

time, thus additional cost-saving. As a result, the use of 

CFST columns has recently expanded throughout the world. 

Their applications in a variety of civil engineering 

structures include high-rise buildings, subway platforms, 

bridges (Zeghiche and Chaoui 2005, Lu and Zhao 2010, 

Han et al. 2014), etc.  

Numerous studies on CFST columns have been 

conducted over the past five decades (Knowles and Park 

1969, 1970, Tomii et al. 1977, Shakir-Khalil and Zeghiche 

1989, Schneider 1998). Reviewing the available literature 

indicates that the behavior and carrying capacity of CFST 
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columns are governed by their mechanical and geometrical 

properties. The critical mechanical properties are the 

strength of the steel and concrete, load eccentricity, and the 

level of concrete confinement (Neogi et al. 1969, Rangan 

and Joyce 1992, Portolés et al. 2011). On the other hand, 

the principal geometrical parameters are the column 

slenderness, section slenderness, shape of the hollow cross-

section, and the initial geometry of columns (Ghasemian 

and Schmidt 1999, Bradford et al. 2002, Uy et al. 2011). 

For slender columns, the overall instability failure mode 

occurs due to partial compressive yielding of the steel and 

cracking of the concrete. In contrast, for short column 

failure, the cause is the compressive yielding of the steel 

and crushing of the concrete. 

The behavior of CFST columns under eccentric axial 

loading has previously been investigated numerically and 

experimentally (Rangan and Joyce 1992, Han and Yao 

2003, Fujimoto et al. 2004, 2008, Lee et al. 2011, Bahrami 

et al. 2012, Zhu et al. 2012, Han et al. 2013, Gupta et al. 

2015, Liu et al. 2015). Han and Yao (2003) tested 35 

concrete-filled rectangular hollow section columns and 

determined that with eccentric loading, the higher the load 

eccentricity, the bigger the strength loss was. Zeghiche and 

Chaoui (Zeghiche and Chaoui 2005) also found a good 

agreement between a decrease of failure loads and 

increasing eccentricity ratio. However, to date no simplified 

models have been proposed, similar to those proposed for 

the concentrically loaded case, which takes into account the 

effect of eccentric loading, even in current design codes. 

In recent decades, with the rapid development of 

artificial intelligence techniques, machine learning models  
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(MLMs) have been promoted to solve almost walks of life 

(Bui et al. 2018, Qi and Tang 2018). Due to the prior 

learning ability, MLMs have already been implemented to 

predict the strength of structural members. All of them have 

a common point of using single or hybrid computational 

intelligent methods. Güneyisi et al. (2016) proposed a new 

formulation for the axial load carrying capacity of circular 

CFST short columns based on a single gene expression 

programming (GEP). Ipek and Güneyisi (2019) used the 

same method for predicting the strength of concrete-filled 

double skin steel tubular composite columns. Artificial 

neural networks (ANN) have become the most frequently 

used method among MLMs. Two conventional ANN 

models were developed by (Saadoon et al. 2012) and 

(Ahmadi et al. 2014) for predicting the ultimate strength of 

rectangular CFST beam-columns and the capacity of CCFT 

short columns, respectively. For hybrid computational 

methods, several models were employed (Bui et al. 2018, 

Ren et al. 2019). By fusing a modified firefly algorithm 

(MFA) with ANN, Bui et al. (2018) proposed a novel 

model, namely MFA-ANN, to predict the compressive and 

tensile strength of high-performance concrete. Ren et al. 

(2019) developed a new method termed PSVM, by 

combining support vector machine (SVM) and particle 

swarm optimization (PSO) in predicting the axial 

compression of square CFST columns. However, the 

applied MLMs for the CFST column under eccentric 

loading are seldom employed.    

This study focuses on applying one of the MLMs 

subsets, Multivariate Adaptive Regression Splines (MARS), 

on improving the accuracy of predicting the ultimate 

capacity of rectangular CFST columns under eccentric 

loading. MARS, which was first proposed by Friedman 

(1991), is capable of fitting nonlinear, complex 

relationships between a set of predictors and dependent 

variables. The space of these predictors is divided into 

multiple knots in order to fit a spline function between these 

knots. Some of the main advantages of MARS are the 

 

 

ability to capture the complicated data mapping in high-

dimensional patterns and to produce more straightforward, 

more accurate and faster simulations, and easier-to-

elucidate models for both classification and regression 

problems (Friedman 1991). Some previous applications of 

MARS in structural engineering include predicting the 

compressive strength of concrete (Dutta et al. 2018), 

estimating shear strength in reinforced concrete 

beams(Cheng and Cao 2014), and modeling nonlinear 

structural interactions (Zhang and Goh 2015). Nonetheless, 

predictive models derived from the MARS algorithm have 

never been implemented for CFST problems. 

Fused MARS with grid search (GS) method, this paper 

presents a new model, namely GS-MARS, was developed 

to predict the ultimate capacity of eccentric loaded CFST 

columns concerning the width of rectangular steel tube (B), 

the depth of rectangular steel tube (D), load eccentricity (e), 

length of column (L), wall thickness of the steel tube (t), the 

cylinder compressive strength of concrete (f
c

'
), and the yield 

strength of steel (fy). In which, the GS method was utilized 

for optimizing MARS’ hyperparameters. The proposed 

MARS model is expressed by an explicit formulation in 

terms of the variables mentioned above and was then 

compared against available design codes. 

 
 

2. Overview of available studies and current design 
codes for CFST columns 

 

Because of the great advantages composite members 

provide, including high strength, good ductility, high energy 

absorption capacity, and saving construction time, CFST 

members and structures have been widely investigated. This 

research has led to the development of many design codes 

in several countries, such as American codes ACI-318 and 

AISC360, Eurocode 4, and Australian Standard AS5100.6, 

etc. For design purposes, all of these codes provide 

formulae and some limitations on material strength and 

Table 1 Summary of design codes and their limitations 

No. Design code Ultimate strength (Nu) Limitations 
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section slenderness, as given in Table 1. Tao et al. (2008) 

who evaluated the applicability of AISC and Eurocode 4 for 

445 rectangular and 448 circular CFST stub columns, 

indicated that Eurocode 4 provided better strength 

predictions than the others for circular CFST stub columns, 

but AISC was better for rectangular CFST stub columns on 

the other hand. When comparing design calculations with 

test results, Aslani et al. (2015) pointed out that the AS, 

ACI, and Eurocode 4 models provided a better prediction of 

ultimate strength for short rectangular CFST columns 

compared with the other models. 

It should be noted that, outside the limitations, these 

codes might give less accurate value estimations (Aslani et 

al. 2015). In addition, although within the limitations, the 

ultimate strength predictions from these design codes show 

significant divergence from experimental results. Therefore, 

to increase prediction accuracy, some proposed models 

might provide further improvement. (Tao et al. 2008, 

Kuranovas et al. 2009, Güneyisi et al. 2016). 

 

 

3. Multivariate Adaptive Regression Splines (MARS) 
 

Multivariate adaptive regression splines method was 

first introduced by Friedman (1991), as a procedure for 

adaptive nonlinear and nonparametric regression that makes 

no assumption about the underlying functional relationship 

between the predictors and the target outputs. The general 

expression of nonparametric regression can be represented 

as 

1 2( , ,... ) (X)i i i ij i iy f x x x f = + = +       (1) 

in which X=(xi1, xi2,…,xij) is an i×j matrix of j input features 

and i samples and εi  is the error distribution of the ith 

sample, also called noise. The main goal of this regression 

is to estimate the general function of high dimensional 

arguments f(xi1, xi1,…xij) directly, rather than to estimate 

parameters. For this purpose, it is assumed that f(X) is a 

smooth, continuous function. 

A MARS model is established by applying basis 

functions (known as terms) to approximate the function 

f(X). Basis functions are splines (also called smooth 

polynomials) which have pieces including piece-wise linear 

and piece-wise cubic functions that connect smoothly 

together. However, only the piece-wise linear function is 

expressed for simplicity. The interface points between the 

linear piece-wises are called knots, denoted t. The knot 

location separates the spline basis function (Fig. 1) into 

two-sided truncated functions, is expressed formally as 

 
( ) if x  t

otherwise

   
( ) ( )

0             

q
q

q

t x
b x t x t−

+

 −
− = − − = 



 (2) 

 
( ) if x  t

otherwise

   
( ) ( )

0             

q
q

q

x t
b x t x t+

+

 −
− = + − = 



 (3) 

where t is the knot location, ( )qb x t− −  and ( )qb x t+ −  are 

the spline functions, the []+ ensures these values are 

positive, and the power q equals to 1 for simplicity as  

 

Fig. 1 The basis function and knot 

 

 

mentioned above. 

The general form of the MARS model for predicting 

output can be expressed as 

�̂� = 𝑓(𝑋) = 𝑐0 + ∑ 𝑐𝑚𝐵𝑚(𝑥)𝑀
𝑚=1        (4) 

where x is the input variable; c0 is a constant; Bm(x) is the 

mth basis function; and cm is the coefficient of Bm(x). 

In general, MARS contains the following three steps: (i) 

the constructive phase: a forward stepwise algorithm to 

select certain spline basis functions, (ii) the pruning phase: a 

backward stepwise algorithm to delete unnecessary basis 

functions until the “best” set is found, and (iii) optimum 

model selection. The constructive phase first starts on the 

training data with only the intercept, c0, then several knots 

are created automatically. These knots are points at random 

locations within the range of each input variables to define a 

pair of basis functions. At each step, the model adopts the 

knot and its corresponding pair of basis function that 

produces the largest decrease in the residual sum of squares 

error. Considering a current model with a number of basis 

functions (M), the next pairs are added to the model in the 

form 

1 2( ) ( ) ( ) ( )
q q

m m j m m jc B X x t c B X x t+ ++ +
   + − + − −       (5) 

This process continues until the maximum number of 

terms Mmax is reached. The value for Mmax should be chosen 

larger than the optimal model size as referenced in 

(Friedman 1991). Typically, the basis functions addition 

leads to a very complicated and overfit model. 

In the second phase, a backward deletion is employed to 

overcome this problem. The aim of this phase is to find an 

optimal model by removing redundant basis functions and 

irrelevant variables as well. Friedman (1991) also 

recommended the generalized cross-validation (GCV) 

originally proposed by Craven and Wahba (1978) as 

deletion criterion. The value of GCV is defined as follows 

𝐺𝐶𝑉(𝑀) =  
1

𝑛
×

∑ (𝑦𝑖−�̂�𝑖)𝑀
𝑚=1

(1−
𝐶(𝑀)

𝑛⁄ )
2           (6) 
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Fig. 2 The flowchart of the MARS model 

 

 

where n is the number of data sets, yi is the response value 

of the ith data, ŷ
i
 is the predicted values obtained from the 

MARS model of the ith data, and C(M) is a penalty factor 

that increases with the number of terms that can be 

determined as 

( )C M M dM= +                (7) 

where d is a cost penalty factor for each basis function 

optimization and is a smoothing parameter.   Friedman 

(1991) provides more details about the selection of d. At 

each backward step, a basis function is removed to 

minimize Eq. (6), until an adequately fitting model is found. 

Finally, in the third phase, the best MARS model is 

selected. Fig. 2 shows the MARS model flowchart. 

An analysis of variance (ANOVA) decomposition of the 

MARS model can be used to assess the contributions from 

the input variables and the basis functions. This procedure 

groups together all the basis functions that involve one 

variable and another grouping of terms that involve 

pairwise interactions. ANOVA function for MARS model is 

given by the following expression 

0

1 2 3

( ) ...i i ij ij ijk ijk

B B B

f x f x f x f x
= = =

= + + + +        (8) 

where ∑ f
i
xiB=1  is the total basis functions that involve 

only a single variable, ∑ f
ij
xijB=2  is total basis functions 

that involve exactly two variables, and ∑ f
ijk

xijkB=3  

represents the contributions from three variables 

interactions (if present). 

 

 

4. Description of the experimental database 
 

The experimental data used in this study consists of 141  

 

Fig. 3 Square CFST column under eccentric loading 

 

Table 2 Summary of input settings and outputs 

Description Notation 
MARS 

Parameter 
Min. Max. Mean Std. 

Width of steel 

tube 
𝐵 X1 65.00 323.00 147.44 53.83 

Depth of steel 

tube 
𝐻 X2 47.30 323.00 166.82 48.15 

Thickness of 

steel tube 
𝑡 X3 2.65 10.01 4.52 1.48 

Length of 

column 
𝐿 X4 360.00 4910.00 1857.72 1111.84 

Concrete 

cylinder strength 
𝑓𝑐

′ X5 15.01 80.30 44.56 20.16 

Yield strength 

of steel 
𝑓𝑦 X6 254.00 761.00 393.80 145.73 

Eccentricity 𝑒 X7 0.90 300.00 44.56 20.16 

Axial strength 𝑁𝑢 y 232.00 4100.00 1220.28 805.30 

 

 

eccentric loaded rectangular CFST columns as reported by 

various studies and given in Appendix A. The test 

configuration taken into account is an eccentrical axial 

compression test which is illustrated in Fig. 3. 

The input parameters used to predict the ultimate 

strength of the rectangular CFST columns consist of the 

width (B) and depth (H) of the steel tube, the thickness of 

the steel tube (t), the length of the column (L), the concrete 

cylinder strength (f ’c), the yield strength of steel (fy), and 

eccentricity (e). The test failure load (Nu) is used as the 

output variable. A summary of input settings and output 

values is listed in Table 2. 

 

 

5. Proposed MARS model and application results 
 

5.1 Preprocessing data 
 

Model input and output variables commonly have 

different dimensions and orders of magnitude. Thus, they 

need to be normalized to make training less sensitive to the 

scale of the input variables and to eliminate their 

dimensions. Moreover, normalization makes the problem 
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better conditioned and prevents numerical difficulties 

during the calculation. Therefore, all variables are 

normalized to the range of [0, 1] using the min-max 

normalization method, which is expressed as follows 

min( )

max( ) min( )
norm

x x
x

x x

−
=

−
             (9) 

where, x is the original value and xnorm is the normalized 

value. 

The K-fold cross-validation method is used in this 

research to reduce the over-fitting problem in the selected 

model. For 141 experimental data, the 5-fold was chosen to 

build the MARS model. Firstly, the whole data was divided 

into two partitions, namely training set with 120 cases 

(85%) and testing set with the remaining of 21 cases (15%). 

To implement the cross-validated procedure, the training 

data were randomly selected and split into 5 distinct folds, 

which means each fold contains 24 cases (20% of 120). For 

each iteration, one of five folds is used for validating while 

the four remaining folds are used for training the MARS 

model. This procedure is repeated for each fold in the 

training set until all folds were used once as the validation 

fold. With each combination of MARS’ hyperparameters, 

five models would be built and evaluated using some 

criteria indices. Based on each fold’s performance, the 

optimal model is chosen and tested the testing set again. 

 

5.2 MARS model 
 

The interpreted high-level programming language, 

Python, with its implementation called py-earth package, 

were used for the development of the MARS model. One 

may construct a MARS model with a variety of parametric 

options, including a maximum basis function (max terms) 

Mmax, maximum interaction Imax, and penalty parameter d. 

However, while setting the optimal parameters 

simultaneously is difficult using MARS, such optimization 

greatly improves the prediction accuracy of MARS. The 

authors thus utilized GridSearchCV, a tool in the scikit-

learn package (Pedregosa et al. 2011) to overcome this 

problem. Scikit-learn is a Python library that contains a set 

of state-of-the-art machine learning algorithms, which 

allows non-machine learning experts to apply many well-

known machine learning techniques. Moreover, it is able to 

implement various prediction methods if the estimator used. 

The estimator parameters used to apply these methods are 

optimized by a cross-validated grid-search over a parameter 

grid. The combination of GridSearchCV and the MARS 

model, which can be abbreviated as the GS-MARS model, 

is illustrated by the flowchart in Fig. 4. 

The performance of the proposed GS-MARS model was 

evaluated by using the following criteria indices: 

• Coefficient of Determination (R2) 

The R2 is the common measure of determination 

between the predicted values and actual values and was 

used as the main criterion to evaluate the performance of 

the proposed model. The value of R2 can be determined as 

follows 

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�𝑖)2𝑛
𝑖=1

             (10) 

Table 3 The GS-MARS model parameters 

Component Pyearth parameter Setting 

GridSearchCV 

Estimator type estimator earth() 

Parameter grid param_grid {[1], [2], [3], [4], [5]} 

Evaluation scoring neg_mean_squared_error 

Cross-validation cv 5 

Training partition  85% 

Validation partition  15% 

MARS model 

Maximum number of 

basis functions [1] 
max_term (Mmax) (1; 40) 

Maximum 

interaction of terms 

[2] 

max_degree (Imax) (1; 9) 

Number of extreme 

data values of each 

feature 

not eligible as knot 

locations 

end_span -1 

Smoothing parameter 

[3] 
penalty (d) (2; 4) 

Parameter 

controlling end_span 

[4] 

endspan_alpha (0; 1) 

Parameter 

controlling 

endspan_alpha [5] 

minspan_alpha (0; 1) 

Kind of feature 

importance 

feature_importance

_type 
GCV 

 

 

where y is the actual values; yî is the predicted value; �̅�𝑖 

is the mean of the actual values; and n is the number of 

samples. For a prediction model with high accuracy, R2 

should be close to 1, which is the maximum value. 

• Root Mean Square Error (RMSE) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
× ∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1           (11) 

• Mean Absolute Percentage Error (MAPE) 

𝑀𝐴𝑃𝐸 =  
1

𝑛
× ∑

|𝑦𝑖−�̂�𝑖|

𝑦𝑖

𝑛
𝑖=1             (12) 

Table 3 lists the parameters for the proposed GS-MARS 

model. The parameters used in this model are as follows: 

• The parameter grid consists of 5 parameters of the 

MARS model. 

• Scoring evaluation is mean square error (MSE) and 

calculated by: 𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1  

• The training partition size was 85%. 

• The size of testing partition was 15%. 

• The maximum number of basis function for training is 

in the range of 1 and 40. 

• The maximum interaction of terms is from 1 to 9. 

• The number of extreme data values of each feature not 

eligible as knot locations is a default value of -1. 

• The penalizing parameter is in the range of 2 and 4, 

with a default value of 3. 

• The parameter controlling endspan parameter is in the 

range of 0 to 1. 
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• The parameter controlling minspan parameter is in the 

range of 0 to 1. 

• The feature importance criteria is GCV. 

 

5.3 GS-MARS performance 
 

This study evaluated the model’s performance using the 

K-fold method and a stratified 5-fold cross-validation 

approach. Random selection divided the 120 of training 

data into 5 distinct folds. Each fold was employed in turn as 

validating data, with the remaining folds used as training 

data, ensuring that all dataset instances were applied in both 

the training and validating phases. 

Table 4 shows the performance of the GS-MARS model 

in predicting the ultimate compressive strength of CFST 

columns over 5 folds. As shown in this table, the GS-

MARS model attains very good R2 values for both training 

set (R2=0.983) and testing set (R2=0.968), indicating that the 

model accurately estimates the underlying function of 

CFST column compressive strength. The proposed model 

also yields small average RMSE values for training and 

testing data of 89.72 kN and 124.40 kN compared to the 

average actual values. 

The average of MAPE were 8.39% and 8.99% for 

training and testing prediction, respectively, with both 

values below 10% indicating the robustness of the GS-

MARS model. The small values of standard deviation, 

illustrating that the proposed MARS model also provides 

stable prediction, were only 0.73% and 0.87% for training 

and testing data, respectively. 

The key parameter settings of the GS-MARS model are 

also given in Table 4. Remarkably, the values of the 

 

Table 4 Prediction performance of GS-MARS with 5 K-

folds and parameter settings 

Fold 

Training Testing Parameter 

RMSE 

(kN) 

MAPE 

(%) 
R2 

RMSE 

(kN) 

MAPE 

(%) 

R2 

 
Mmax Imax d 

1 97.13 8.48 0.9853 113.12 10.01 0.9825 21 3 2.5 

2 95.19 8.85 0.9862 125.92 8.58 0.9726 25 3 3.5 

3 79.41 7.22 0.9907 96.53 7.73 0.9833 35 2 2 

4 85.55 8.28 0.9883 156.80 9.24 0.9661 21 2 2.7 

5 91.33 9.10 0.9872 129.61 9.39 0.9685 29 3 3.9 

Average 89.72 8.39 0.9875 124.40 8.99 0.9746    

Std. 7.27 0.73 0.0021 22.27 0.87 0.0079    

 

 

maximum basis function Mmax which varied in a range from 

21 to 35, affect the accuracy of prediction significantly. In 

addition, the number of interactions among input variables 

Imax alternated between 2 and 3.9. It was found that there is 

no fold that had a default value of penalty parameter d 

inside the referred range (Friedman 1991). Obviously, 

choosing suitable parameter values simultaneously is a 

challenge for users. However, it should be noted that the 

instances of these parameter values depend on user 

experience and may be outside the suggested range. This 

statement is in good agreement with Cheng and Cao's 

(2014, 2016) investigations. 

Fold 2 was selected to derive the formulation of the 

MARS model since its results are similar to the average 

values. Table 5 demonstrates the approximation function for 

predicting fold 2 and presents the related basis functions of 

the MARS model with the corresponding equations and 

coefficients (cm). Clearly, all seven input variables appear in  

 

Fig. 4 The flow chart of the GS-MARS model 
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the approximate functions. It should be noted that, before 

training, all input parameters were normalized using Eq.(9). 

Hence, the basis functions in Table 6 were re-scaled before 

deriving corresponding equations. Finally, the ultimate axial 

strength of rectangular CFST columns Nu under eccentric 

loading was expressed by the MARS model as follows 

Nu=1828.23+6.84963×B1(x)−11.4375×B2(x)+0.18914×B3(x) 

−52.7446×B5(x)−12.6848×B6(x)+11.3966×B7(x)−2.05827 

×B8(x)+11.7736×B9(x)−11.6269×B10(x)+91.2767×B11(x)+0.10431 

×B13(x)+0.01170×B14(x)−0.00031×B15(x)+0.25525×B17(x) 

+0.00281×B18(x)−0.00108×B19(x)+0.02821×B20(x)−3.25414 

×B21(x)+0.01898×B22(x)+8.43210×B23(x)+0.03832×B25(x) 

−0.00358×B26(x)−9.63×10-5×B27(x)−2.72×10-5 

×B28(x)−0.03325×B29(x)              (13) 

Fig. 5 graphically shows the correlation between the 

predicted value and actual value for fold 2 and the test set. 

It is clear that most data points in training and testing sets 

fall within the ±10% line. 

 

 

Table 6 Results of ANOVA decomposition 

Function GCV 
#Bm 

(x) 
Variable 

(s) 
Function GCV 

#Bm 
(x) 

Variable(s) 

1 135,431.76 1 B  11 64,062.71 1 L, fsy 

2 81,188.71 2 e  12 55,455.81 1 
', cL f  

3 99,061.49 2 
'

cf  13 109,101.61 2 fsy,e 

4 137,164.20 2 fsy 14 68,866.72 1 H, fsy 

5 240,749.67 2 H  15 52,940.60 1 
',sy cf f  

6 80,611.93 1 t  16 62,074.53 1 
', ,cL f e  

7 59,171.08 1 L  17 87,225.34 1 
', ,cB f e  

8 67,848.67 1 B, fsy 18 77,824.38 1 
', ,sy cH f f  

9 79,710.32 1 L,e 19 67,020.00 1 H,fsy,e 

10 134,721.77 1 B,e 20 88,234.45 1 B,L,fsy 

 

 

As mentioned above, one of the most important 

advantages of MARS is its capacity to inspect the 

importance of input variables based on ANOVA  

Table 5 Basis functions of GS-MARS model with corresponding equations and coefficients 

Bm(x) Equation (cm)  Bm(x) Equation (cm) 

B0(x) 1 1828.2300  B15(x) ( ) ( )'

14 0,    15  *  cmax f B x−  -0.0003 

B1(x) ( ) 0,    65max B −  6.8469  B16(x) ( ) ( )1 0,    37  * max e B x−  n/a 

B2(x) ( ) 0,    3.75max e −  -11.4375  B17(x) ( ) ( )1 0,  37   * max e B x−  0.2553 

B3(x) ( ) ( )1 0,   618  *  ymax f B x−  0.1891  B18(x) ( ) ( )12 0,    351  *  ymax f B x−  0.0028 

B4(x) ( ) ( )1 0,  618   *  ymax f B x−  n/a  B19(x) ( ) ( )'

2 0,    15  *  cmax f B x−  -0.0011 

B5(x) ( )' 0,    68.5cmax f −  -52.7446  B20(x) ( ) ( )'

13 0,    65.7  *  cmax f B x−  0.0282 

B6(x) ( )' 0,  68.5  cmax f−  -12.6848  B21(x) ( ) ( )2 0,    618  *  ymax f B x−  -3.2541 

B7(x) ( ) 0,    550ymax f −  11.3966  B22(x) ( ) ( )2 0,  618   *  ymax f B x−  0.0190 

B8(x) ( ) 0,  550  ymax f−  -2.0583  B23(x) ( ) 0,    80max e −  8.4321 

B9(x) ( ) 0,    210max H −  11.7736  B24(x) ( ) ( )8 0,    152  * max H B x−  n/a 

B10(x) ( ) 0,  210  max H−  -11.6269  B25(x) ( ) 9 0,  152   * ( )max H B x−  0.0383 

B11(x) ( ) 0,    3max t −  91.2767  B26(x) ( ) ( )'

24 0,  32   *  cmax f B x−  -0.0036 

B12(x) ( ) 0,    2600max L −  n/a  B27(x) ( ) ( )22 0,    65  * max H B x−  -9.63e-5 

B13(x) ( ) 0,  2600  max L−  0.1043  B28(x) ( ) ( )4 0,    2600  * max L B x−  -2.72e-5 

B14(x) ( ) ( )2 0,    1800  * max L B x−  0.0117  B29(x) ( ) ( )6 0,    254  *  ymax f B x−  -0.0333 

 

  

 

(a) Training set (b) Testing set 

Fig. 5 Predicted and actual values for the training and testing sets 
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decomposition. Table 6 shows the ANOVA decomposition 

of the proposed MARS model for fold 2. The GCV column 

indicates the significance of the corresponding ANOVA 

functions through the GCV score for a model with all 

 

 

corresponding basis functions to that specific ANOVA 

function eliminated. This GCV value is employed to 

evaluate whether the ANOVA function makes a significant 

contribution to the model or only marginally increases the  

 

  

 

 (a) Width of rectangular CFST column (b) Depth of rectangular CFST column  

 

  

 

 (c) Wall thickness of CFsST column (d) Length of CFST column  

 

  

 

 (e) Cylinder compressive concrete strength (f) Yield strength of steel tube  

 
(h) Eccentricity 

Fig. 6 Ratio of actual results/predicted results versus input variables 
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Table 7 Comparison of proposed model performance and 

current design codes 

Function 

MARS 
AISC360 

(2016) 

ACI318 

(2014) 

AS5100.4 

(2004) 

Eurocode 

4 (2004) Training 

set 

Testing 

set 

RMSE 

(kN) 
89.72 124.40 785.93 706.47 647.56 1127.88 

MAPE 

(%) 
8.39 8.99 40.28 44.94 39.79 78.30 

R2 0.9875 0.9746 0.50 0.52 0.50 0.53 

 

 

global GCV score. The #Bm(x) column shows the number of 

basis functions in the ANOVA function and the variable(s) 

column gives the particular input features related to the 

ANOVA function. 

The interaction of predictors with the proposed MARS 

model graphically presents in Fig. 6. The ratio of actual 

values (Nu
test) and predicted values (Nu

pred ) versus seven 

predictors respectively are plotted to illustrate their 

effectiveness. These plots indicated that even though there 

are accumulations of data at a specific range for each 

variable, the predicted values have various scatters which 

perform an overestimate (under the solid red line) or an 

underestimate (above the solid red line). This proves that 

the generated MARS model does not depend exactly on any 

particular variables. Therefore, it can be stated that the used 

predictors are fairly effective in the proposed model. For 

further evaluation, Fig. 6 shows that only about 25% data 

points are outside the margin of ±10% (dashed line). By 

observing Fig. 6(d) and Fig. 6(e), it is found that the 

proposed model can be applied extensively for column 

length less than 3000 mm and the cylinder compressive of 

concrete in the range of 20 to 80 MPa. 

 

5.4 Results comparison with available models 
 

To demonstrate the comparative performance of the 

developed MARS model, this study compared results with 

those obtained by four current design codes including 

AISC, ACI, AS, and Eurocode 4. Table 7 presents the 

comparative results with regard to determining RMSE, 

MAPE, and R2. The RMSE values for MARS, AISC, ACI, 

AS5100.4, and Eurocode 4 were, respectively, 107.06, 

785.93, 706.47, 647.56, and 1127.88. These results show 

that MARS is the fittest model in terms of minimizing 

RMSE values, with a value nearly 83% below the second-

best model from AS5100.4 in accordance with the testing 

set. The predictions by Eurocode 4 were the worst model in 

terms of RMSE, returning values more than nine times 

greater than the MARS model. This tendency is in perfect 

agreement with the conclusions of Tao et al. (2008). 

In terms of MAPE, the MARS model also yielded the 

smallest estimation errors for training and testing data, 8.39 

and 8.99, respectively. These values were around 31% 

lower than the second-best model (AS5100.4), which was 

roughly 40% below the Eurocode 4 performance. Moreover, 

the MARS model achieved the best results, which were 

very close to 1, in terms of R2 for both training and testing 

data (Rtrain
2 =0.9875 and Rtest

2 =0.9746). 

 

Fig. 7 Actual-to-predict-strength ratio over testing set 

performance 

 

 

The predictability performance of these models is 

presented in Fig. 7 with details of actual value (Nu
test) and 

predicted value (Nu
pred) ratio for the testing set. This figure 

shows that MARS’ line connecting ratio points lie closest to 

the perfect line (Nu
test Nu

pred⁄ = 1), which means MARS has 

the ability to generate results that are in closest agreement 

with the actual results. 

 

 

6. Conclusions 
 

The aim of this study was to propose a new model with 

an explicit formulation for predicting the ultimate carrying-

capacity (Nu) of rectangular CFST columns. The derived 

formulation is developed by combining grid search cross-

validation technique and the MARS model to determine 

optimal MARS’ parameters. In order to propose the model, 

a database containing 141 eccentric loaded rectangular 

CFST columns data sets with a total of seven variables was 

collected. Based on the discussion above and comparisons 

of the proposed model with available design codes, some 

conclusions can be given, as follows: 

1. It was found that the MARS model can be efficiently 

utilized to develop an empirical formulation for 

predicting the ultimate carrying-capacity of rectangular 

CFST columns under eccentric loading for various 

materials and geometrical properties. Moreover, the 

derived formulation can be employed as a handy 

prediction tool with satisfactory predictability. However, 

since its expression is rather cumbersome and complex, 

it is better to transfer this model to a computer to save 

time and minimize errors. 

2. Constructing a MARS model with various parameter 

choices is a complicated and challenging process. The 

three most important parameters must be considered, 

including the maximum basis function Mmax, maximum 

interaction Imax, and penalty parameter d. However, the 

best values may lie outside the recommended ranges. 

3. To assess the performance of the MARS model to 

predict, this study compared MARS against four current 

design codes, including AISC360, ACI-318, AS5100.4, 
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and Eurocode 4. The results illustrated MARS’ superior 

estimation capability, providing a coefficient of 

determination and an actual-to-predicted-value ratio of 

close to 1, as well as very low values in error terms 

(RMSE, MAPE). The code design equations were 

generally conservative when performing the database in 

this study, such as Eurocode 4, which tends to 

overestimate the ultimate load-carrying capacity. This 

trend can be explained, since some input parameters 

were outside of the code limitations, and the eccentricity 

effect was not considered.  

4. It should be noted that since the developed GS-

MARS model predicts based on the knot values and the 

basis function, thus interpolation between the knots of 

input variables are more accurate and reliable than 

extrapolations. Moreover, the scope of applicability of 

the MARS’ derived equation is constrained by the used 

input ranges, which covers geometrical properties of the 

width of the steel tube, the depth of the steel tube, the 

length of the column, and the eccentricity were varied 

from 65 m to 323 mm, 47.3 m to 323 mm, 2.65 mm to 

10.01 mm, 360 mm to 4910 mm, respectively, and 

material properties including up to 80.3 MPa of the 

concrete strength and 761 MPa of the yield strength of 

the steel. Consequently, for cases in which the input 

variable values are beyond this range, the proposed GS-

MARS model should be used with caution. 

5. Future work should validate the proposed explicit 

formulation by implementing it in a distinct database. It 

also should be noted that, like all empirical models, the 

range of applicability of the MARS derived formula is 

constrained by the data used in the model. To update the 

model and make it more robust in the future, it would be 

desirable to increase the number of data samples so that 

the model can be re-trained. 
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Experimental data of CFST columns under axial load used in the MARS model 

References No. B (mm) H (mm) t (mm) L (mm) fsy (MPa) f ’c (MPa) e (mm) Nu (kN) 

Nakahara and Sakino 

(2000) 

1 149 149 4.4 447 262 41.1 45 755 

2 149 149 4.4 447 262 41.1 200 259 

3 216 216 4.4 648 262 25.4 60 1141 

4 216 216 4.4 648 262 25.4 200 503 

5 216 216 6.4 648 262 41.1 100 1028 

6 215 215 6.4 645 262 41.1 200 580 

7 216 216 6.4 648 262 80.3 60 2013 

8 216 216 6.4 648 262 80.3 100 1447 

9 323 323 6.4 969 262 41.1 60 3306 

10 323 323 6.4 969 262 41.1 200 1479 

11 145 145 6.4 435 618 41.1 45 1636 

12 145 145 6.4 435 618 41.1 200 611 

13 211 211 6.4 633 618 25.4 60 2393 

14 211 211 6.4 633 618 41.1 60 2685 

15 211 211 3.0 633 618 41.1 100 2090 

16 212 212 3.0 636 618 41.1 300 858 

17 211 211 3.0 633 618 80.3 60 3396 

18 211 211 3.0 633 618 80.3 200 1484 

19 318 318 3.0 954 618 41.1 100 4100 

20 319 319 3.0 957 618 41.1 300 1967 

21 216 216 4.4 648 262 68.26 60 2013 

22 216 216 4.4 648 262 68.26 100 1447 

23 211 211 6.4 633 618 68.26 60 3396 

24 211 211 6.4 633 618 68.26 200 1484 

Uy and Das (1997) 

25 186 186 4.4 540 300 32 37 1069 

26 186 186 4.4 540 300 32 56 1133 

27 186 186 4.4 540 300 32 84 895 

28 126 126 4.4 360 300 50 20 996 

29 126 126 4.4 360 300 50 40 739 

30 126 126 6.4 360 300 50 50 619 

Shakir-Khalil and 

Al-Rawdan (1996) 

31 100 150 5.0 2940 330.8 36.08 6 882 

32 100 150 5.0 2940 331.5 37.76 15 670 

33 100 150 5.0 2940 331.5 38.48 45 470 

34 100 150 5.0 2940 321.6 37.92 75 339 

35 100 150 5.0 4000 360.8 37.6 6 667 

36 100 150 5.0 4000 355.5 38.16 15 650 

37 100 150 5.0 4000 350.5 38.64 45 443 

38 100 150 5.0 4000 342.5 38.56 75 344 

39 100 150 5.0 4910 360.8 36.56 6 536 

40 100 150 5.0 4910 342.5 37.04 15 558 

41 100 150 5.0 4910 368 37.84 45 356 

42 100 150 5.0 2940 324.3 41.2 30 402 

43 100 150 5.0 4000 368 36.56 30 349 

44 100 150 5.0 4910 355.5 37.76 30 273 

Wei and Han (2000) 

45 120 120 3.8 2600 330.1 15.144 15 588 

46 120 120 3.8 2600 330.1 15.144 30 450.8 

47 120 120 3.8 2600 330.1 20.368 40 421.4 

48 120 120 3.8 2600 330.1 15.144 50 333.2 

49 120 120 3.8 2600 330.1 20.368 40 417.5 

50 120 120 3.8 2600 330.1 29.28 50 423.4 

51 140 140 3.8 2600 330.1 18.84 15 833 

52 140 140 3.8 2600 330.1 18.84 40 615.4 

53 140 140 3.8 2600 330.1 18.84 60 509.6 

54 140 140 3.8 2600 330.1 20.368 40 558.6 

55 140 140 3.8 2600 330.1 29.28 60 539 

56 120 120 5.9 2600 321.1 18.84 15 754.6 

57 120 120 5.9 2600 321.1 18.84 30 548.8 
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Continued 

References No. B (mm) H (mm) t (mm) L (mm) fsy (MPa) f ’c (MPa) e (mm) Nu (kN) 

Wei and Han (2000) 

58 120 120 5.9 2600 321.1 18.84 50 510.6 

59 140 140 5.9 2600 321.1 15.376 15 1014.3 

60 140 140 5.9 2600 321.1 15.376 30 803.6 

61 140 140 5.9 2600 321.1 15.008 40 735 

62 140 140 5.9 2600 321.1 15.008 60 555.7 

63 200 200 5.9 2600 321.1 21.416 80 1200.5 

Han and Yao (2003) 

64 130 195 2.7 780 340 18.46 14 872 

65 130 195 2.7 780 340 18.46 14 812 

66 130 195 2.7 780 340 18.46 31 646 

67 130 195 2.7 780 340 18.46 31 610 

68 130 195 2.7 2340 340 18.46 14 670 

69 130 195 2.7 2340 340 18.46 14 635 

Zhang and Guo (2007) 

70 150.2 150.2 2.9 1110 319.3 68.5 1.1 2352 

71 149.5 149.5 2.9 2200 319.3 68.5 3.5 2077 

72 148.6 148.6 2.9 3101 319.3 68.5 2.5 1558 

73 151.4 151.4 4.8 1085 316.6 68.5 1.1 2597 

74 150 150 4.9 2201 316.6 68.5 2 2381 

75 150.7 150.7 4.9 3100 316.6 68.5 3.5 1627 

76 134.9 175.7 2.9 993 319.3 68.5 1 2401 

77 136.3 176.5 2.9 1980 319.3 68.5 3 2283 

78 124.6 199.3 2.9 921 319.3 68.5 0.9 2636 

79 125.9 199.9 2.9 1829 319.3 68.5 1.5 2303 

80 149.4 149.4 2.9 1090 319.3 68.5 43 1147 

81 150.4 150.4 2.9 1115 319.3 68.5 22 1597 

82 149.8 149.8 2.9 2203 319.3 68.5 23.5 1274 

83 148.3 148.3 2.9 3101 319.3 68.5 26 941 

84 152.1 152.1 4.8 1105 316.6 68.5 41.5 1416 

85 150.6 150.6 4.9 1100 316.6 68.5 21.1 1901 

86 150.8 150.8 4.9 2199 316.6 68.5 21 1519 

87 150.4 150.4 4.9 3100 316.6 68.5 25.5 1103 

88 135.7 176.2 2.9 988 319.3 68.5 20.5 1911 

89 134.1 173.5 2.9 989 319.3 68.5 41 1343 

90 134.8 174.9 2.9 988 319.3 68.5 72 823 

91 136.4 174.6 2.9 1982 319.3 68.5 21 1588 

92 137.2 176.2 4.8 990 316.6 68.5 20 2058 

93 137.2 175.1 4.8 1980 316.6 68.5 22 1813 

94 125 200.5 2.9 919 319.3 68.5 41 1529 

95 125.1 201.4 2.9 1831 319.3 68.5 38 1548 

Guo et al. (2004) 

96 100.5 200.7 3.6 1800 283.6 41.8 40 1002.3 

97 149 149 3.6 450 283.6 41.8 30 1081.9 

98 99.1 200 3.7 600 283.6 41.8 40 1036.8 

99 80 120 5.0 3120 386.3 37.4 24 393 

100 80 120 5.0 3121 386.3 37.4 60 232 

Liu (2004) 

101 150 150 4.2 870 550 56.64 30 1678 

102 150 150 4.2 870 550 65.68 30 1850 

103 150 150 4.2 2170 550 56.64 30 1330 

104 150 150 4.2 2170 550 65.68 60 1020 

105 120 180 4.2 1040 550 56.64 30 1950 

106 120 180 4.2 1040 550 65.68 70 1140 

107 80 120 4.2 1740 550 56.64 20 660 

108 80 120 4.2 1740 550 65.68 20 855 

109 100 200 4.2 1150 550 56.64 60 1310 

110 100 200 4.2 1150 550 65.68 40 1800 

111 80 160 4.2 2310 550 56.64 60 670 

112 80 160 4.2 2310 550 65.68 30 1020 

Bridge (1976) 

113 203.7 203.9 10.0 2130 291 30.2 39. 1956 

114 203.3 204 10.0 3050 290 30.6 1.4 2869 

115 152.3 152.3 6.5 3050 254 35 38.51 680 

116 152.3 152.3 6.5 3051 254 35 65.02 513 
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Continued 

References No. B (mm) H (mm) t (mm) L (mm) fsy (MPa) f ’c (MPa) e (mm) Nu (kN) 

Vrcelj and Uy (2002) 

117 75 75 3.0 1770 370 78.6 3.75 414 

118 65 65 3.0 1770 350 78.6 3.25 294 

119 75 75 3.0 1770 370 51.8 3.75 343 

120 65 65 3.0 1770 350 51.8 3.25 269 

Mursi (2007) 

121 110 110 5.0 3020 761 20.34 10 1036 

122 160 160 5.0 3020 761 20.34 15 1505 

123 260 260 5.0 3020 761 20.34 25 1371 

124 120 120 5.0 460 754.2 20.27 10 1395 

125 220 220 5.0 730 754.2 20.27 20 1421 

126 270 270 5.0 880 754.2 20.27 25 1471 

127 120 120 5.0 431 754.2 20.27 10 1609 

128 203.7 203.9 10.0 2130 291 30.2 39.19 1952 

129 203.3 204 10.0 3050 290 30.6 1.4 2993 

130 152.3 152.3 6.5 3050 254 35 38.51 708 

131 152.3 152.3 6.5 3051 254 35 65.02 543 

132 80 120 5.0 3120 386.3 37.4 24 405.6 

133 80 120 5.0 3121 386.3 37.4 60 233 

134 75 75 3.0 1770 370 78.6 3.75 390.3 

135 65 65 3.0 1770 350 78.6 3.25 269.4 

136 75 75 3.0 1770 370 51.8 3.75 338 

137 65 65 3.0 1770 350 51.8 3.25 255 

138 120 120 5.0 3020 761 20.34 8 1481 

139 170 170 5.0 3020 761 20.34 15 2126 

140 220 220 5.0 3020 761 20.34 18 2939 

141 270 270 5.0 3020 761 20.34 23 3062 
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