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1. Introduction 
 

Functionally graded materials attract the attention of 

many researchers because of their powerful uses and their 

characteristics (mechanical, chemical, thermal, physical) 

such as high abrasion resistance (ceramic face), high impact 

resistance, reactor components and insulating joints. 

Dimming improves the toughness of the ceramic-face and 

prevents ceramic-metal detachment. Functionally graded 

materials (FGM) can be characterized by the gradual 

variation of the material properties in the thickness (Avcar 

2019). Several works have been studied to examine the 

behavior of the FG nano-plates under different types of 

loading can be cited as: Ansari and Norouzzadeh (2016) 

studied the buckling responses of circular, elliptical and 

asymmetric nanometric FG-plates. Banh-Thien et al. (2017) 

developed a numerical approach for the buckling analysis of 

the nano-plate by employing isogeometric analysis. The 

vibrational analysis of the orthotropic monolayer graphene 

sheets under thermal load is investigated by Ghadiri et al. 

(2017) using GDQM. The effect of the combined thermo-

electo-mechanical loads on the buckling and post-buckling 

behaviors of the piezoelectric nano-plates is examined by 

Liu et al. (2016) using non-local model. Arefi and Zenkour 

(2017) examined the thermo-electro-magneto-elastic 

flexural analysis of a three-layer sandwich nano-plate 

reposed on Pasternak’s foundation by employing the non-

local and Kirchhoff plate theory.  
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Askari et al. (2017) developed a mathematical model for 

dynamic analysis of nanoplates using Galerkin’s method.  

Barati and Shahverdi (2017) have modeled a new double-

layer FG nano-plate for the vibrational analysis of under 

Hygro-thermal loads using four variable nonlocal RPT. The 

effect of the edges boundary conditions on the rigidity of 

the nano-plate has been studied by Bochkarev (2017). 

Ebrahimi and Barati (2018) considered the nonlocal and 

surface effect to examine the dynamic behavior of the 

flexo-electric nano-plates under thermal load. the 

nonlinearities due to the thermal force, electrostatic and 

Casimir attractions is taking into accounts via mathematical 

model developed by Farrokhabadi and Tavakolian (2017) 

for  examining  the vibrational behavior of the clamped 

and simply supported nano-plate. Karličić et al. (2017) used 

the Eringen’s nonlocal theory and the Kirchhoff model for 

examining the influence of the uniaxial in-plane magnetic 

field on the “VOMNPS” (Viscoelastic Orthotropic Multi-

nano-plate System). Nematollahi et al. (2017) presented a 

novel formulation based on the nonlocal higher order theory 

for examining the effect of the various thermal conditions 

on the natural frequencies of the nano-plate. Bensaid et al. 

(2018) presented a dynamic analysis of higher order shear-

deformable nanobeams resting on elastic foundation based 

on nonlocal strain gradient theory. 

The thermal vibration characteristics of nano-plate is 

studied by Satish et al. (2017) to show the effect of the 

surface layer strength, residual stress, nonlocal scale, 

surface in plane load and mode number on the frequency of 

the nano-plate. Shahverdi and Barati (2017) analyzed the 

dynamic behavior of the porous nano-plate by employing a 

general nonlocal strain-gradient (NSG) elasticity. The 

model of the porous nano-plate is obtained by modifying  
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Fig. 1 Geometry of the FG nano-plate 

 

 

the material properties of the power-law and Mori-Tanaka 

models. The Dynamic instability and the bifurcation 

properties of the electrically actuated circular nano-plate is 

examined by Yang et al. (2017) using the Gurtin-Murdoch 

surface model and the Eringen’s nonlocal elasticity. Zhang 

et al. (2018) presented the static analysis of one-

dimensional (1D) “quasi crystal piezoelectric hexagonal” 

nano-plate using the nonlocal theory. The linear free 

vibration of the micro-/nano-plates has been analyzed by 

Ziaee (2018) using the classical plate theory, Rayleigh-Ritz 

method and modified couple stress theory. Ansari et al. 

(2018) applied the FEM (finite element method) and the 

Eringen’s nonlocal elasticity to examine the flexural 

analysis of the embedded nano-plates. Chen et al. (2018) 

used also the FEM and the nonlocal Kirchhoff plate theory 

to analyze the dynamic behavior of the nano-plates under 

temperature loading. Mohseni et al. (2018) studied the 

micro scale vibration of the rectangular thick FG micro-

plate using the modified couple stress model and high order 

theory. Analysis of the waves propagation in the clamped 

FG porous nanoplate is published by Karami et al. (2018) 

using the FSDT and nonlocal elasticity. Recently, also 

several research studies of the nano-structures analysis are 

published such as (Akbas 2018, Faleh et al. 2018, Selmi 

and Bisharat 2018, Bensattalah et al. 2018, Karami and 

Karami 2019, Berghouti et al. 2019, Javani et al. 2019, 

Mehar and Panda 2018 and 2019, Hussain and Naeem 

2019). 

This work presents the analytical studies of the dynamic 

behavior of the simply supported FG nano-plate using the 

nonlocal integral refined plate theory (NLIRPT). The 

present model has a reduced number of equations of motion 

and not required the shear correction factors. The accuracy 

of the current model is approved by comparing the results 

with the analytical model and FEM (finite element method) 

existing in the literature. The effect of the power law index, 

the scale effect and the geometry ratio are also discussed in 

detail. 

 

 

2. Theoretical formulations 
 

2.1 Nonlocal elasticity of the FG nano-plate 
 
By considering the effect of the small inter-atomic 

forces presented by (Eringen 2002). The nonlocal stresses 

can be written as following form (Kolahchi et al. 2017, 

Bensattalah et al. 2019) 
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Where “2” is the Laplacian operator and (i,j=x,y,z), 

with 
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The non-local constitutive equations of the FG nano-

plate can be expressed as 
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The stiffness coefficients “Qij” are defined as follows 
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Where “E(z)” and “v” are the Young’s modulus and 

Poisson’s ratio, respectively. 

 

2.2 Geometry and concept of the FG nano-plate  
 

In the current work the FG nano-plate have the length 

“a”, width “b”, and the thickness  “h” in the coordinate 

system (x,y,z) that is placed in the middle of the nano-plate 

and the coordinate parameters are limited as 

0 ; 0 / 2 / 2x a y b and h z h    −   +  (4) 

The material properties of the FG nano-plate are 

considered to vary according to power law function in the 

thickness direction. The effectives properties (E(z) and mass 

density ρ(z)) can be written as  
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(5) 

 
2.3 Kinematics and deformations 

 
Considering the some simplification on the classical 

higher order shear deformation plate theory in which to 

reduce the number of unknown displacement the kinematic 

of the present model can be given as 
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Where the warping function f(z) is used in the current 

work can be written as 
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Based on the present displacement field of Eq. (6), the 

non-zero strain can be obtained as 
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(8b) 

By using the Navier type method, the integrals 

considered in the above equations can be treated via the 

following expressed 
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where coefficients A′, B′, k1 and k2 are given by 
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with λ and μ are defined in Eq. (17). 

 
2.4 Equations of motion of the FG nano-plate 

 
In the current research the equations of motion are 

obtained via Hamilton’s principle, the principle of the 

present kinematic can be written as follow 
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By replacing Eqs. (6) and (8) into Eq. (10). The 

Hamilton principle of the present model can be rewritten as 

function of resulting constraints (M, S and Q) as  
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substituting the Eq. (2) into Eq. (12) and integrating across 

the thickness, resulting constraints (M, S and Q) are given 

as follows 
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Where Bij, Dij etc., are the rigidity of the FG nano-plate, 

it can be defined as 
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By integrating by parts and separating the displacement 

coefficients (δwb and δws) of Eq. (11). The equations of 

motion of the current model can be obtained as 
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3. Analytical solutions 
 

In the present work, the Navier procedure is employed 

to satisfy automatically the boundary conditions of the 

simply supported FG nano-plate. The Navier solution can 

be expressed by a double series Fourier of as  
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Table 1 Comparison of frequency frequency " "c c
h G  =  

for FG square nano-plate (η=1, δ=0.1 and p=5) 

Method Model 
Dimensionless Frequency 

κ=0 κ=1 κ=2 
(Zargaripoor et al. 2018) FEM 0.0444 0.0405 0.0376 

(Natarajan et al. 2012) FEM 0.0441 0.0403 0.0374 

Chikh (2019) RPT 0.0442 0.0404 0.0374 

Present 2D 0.0442 0.0404 0.0374 
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where “ω” is the frequency of the FG nanoplate, 1−=i

the imaginary unit, noting that  

/m a = , /n b =  (17) 

Substituting Eqs. (13) and (16) into equations of motion 

of (Eq. (14)). We obtain the following matrix system 
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The elements kij=kji; mij=mji of the Matrix [K] and [M] 

are  
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4. Numerical results and discussion 
 

4.1 Comparison and validation 
 
In this section, the validity and accuracy of the current 

model are verified by comparing the results with the 

analytical model (Aghababaei and Reddy 2009) and chikh 

(2019) and finite element method of (Natarajan et al. 2012) 

and (Zargaripoor et al. 2018).  

The material properties of the SUS 304 (Metal) and 

Si3N4 (Ceramic) used in the present study are as follows: 
3

3
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Table 2 Comparison of dimensionless frequency parameter

" "h G  =  or a simply supported nano-plate 

η δ κ 

Dimensionless Frequency 

Present 
Chikh 

(2019) 

Zargaripoor 

et al. (2018) 

Aghababaei and 

Reddy (2009) 

1 

10 

0 0.0931 0.0931 0.0930 0.0935 

1 0.0851 0.0851 0.0850 0.0854 

2 0.0789 0.0789 0.0788 0.0791 

20 

0 0.0239 0.0239 0.0239 0.0239 

1 0.0218 0.0218 0.0218 0.0218 

2 0.0202 0.0202 0.0202 0.0202 

2 

10 

0 0.0589 0.0589 0.0589 0.0591 

1 0.0556 0.0556 0.0556 0.0557 

2 0.0528 0.0528 0.0527 0.0529 

20 

0 0.0150 0.0150 0.0150 0.0150 

1 0.0141 0.0141 0.0141 0.0141 

2 0.0134 0.0134 0.0134 0.0134 

 

Table 3 Comparison of dimensionless frequency 

" "c c
h G  =  for simply supported square FG nano-

plate (η=1, δ=0.1) 

p κ  

Dimensionless Frequency 

Mode1 

(1,1) 

Mode2 

(1,2) 

Mode3 

(2,1) 

Mode4 

(2,2) 

0 

0 

Present 0.0931 0.2226 0.2226 0.342 

Chikh (2019) 0.0931 0.2226 0.2226 0.342 

Zargaripoor et al. (2018) 0.0930 0.2225 0.2225 0.3407 

1 

Present 0.0851 0.1822 0.1822 0.2558 

Chikh (2019) 0.0851 0.1822 0.1822 0.2558 

Zargaripoor et al. (2018) 0.0850 0.1820 0.1820 0.2547 

2 

Present 0.0789 0.1579 0.1579 0.2130 

Chikh (2019) 0.0789 0.1579 0.1579 0.2130 

Zargaripoor et al. (2018) 0.0788 0.1578 0.1578 0.2122 

1 

0 

Present 0.0548 0.1309 0.1309 0.2011 

Chikh (2019) 0.0548 0.1309 0.1309 0.2011 

Zargaripoor et al. (2018) 0.0552 0.1310 0.1310 0.2008 

1 

Present 0.0501 0.1071 0.1071 0.1504 

Chikh (2019) 0.0501 0.1071 0.1071 0.1504 

Zargaripoor et al. (2018) 0.0504 0.1072 0.1072 0.1501 

2 

Present 0.0464 0.0929 0.0929 0.1253 

Chikh (2019) 0.0464 0.0929 0.0929 0.1253 

Zargaripoor et al. (2018) 0.0467 0.0930 0.0930 0.1250 

5 

0 

Present 0.0442 0.1052 0.1052 0.1613 

Chikh (2019) 0.0442 0.1052 0.1052 0.1613 

Zargaripoor et al. (2018) 0.0444 0.1052 0.1052 0.1608 

1 

Present 0.0404 0.0861 0.0861 0.1206 

Chikh (2019) 0.0404 0.0861 0.0861 0.1206 

Zargaripoor et al. (2018) 0.0405 0.0861 0.0861 0.1202 

2 

Present 0.037 0.0746 0.0746 0.1005 

Chikh (2019) 0.037 0.0746 0.0746 0.1005 

Zargaripoor et al. (2018) 0.0376 0.0747 0.0747 0.1002 

 

 

In which " "L  is the dimensionless frequency 

corresponding to the non-local parameter “κ=0”. 

The Table 1 presents the non-dimensional frequency 
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Fig. 2 Scale parameter effect on nondimensional frequency 

of simply supported square FG nano-plate for different 

values of material index (h/a=0.1) 

 

 

" " of the simply supported FG nano-plate with          

(η=1, δ=0.1 and p=5). The current results obtained via 

refined plate theory are compared with those given by 

Natarajan et al. (2012), Zargaripoor et al. (2018) using the 

FEM (finite element method) and Chikh (2019) using 

analytical model (RPT). It can be observed from the table 

that a very good agreement is confirmed between the 

present results and those of the finite element method 

(FEM). 

The variation of the dimensionless frequency 

" "h G  =  of the FG nano-plate versus the nonlocal 

parameter “κ”, geometry ratio “δ” and dimension ratio “η” 

is presented in the Table 2. The obtained results are 

compared with those given by the Third shear deformation 

theory developed by Aghababaei and Reddy (2009), the 

finite element method proposed by Zargaripoor et al. (2018) 

and refined plate theory published by Chikh (2019). From 

the tabulated results, it is remarkable that the actual results 

are almost identical with those given in the literature. It can 

be also seen that the dimensionless frequency 

" "h G  = is in inverse relation with nonlocal 

parameter “κ”, geometry ratio “δ” and dimension ratio “η”. 

Table 3 Show the effect of the vibrational mode the 

power index “n” and the non-local parameter “κ” on the 

dimensionless natural frequency " "c c
h G  =  of the 

square FG nano-plate. From the table, it is confirmed again 

that the actual results obtained by the two unknowns 

integral model are very close to those obtained by RPT 

theory given by Chikh (2019) and Zargaripoor et al. (2018) 

using the FEM. The lower values of the natural frequency 

" "  are obtained by the vibrational mode (1,1). 

 
4.2 Parametric studies 
 
This section focuses on the study of different parameters 

influencing the non-dimensional frequency " "  of the 

simply supported FG nano-plates. 

Fig. 2 illustrates the effect of the nonlocal parameter “κ” 

on the dimensionless frequency " "  of simply supported 

square FG nano-plate for different values of the power law  

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F
re

qu
e
nc

y 
ra

ti
o

=a/h

 =0

 =1

 =2

 =4

 

Fig. 3 Effect of the geometry ratio on frequency ratio of 

simply supported square FG nano-plate for different value 

of nonlocal parameters (p=5) 
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Fig. 4 Effect of dimension ratio on frequency parameter of 

FG nano-plate for different scale parameters (p=5, δ=0.1) 

 

 

index “p” with (h/a=0.1). From the plotted graphs, we can 

see that the non-local parameter “κ” affects inversely on the 

non-dimensional frequency " " . It can be also concluded 

that the ceramic “p=0” gives the biggest values of the 

frequency " "  because his high Young modulus “Ec”. 

The effects of the geometry ratio on the frequency ratio 

“Fr” of the simply supported square FG nanoplate with 

(p=5) is presented in the Fig. 3. From the curves, it is 

remarkable that the frequency ratio “Fr” is not influenced 

by the thickness to length ratio “δ=0.1” in the case “κ=0” 

because the both frequency are equal NL L = . In the 

case “κ≠0” the non-local dimensionless frequency " "NL

decreased relative to the local dimensionless frequency

" "L . 

Fig. 4 shows the variation of non-dimensional frequency 

" "  of the FG nano-plate versus the scale effect and 

aspect ratio. From the figure, we can observe that the 

dimensionless frequency " " is in direct correlation 

relation with both aspect ratio “η” and non-local parameter 

“κ”. The largest values of the frequency " "  are obtained 

by aspect ratio “η=2” because the nano-plate becomes 

flexible. 

The effect of the vibrational mode and nonlocal 

parameter “κ” on the values of the frequency ratio “Fr” of  
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Fig. 5 Effect of the scale parameter on frequency ratio of 

rectangular FG nano-plate for different mode numbers p=5, 

h/a=0.1, η=2 

 

 

the rectangular FG nano-plate is illustrated in the Fig. 5. 

From the drawn graphs. It can be seen that the frequency 

ratio “Fr” is in inverse relation with value of the small scale 

effect “κ”. It is remarkable also that the vibrational mode 

(2,2) give the lowest values of the frequency ratio “Fr”. 

Fig. 6 illustrate the effect of the material index “p” on 

the non-dimensional frequency " "  of FG nanoplate with 

(δ=0.1, η=1) for the various values of the nonlocal 

parameter “κ”. from the plotted graphs, we can confirm 

once again that the non-dimensional frequency " "

decrease with increasing of the power index “p” and 

nonlocal effect “κ”.  

 

 

5. Conclusions 
 

In this research work, the free vibrational analysis of the 

simply supported FG nano-plate is studied using a four 

variable nonlocal refined plate theory. The nano-plate is 

modeled according to the power law function model which 

the properties change through the thickness. The four 

equations of motion determined by Hamilton’s principle 

have been solved via Navier procedure. This model has 

examined the various parameters influencing the vibrational 

frequency such as (the small scale effect, aspect ratio, 

geometry ratio, power index and vibrational mode). Finally, 

the comparisons made with FEM we can conclude that the 

current model is precise and efficient to solve the problem 

of the vibration of the simply supported FG nano-plate. An 

improvement of the present formulation will be considered 

in the future work to consider other type of materials 

(Daouadji 2017, Fadoun 2019, Rajabi and 

Mohammadimehr 2019, Salah et al. 2019, Al-Osta 2019, 

Batou et al. 2019). 
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