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1. Introduction 
 

Alkali-silica reaction (ASR) has been found as one of 

the major deterioration causes in concrete material and 

structures. It was first identified and studied by Stanton 

(1940) in the USA, and thereafter this reaction and its effect 

have been reported in more than 50 countries worldwide 

(Sims and Poole 2017). The development of ASR in 

concrete can cause expansion and stress development due to 

expansive pressure, the initiation and propagation of micro- 

and macro-cracking, and degradation of mechanical 

properties (Moallemi and Pietruszczak 2018). Due to the 

importance of mechanical properties on structural integrity 

and load capacity evaluation of the ASR-affected concrete 

structures (Blight and Alexander 2011), many experimental 

studies have been conducted to investigate changes of 

strength and stiffness subjected to measurements of ASR-

induced expansion (Esposito et al. 2016, Giaccio et al. 

2008, Sanchez et al. 2017, Smaoui et al. 2005, Yu et al. 

2019). Most of these studies agreed that the elastic modulus 

undergoes a significant reduction compared to splitting 

tensile strength or compressive strength. Thus, the elastic 

modulus has been commonly considered as an indicator of 
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ASR-affected concrete deterioration (Esposito et al. 2016, 

Sanchez et al. 2017). In this context, Islam and Ghafoori 

(2018) proposed a procedure to evaluate the reactivity of 

aggregate through evaluating the reduction in elastic 

modulus of concrete (Islam and Ghafoori 2018). 

Furthermore, to evaluate structural behaviour of ASR-

affected concrete structures, it is crucial to determine elastic 

modulus of the concrete. Based on experimental results on 

mechanical properties of ASR-affected concrete, many 

studies proposed degradation laws that are empirical 

relationships between mechanical properties degradation 

and expansion level (Esposito et al. 2016, ISE 1992, 

Kawabata et al. 2017, Saouma and Perotti 2006). These 

empirical laws have been then commonly applied to 

estimate the modulus of elasticity through measured ASR 

expansions for evaluating structural behaviour of ASR 

affected concrete structures. Ferche et al. (2017) developed 

a finite element (FE) model for reinforced concrete beams 

subject to ASR by utilising the lower bound from ISE 

(1992). Hariri-Ardebili et al. (2018) and Hariri-Ardebili and 

Saouma (2018) used the proposed empirical law from 

Saouma and Perotti (2006) in the FE analysis for bridge and 

shear wall structures (Hariri-Ardebili and Saouma 2018; 

Hariri-Ardebili et al. 2018). In addition, the empirical 

model for elastic modulus estimation was also used in the 

macroscopic chemo-mechanical model of Kawabata et al. 

(2017) for concrete under stresses subjected to ASR.  

However, the experimental results from the literature 

present significant variations on the measured elastic 

modulus at any given level of expansion (Esposito et al. 
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Abstract.  Alkali-silica reaction (ASR) in concrete can induce degradation in its mechanical properties, leading to 

compromised serviceability and even loss in load capacity of concrete structures. Compared to other properties, ASR often 

affects the modulus of elasticity more significantly. Several empirical models have thus been established to estimate elastic 

modulus reduction based on the ASR expansion only for condition assessment and capacity evaluation of the distressed 

structures. However, it has been observed from experimental studies in the literature that for any given level of ASR expansion, 

there are significant variations on the measured modulus of elasticity. In fact, many other factors, such as cement content, 

reactive aggregate type, exposure condition, additional alkali and concrete strength, have been commonly known in contribution 

to changes of concrete elastic modulus due to ASR. In this study, an artificial intelligent model using artificial neural network 

(ANN) is proposed for the first time to provide an innovative approach for evaluation of the elastic modulus of ASR-affected 

concrete, which is able to take into account contribution of several influence factors. By intelligently fusing multiple 

information, the proposed ANN model can provide an accurate estimation of the modulus of elasticity, which shows a significant 

improvement from empirical based models used in current practice. The results also indicate that expansion due to ASR is not 

the only factor contributing to the stiffness change, and various factors have to be included during the evaluation. 
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2016, Martin et al. 2017, Sanchez et al. 2017). In other 

words, the ASR-induced expansion alone could be not 

sufficient in estimating modulus of elasticity of concretes 

affected by ASR. In fact, both the ASR-induced expansion 

and the elastic modulus of ASR-affected concrete are 

influenced by various factors observed from experimental 

process, e.g., the type of reactive aggregate (rock type, 

reactivity and size) (Gautam et al. 2017, Lindgård et al. 

2012, Poyet et al. 2007, Sanchez et al. 2017), alkali content 

(Shayan and Ivanusec 1989; Smaoui et al. 2005; Yüksel et 

al. 2016), and exposure conditions consisting of 

temperature and moisture (Gautam and Panesar 2017, 

Giaccio et al. 2009). Due to the extensive differences 

among these influencing factors, it is difficult to compare 

and evaluate the reduction of elastic modulus due to ASR 

by considering only the expansion. In this case, the 

proposed mathematical expressions, therefore, just can 

indicate the relationship in a particular condition, or present 

a conservative curve as the lower bound (ISE 1992). This 

brings challenges to take into account not only the ASR 

expansion level but also all other influencing factors to gain 

insight into ASR effects for a highly accurate estimation of 

changes in concrete elastic modulus. Thus, assessing the 

impact of each influencing factor on the change of the 

elastic modulus due to ASR is crucial because their impacts 

are different from one to another. 
In recent decades, artificial intelligence (AI) has been 

widely employed in the area of concrete material and 
structures (Sonebi et al. 2016, Yu et al. 2018). They are able 

to build up a highly nonlinear relationship between input 
and output variables by learning algorithm from data 

themselves. Many AI-based models have been successfully 
developed for estimation of concrete properties and 

structural behaviour, such as artificial neural networks 

(ANN) (Sonebi et al. 2016), support vector machine (SVM) 
(Yu et al. 2018), genetic programming (GP) (Gandomi et al. 

2013), and adaptive network-based fuzzy inference system 
(ANFIS) (Yu et al. 2018). Among all the AI techniques, 

artificial neural networks (ANN) is the most known 

technique and broadly applied to deal with concrete 
properties and durability prediction (Bui et al. 2018, 

Hodhod et al. 2018). The method has been used to predict 
different properties and deterioration of concrete, such as 

concrete compressive strength (Ashteyat and Ismeik 2018, 
Ongpeng et al. 2017), elastic modulus of recycled aggregate 

concrete (Duan et al. 2013), creep and shrinkage (Bal and 

Buyle-Bodin 2013, Hodhod et al. 2018), and permeability 
of concrete (Kong et al. 2016). Furthermore, an important 

superiority of the ANN is that several algorithms have been 
proposed to evaluate the relative impact of the input 

variables on the prediction process (Gevrey et al. 2003, Yu 

et al. 2015). 

By taking advantages of the ANN, it can help to provide 

a better solution to tackle the challenge of evaluation of the 

elastic modulus degradation of ASR-affected concrete. In 

this study, based on a comprehensive database collected 

from experimental studies in the literature, ANN was 

utilised for evaluating the changes of elastic modulus of 

ASR-affected concrete in correlation to the ASR expansion 

level and other information on the mix proportion, reactive 

aggregate, exposure condition and initial strength of 

undamaged concrete. To the best of the authors’ knowledge, 

the utilisation of AI in predicting concrete elastic modulus 

change due to ASR is proposed for the first time in this 

study. The motivation is to develop a highly accurate 

prediction model based on the comprehensive database, 

which can be used for prediction of the elastic modulus 

change in a large range of ASR-induced expansion. Firstly, 

an optimization study was conducted by a selection of input 

variables, examining two training algorithms and 

determining an optimal number of hidden neurons to obtain 

an optimal network. Then, to demonstrate a superior 

performance of the proposed ANN model, it was compared 

to the existing empirical models that are widely used in the 

current practice for the elastic modulus estimation of ASR-

affected concrete. Eventually, it is important to give 

explanatory insight into the predictive progress to identify 

the contribution of influencing factors to the concrete elastic 

modulus change due to ASR. The relative importance of 

each influencing factor as model input variable was 

determined by means of outstanding methods such as neural 

interpretation diagram, connection weights approach and 

partial derivatives. 

 

 

2. Review on current empirical models 
 

In past decades, several empirical models for estimating 

elastic modulus of ASR affected concrete has been 

proposed based on ASR chemical damage laws as well as 

available experimental data. These models were then 

utilised in evaluating the ASR-induced damage as well as in 

numerical modelling for assessing structural behaviour 

(Ferche et al. 2017, Hariri-Ardebili et al. 2018, Kawabata et 

al. 2017). However, due to the complicated mechanism of 

ASR in concrete, empirical models for concrete mechanical 

properties degradation still have not been fundamentally 

established (Esposito et al. 2016). Most of these models are 

curve fitting based on the currently available data. In 

addition, it is worth to note that all these empirical models 

predict the elastic modulus as functions of only ASR-

induced expansion. 

Esposito et al. (2016) proposed a continuous piecewise 

linear function and fitted with a comprehensive available 

data set on mechanical properties of the ASR-affected 

concrete collected from the literature using a weighted 

least-squares fitting process, as shown in Eq. (1).  

𝛽𝐸𝑐 =
𝐸

𝐸𝑟𝑒𝑓  =  {

𝑞1 + 𝑚1𝜀      𝑖𝑓 𝜀 ≤ 0.05%
𝑞𝑚 + 𝑚𝑚𝜀      𝑖𝑓 0.05% < 𝜀 ≤ 0.1%

𝑞ℎ + 𝑚ℎ𝜀      𝑖𝑓 0.1% < 𝜀 ≤ 0.5%
𝑞𝑒 + 𝑚𝑒𝜀      𝑖𝑓 𝜀 > 0.5%

 (1) 

In which, Eref is the estimated elastic modulus at the 

reference expansion of 0.05%; q and m are linear 

coefficients for each level of expansion: qm=ql+0.05×(ml–

mm); qh=qm+0.1×(mm–mh); qe=qh+0.5×(mh–me). The 

prediction accuracy of this model was then compared to the 

S-shape curve modified from Saouma and Perotti (2006) 

𝛽𝐸𝑐 =
𝐸

𝐸𝑟𝑒𝑓  =  𝛽0 − (𝛽0 − 𝛽∞)𝜉           (2) 

where 𝛽0 and 𝛽∞ are normalized elastic modulus at non-
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expansive and asymptotic expansion condition, 

respectively; 𝜉 is a sigmoid curve representing the 

volumetric expansion as a function of time and temperature, 

more details are found in Saouma and Perotti (2006). The 

comparative study results showed that the proposed 

continuous piecewise linear function achieved higher 

accuracy in estimation of elastic modulus of ASR affected 

concrete compared to the modified S-shape curve. 

However, Esposito et al. (2016) also concluded that the 

observed estimation error was still very high, therefore, 

further fundamental investigations should systematically be 

conducted to obtain better models. 

Recently, Kawabata et al. (2017) and  Martin et al. 

(2017) adopted the chemical damage rule from Seignol et 

al. (2009), then fitted to a certain set of collected data from 

the literature. The chemical damage rule takes into account 

cement-paste microcracking induced by ASR by 

introducing damage parameters, shown as follows. 

𝐸𝑐 =  𝐸𝑐0 × (1 − 𝑑)             (3) 

𝑑 = 𝑑𝑚𝑎𝑥(1 − exp(−𝜔 × 〈𝜀 − 𝜀0〉+))       (4) 

where, d represents the ASR-induced damage; dmax and ω 

are the maximum damage and rate of damage evolution, 

respectively; ε is the expansion level, ε0 is the chemical 

expansion above which concrete matrix starts cracking. 

This damage rule was subsequently applied to evaluate the 

damage in ASR-affected concrete in both experimental and 

numerical studies (Kawabata et al. 2017, Martin et al. 

2017). 

In this study, three empirical models from Esposito et al. 

(2016), Kawabata et al. (2017), Martin et al. (2017) was 

adopted to estimate the elastic modulus reduction due to 

ASR of 177 experimental tests from reliable literature 

sources. The results from these empirical models were then 

compared to prediction results from the proposed ANN-

based model in this study.   

 

 

3. Data collection and descriptions 
 

3.1 Data collection 
 

In order to gain an insight into the effects of ASR on 
concrete mechanical properties and to develop a highly 
accurate ANN model, a database has been established based 
on a large number of experimental research data published 
in open literature. The dataset, collected from 13 studies 
with 45 concrete mixes, consists of 177 testing groups of 
elastic moduli at different levels of the ASR-induced 
expansion (Esposito et al. 2016, Gautam et al. 2017, 
Giaccio et al. 2008, Giannini 2012, Kagimoto et al. 2014, 
Kubo and Nakata 2012, Larive 1997, Mohammed et al. 
2003, Multon 2003, Pleau et al. 1989, Sanchez et al. 2017, 
Sargolzahi et al. 2010, Smaoui et al. 2005). All these 
testings were conducted on the plain concrete specimens 
under free expansion conditions.  

 

3.2 Model input and output description 
 

Along with ASR-induced expansion, several other 

factors that affect both the ASR mechanism and elastic 

Table 1 Model variables and variation range 

Type Model variable description Symbol 
Variation range 

[min, max] 

Input 

1. Cement content (kg/m3) 

2. Fine reactive 

aggregate/cement ratio 

3. Coarse reactive 

aggregate/cement ratio 

4. Exposure temperature (oC) 

5. Proportion of sodium oxide 

equivalent (%) 

6. Initial compressive strength 

at “non-expansive” condition 

(MPa) 

7. Maximum measured 

expansion (%) 

8. Measured expansion (%) 

C 

FRAC 

CRAC 

T 

ALKALI 

CS 

MAXEXP 

EXP 

[300, 424 ] 

[0, 2.85] 

[0, 3.42] 

[38, 50] 

[1.17, 2.87] 

[18.2, 58.5] 

[0.072, 0.916] 

[0.001, 0.916] 

Output Normalised elastic modulus 𝛽𝐸𝑐 [0.163, 1.130] 

 

 
modulus of ASR-affected concrete need to be taken into 
consideration in estimation of the elastic modulus. An 
appropriate selection of input variables is essential. In this 

study, expansion level and other 7 influencing factors are 
considered as 8 input variables of the first ANN model. 
They include information on mix proportion, proportion of 
reactive sand and coarse aggregate, exposure condition, 
proportion of sodium oxide equivalent, initial compressive 
strength at the undamaged condition, and maximum 

measured expansion. The impact of all the input variables is 
able to be evaluated based on weight factors after achieving 
high performance from this first model. Table 1 shows the 
ranges of all the input and output variables. More details of 
the selected input variables are described as follows. 

 

3.3 Mix proportion and the use of reactive aggregate  
 

It is well known that the proportion of different 

ingredients such as cement, water, fine and coarse 

aggregates are the key factor in design and determination of 

concrete modulus of elasticity (Duan et al. 2013). In this 

study, cement content (C) and proportion of aggregates are 

selected to represent the effect of mix proportion. Different 

from the aggregate contents in concrete without ASR, 

reactive aggregate content, which is the main cause of ASR 

mechanism, should be paid more attention in assessment of 

ASR affected concrete material and structures (Nayıra et al. 

2017).  

Reactive aggregate is the source of reactive non-

crystalline silica for the alkali silica reaction in concrete. In 

most of the previous studies, the degradation of mechanical 

properties also were at different levels according to 

different reactive aggregate types and nature which vary in 

size, rock type and reactivity level (Gao et al. 2011, Giaccio 

et al. 2008, Sanchez et al. 2015, Smaoui et al. 2005). 

Sanchez et al. (2017) found that concrete mixes of reactive 

sands present earlier reductions of mechanical properties 

than that of reactive coarse aggregates concrete (Sanchez 

2014). In the proposed model, fine and coarse reactive 

aggregates are considered as two separate input variables to 

evaluate the effect the reactive aggregate size (FRAC and 

CRAC). In addition, the reactivity of aggregate is 
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commonly evaluated through accelerated mortar bar test 

(AMBT) or concrete prism test (CPT) on standard mix 

design and aggregate grading based on the measured 

expansion at specific accelerated conditions and durations 

(AS-1141.60.1 2014, AS-1141.60.2 2014). However, for 

experimental studies in the literature, the utilisation of 

reactive aggregate for investigation of mechanical 

properties of ASR-affected concrete subjected to expansion 

measurements did not follow the same testing standard 

(Sirivivatnanon et al. 2016). 

 

3.4 Alkali content  
 

Alkali in concrete is the other reactant for ASR together 

with the reactive non-crystalline silica from reactive 

aggregates. Experimental results from previous studies 

indicate that of increasing alkali content in concrete can 

harm concrete properties (Shayan and Ivanusec 1989, 

Smaoui et al. 2005). By investigating the effect of NaOH in 

reactive concrete, Shayan and Ivanusec (1989) concluded 

that microstructure of concrete with higher alkali content 

was less dense compared to low alkali content concrete 

(Shayan and Ivanusec 1989). Through experimental study, 

Smaoui et al. (2005) observed that the high alkali concrete 

presents more reticular and porous microtexture, caused a 

reduction in strength (Smaoui et al. 2005). In the proposed 

model, the proportion of sodium oxide equivalent as an 

input (ALKALI) is total alkali content of concrete mixes, 

which is from both cement and amount added to mixing 

water. 

 

3.5 Exposure condition  
 

In addition to the reactive aggregate and alkali content, 

exposure condition, herein including temperature and 

moisture, creates an environment for initiating and 

developing of the alkali silica chemical reaction as well as 

for curing concrete. They thus strongly affect the ASR 

mechanism (Lindgård et al. 2012) and change in material 

properties of concrete (Kim et al. 2002). For the entire 

experimental data in this study, the relative humidity 

remains at very high levels and therefore it is not selected as 

a variable for exposure condition. The other factor, 

temperature (T), is considered as an input for the developed 

model. 

 

3.6 Compressive strength of concrete  
 
In current practice, the elastic modulus is commonly 

estimated through compressive strength due to their strong 
relationship (Kim et al. 2002). From the dataset in this 
study, the compressive strength is not available for ASR 
damaged concrete but undamaged specimens at very low 
levels of expansion. The compressive strength of the 

undamaged concrete (CS) is selected as an input for the 
predictive model. It has to be noted that different testing 
standards were used to determine the compressive strength, 
which can be from cube or cylinder specimens. In this 
study, CS is referred to cylinder compressive strength. The 
relationship between cylinder and cube strength proposed in 

Eurocode 2 (De Normalisation 2004) was adopted to 

convert cube compressive strength to the CS.  

 

3.7 ASR-induced expansion level 
 

As mentioned previously, expansion level is a key 

parameter to evaluate the ASR-induced damage in concrete 

and is the only variable that has been considered to estimate 

elastic modulus of ASR affected concrete as empirical 

models in current practice (Esposito et al. 2016, Kawabata 

et al. 2017, Martin et al. 2017). In this study, the expansion 

level (EXP) is considered together with the other 

influencing factors as input variables in the developed 

model.  

 

3.8 Output variable 
 

The ASR-induced degradation on elastic modulus has 

been commonly presented by normalising damaged elastic 

modulus to the undamaged elastic modulus, described by 

the following formula 

𝛽𝐸𝑐 =
𝐸𝑐

𝐸𝑐𝑜
                    (5) 

where, Ec is the elastic modulus of ASR damaged concrete, 

and Ec0 is the undamaged elastic modulus which is referred 

to as negligible damage level of “control” specimens. The 

undamaged elastic modulus is commonly measured after 7, 

14 or 28 days of curing at very low levels of ASR 

expansions of less than 0.03% (Sanchez et al. 2017). In this 

study, the normalised elastic modulus was adopted as the 

output variable in developing the ANN model. It is worth to 

note that effect of the influencing factors to the change in 

concrete elastic modulus due to ASR are different from one 

to another. Therefore, an evaluation of the contribution of 

each input variable to the output is a necessity in developing 

a high-performance predictive model. 

 

 
4. Predictive model development 
 

4.1 Artificial Neural Network 
 

4.1.1 Overview 
Artificial neural network (ANN) is a computational 

system which simulates the human biological neural system 

with the ability of reasonably learning and tackling the 

practical problems. Generally, the ANN is made up of a set 

of inter-connected artificial elements via a layer-by-layer 

configuration and employs the transfer function to 

transform the information between arbitrary two layers. 

Through the network training, the ANN is able to adaptively 

change its configuration according to internal and external 

information, and the trained ANN is used to characterize the 

complicated relationship between the input and output. In a 

standard ANN model, there are three types of network 

layer: input layer, hidden layer, and output layer. The 

schematic layout of an artificial neural network developed 

in this study is illustrated in Fig. 1. The neurons at different 

layers are connected with each other via the connection 

weight, the value of which is optimized through an 

objective function of the network during a learning process.  
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The signals are sent from the input neurons to the hidden 

neurons, then processed by linear calculation with weights 

and bias, before passed through a transfer function to obtain 

signals for the output layer. The tangent sigmoid functions, 

which is one of the most commonly used transfer function 

(Altarazi et al. 2018), is employed in the hidden layer to 

develop the networks in this study. One of the most 

important tasks in developing ANN is the learning process. 

In this study, two training algorithms, Levenberg-Marquardt 

and Bayesian regularization, are used for this process for a 

comparative study. The details of these algorithms are 

presented in the following part.  

In the ANN, the numbers of input and output neurons 

are determined by the practical problem and the number of 

the hidden layers and hidden neuron number are determined 

according to the trial method. According to Heaton (2008), 

the number of hidden neurons should not be higher than 

twice the number of input neuron. In this study, various 

neural network structures with the numbers of hidden 

neurons up to 17 were tested to determine the optimal 

network configuration.  

Among 8 factors considered, their impacts on the 

change of elastic modulus are different from one to another. 

Therefore, it is necessary to provide an explanatory insight 

into the influence of each factor as an input on the output 

based on the developed neural networks. In this study, after 

achieving an optimal network of 8 input variables, different 

methods such as connection weights approach and partial 

derivatives are utilised to assess the relative contribution of 

model inputs to the output through the network weights. 

More details of the connection weights approach and partial 

derivatives are presented in the next sections. Based on the 

analysis results, the less important input variables can be 

eliminated from the input set to reduce the required 

information for prediction models without reducing its 

accuracy. 

 

4.1.2 Network training algorithm: Levenberg-
Marquardt and Bayesian regularization 

Backpropagation (BP) is a common supervised learning  

 

 

strategy for ANN training process. To get the expected 

outputs, a number of training samples are used to adjust the 

connection weights between neurons and biases. The 

differences between the real results and predicted results are 

back-propagated from the output layer to the input layer to 

dynamically adjust the network parameters. There are 

several BP training algorithms that have been successfully 

utilised in predicting materials properties (Altarazi et al. 

2018). Among the backpropagation training algorithms, 

Levenberg-Marquardt (LM) algorithm is most commonly 

used, which is based on nonlinear least-square optimisation. 

Test results of LM algorithm on several approximation 

problems have validated its superiority over other training 

algorithms in terms of convergence and generalisation 

capacity (Altarazi et al. 2018, Bal and Buyle-Bodin 2013). 

In this analysis, the error function ED, which is the mean 

square error (MSE), is used as the objective function to 

optimize the network. Its mathematical expression is shown 

in Eq. (6). The learning process aims at minimizing this 

error function by adjusting the network weights and bias. In 

LM training algorithm, the early stopping technique is 

commonly utilised to improve network generalization and 

prevent overfitting (Altarazi et al. 2018). In this technique, 

the data is divided into three subsets for training, validating 

and testing, where the validation error is used to monitor 

and control the overfitting.  

𝐸𝐷  =
1

𝑝
∑ (𝑡𝑖 − 𝑜𝑖)2𝑝

𝑖=1
              (6) 

Here, ti and oi denote real value and ANN prediction of 

ith sample and p denotes the sample number. 

Along with early stopping, Bayesian regularization, 

which is an automated regularization procedure, is 

implemented in the Bayesian regularization (BR) training 

algorithm to overcome overfitting and improve the 

generalization ability. One of the key characteristics of this 

regularization technique is that no validation dataset is 

required like early stopping technique (Burden and Winkler 

2008). Therefore, more data is added to training subset from 

the validation, which could be an advantage of BR over the 

 

Fig. 1 General architecture of the neural network for estimating the change in concrete elastic modulus due to ASR 
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LM with early stopping technique if there is limited 

available data for learning process. Due to a small available 

data of 177 samples in this study, it is reasonable to utilise 

BR learning algorithm for developing the neural network 

predictive model.  

In the BR algorithm, the objective function is modified 

from the mean square error function of LM (as shown in 

Eq. (6)) by adding a term quantifying the network weights 

Ew, as described in the following equations (MacKay 1992) 

𝐹 = 𝛼𝐸𝑤 + 𝛽𝐸𝐷, with 𝛼 + 𝛽 = 1          (7) 

𝐸𝑤  =
1

𝑛
∑ 𝑤𝑗

2𝑛
𝑗=1                  (8) 

where 𝛼  and 𝛽  are regularization parameters varying 

between 0 and 1, Ew is the sum of squares of the network 

weights and n is total number of the weights. The training 

algorithm is aimed at optimizing regularization parameters 

and network weights to minimize the error of the model 

output and measured values. It has to be noted that the 

values of regularization parameters emphasize the 

significances in training process whether it drives the 

network error smaller (𝑖𝑓 𝛼 ≪ 𝛽) or reduces the weights at 

specific expense of the errors (𝑖𝑓 𝛼 ≫ 𝛽) (Foresee and 

Hagan 1997). By constraining size of the network weights, 

the objective function F is able to reduce the number of 

effective weights to an optimized number, produce a 

smoother network response and improve generalization 

ability of the network. Therefore, in addition to optimal 

network weights, the optimization of the regularization 

parameters is an important task in Bayesian regularization 

training algorithm. In this training algorithm, the network 

weights, as well as regularization parameters, are 

considered as random variables and its density function is 

updated and optimized in the learning process using the 

Bayesian framework 

𝑃(𝒘|𝐷, 𝛼, 𝛽, 𝑀) =
𝑃(𝐷|𝒘, 𝛽, 𝑀)𝑃(𝒘|𝛼, 𝑀)

𝑃(𝐷|𝛼, 𝛽, 𝑀)
     (9) 

where w is the network weight vector; D is the training 

dataset; M represents the particular neural network 

structures developed; 𝑃(𝒘|𝛼, 𝑀)  is the prior density; 

𝑃(𝐷|𝒘, 𝛽, 𝑀)  is the likelihood function, which is the 

probability of the data occurring; and, 𝑃(𝐷|𝛼, 𝛽, 𝑀) is the 

normalisation factor. The important task next is searching 

for optimal network weights to maximize the posterior 

probability 𝑃(𝒘|𝐷, 𝛼, 𝛽, 𝑀), which leads to a minimized 

objective function. Foresee and Hagan (1997) proposed 

following iterative procedure to optimize the network 

weights and regularization parameters: (1) generate initial 

set of weights, 𝛼 and 𝛽; (2) take one step of the LM 

algorithm to minimize the objective function F by finding 

the optimal weights; (3) a process to compute new estimates 

for the regularization parameters; (3) Iterate the above step 

until convergence. Details of the Bayesian optimization of 

the network weights and regularization parameters were 

obtained from Foresee and Hagan (1997). 

In this study, both LM and BR training algorithms were 

adopted for training the neural networks, named as LMNN 

and BRNN, to determine a better performance prediction 

model. In addition to the mean square error (MSE) 

calculated as the error function ED, the performance of the 

network with different training algorithms is also evaluated 

by the coefficient of determination (R2), as shown in Eq. 

(10). The training algorithm that generates better 

performance is selected for further evaluation and 

development. 

𝑅2 =
[𝑝 ∑ 𝑡𝑖∙𝑜𝑖

𝑝
𝑖=1 −(∑ 𝑡𝑖

𝑝
𝑖=1 )(∑ 𝑜𝑖

𝑝
𝑖=1 )]

2

[𝑝 ∑ 𝑡𝑖
2

𝑝

𝑖=1
−(∑ 𝑡𝑖

𝑝
𝑖=1 )2][𝑝 ∑ 𝑜𝑖

2
𝑝

𝑖=1
−(∑ 𝑜𝑖

𝑝
𝑖=1 )2]

    (10) 

In the Levenberg-Marquardt neural network, the 

available dataset (177 samples) was randomly divided into 

three subsets for training, validation and testing with the 

ratio of 70%, 15% and 15%, respectively. Without 

requirements of a separate validation dataset, 85% of the 

available data was used for training in Bayesian 

regularization neural network (BRNN). Implementation of 

Levenberg-Marquardt and Bayesian regularization was 

performed in Matlab (R2016b). 

 

4.2 Interpretation of the network weights for relative 
contribution of input variables 

 

The effects of different influencing factors as input 

variables on the change in elastic modulus due to ASR can 

be understood based on the network weights by a visual 

approach such as the neural interpretation map (NID) 

(Özesmi and Özesmi 1999), or quantitative approaches 

(Gevrey et al. 2003, Olden et al. 2004). In NID, width of 

lines connecting nodes represents the absolute value of 

weight factors while the colour represents whether weight 

values are positive or negative. In an ANN model, a higher 

absolute value of connection weight represents a higher 

interaction between two neurons, while its sign represents 

the positive or negative effect of a neuron on another. The 

map is thus able to present the insight of network and the 

contribution of input variables to the elastic modulus 

change. 

There are several quantitative methods for assessing the 

contribution of model inputs to outputs in ANN based 

prediction models, such as sensitivity analysis, connection 

weights approach, Garson’s algorithm, partial derivatives, 

input perturbation and forward stepwise addition (Gevrey et 

al. 2003, Olden and Jackson 2002, Olden et al. 2004). By 

testing different methods for quantifying the importance of 

input variables, Olden et al. (2004) (Olden et al. 2004) 

indicated that the connection weights approach is the most 

accurate method, while results from Gevrey et al. (2003) 

(Gevrey et al. 2003) shows that the partial derivatives gave 

the most stable results. Therefore, this study used both 

methods to evaluate the importance of input variables. The 

connection weights approach determines the relative 

contribution of ANN model inputs as a function of the 

neural network connection weights, presented as the 

following expression (Olden and Jackson 2002) 

𝑅𝑖𝑗 = ∑ 𝑤𝑖𝑘 .  𝑤𝑘𝑗
𝐻

𝑘=1
              (11) 

Where, Ri denotes the relative contribution of the input 

variable xi with regard to the output; H denotes the number 

of the hidden neurons; wik is the connection weight between 

the input variable xi and the hidden neuron hk; wk is the 

connection weight between the hidden neuron hk and the 
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output neuron yj. 

By using all the training data, partial derivatives method 

considers the first-order effects of model inputs on outputs. 

The relative contribution index SSDe of input variables to an 

ANN output regarding the data set is calculated as follows 

(Dimopoulos et al. 1995) 

𝑑𝑚𝑖 = 𝑠𝑚 ∑ 𝑤𝑘𝑗  .  𝐼𝑘𝑚 . (1 − 𝐼𝑘𝑚) . 𝑤𝑖𝑘
𝐻

𝑘=0
     (12) 

𝑆𝑆𝐷𝑖 =
1

𝑀
∑ (𝑑𝑚𝑖)

2𝑀

𝑚 = 1
       (13) 

In which, dmi is the partial derivatives of the output ym 

corresponding to input xm, with m=1 to M and M is the total 

number of training samples; sm is the derivative of the 

output with respect to its inputs; Ikm denotes the value of the 

kth hidden neuron. 

The relative contribution of input variables is then 

determined based on their relative contribution index. More 

details of connection weights approach and partial 

derivatives are obtained in Olden and Jackson (Olden and 

Jackson 2002) and Dimopoulos et al. (Dimopoulos et al. 

1995), respectively. It has to be noted that the observation in 

this section is based on the proposed ANN approach with 

respect to the knowledge from the readily available 

experimental data in the literature. 

 

 

5. Results and discussion 
 

5.1 Optimization of ANN models 
 

Due to differences in generating initial network weights, 

each neural network with specific number of hidden 

neurons and training algorithm was run 10 times to provide 

a generalization in comparison of different training 

algorithms.  The best performance of different ANN 

models with different numbers of hidden neurons and two 

training algorithms are shown in Fig. 2. As mentioned 

previously, the performance of the ANN model in this study 

is determined in term of MSE and R2. It has to be noted that 

a lower value of MSE and greater R2 present a better fit 

between the measured and predicted values. Obviously, 

increasing number of hidden neurons improves the 

performance of ANN models by significantly reducing 

MSE and increasing R2. For example, in both training 

algorithms, R2 increases from around 0.75 in the models of 

1 hidden neuron to roughly 0.94 in the 5 hidden neurons 

models. Subsequently, there are significant fluctuations in 

the performance of LMNNs when increasing number of 

hidden neurons.  In addition, it is clear to see that the 

models of BR training algorithm produce better 

performance compared to the LM training algorithm 

models. Indeed, for all tested ANN models, the R2 of LM 

algorithm is just roughly 0.93, while this value of BR 

algorithm is up to more than 0.97. For the BRNN, its 

performance becomes stable when number of hidden 

neurons increase to 8 or higher. This is due to the 

advantages of BR training algorithm as presented in 

previous sections. The BR training algorithm, therefore, 

was chosen to further develop the prediction model for 

elastic modulus of ASR affected concrete.  

 
(a) MSE 

 
(b) R2 

Fig. 2 Training performance of LMNN and BRNN in term 

of MSE and R2 

 

 

Fig. 3 Number of effective parameters in BRNN 

 

 

One important feature of the Bayesian regularization is 

that convergence of the optimization process to find optimal 

network weights and the regularization parameters are 

evaluated through the effective number of parameters 

(Foresee and Hagan 1997). This number also represents 

how effectively the networks are using network parameters 

(weights and biases). When the network is converged, it 

remains approximately the same even increasing number of 

network parameters. This is one of the advantages of the 

BRNN where the number of neurons in hidden layers is 

objectively optimized. Therefore, it is important to consider 

the effective number of parameters in optimizing number of 

hidden neurons in BRNNs. Fig. 3 presents the effective 

number of parameters of various BRNN models with  

547



 

Thuc Nhu Nguyen, Yang Yu, Jianchun Li, Nadarajah Gowripalan and Vute Sirivivatnanon 

 

 

Fig. 4 Historical comparisons of the elastic modulus 

between the measurements and predictions 

 

 
(a) Training phase 

 
(b) Testing phase 

Fig. 5 Regression analysis results of the ANN 8-10-1 model 

 

 

different numbers of hidden neurons. While MSE and R2 

become stable at 8 hidden neurons, the BRNN models reach 

convergence at 10 hidden neurons. This suggests that the 

optimal number of hidden neurons was determined to be 10. 

The ANN based prediction model is then named as ANN 8-

10-1 hereafter.  

Fig. 4 shows the historical comparison between 

measured and predicted elastic modulus values from ANN 

8-10-1 model for all the data samples. It is clearly seen that 

based on 8 input variables, the developed ANN model is 

able to accurately estimate the reduction of elastic modulus. 

Especially, the ANN 8-10-1 model can track the change 

tendency of the normalised elastic modulus with high 

modelling accuracy. Fig. 5 illustrates the correlation 

analysis results of the ANN 8-10-1 model for both training 

and testing data. If all the data points are located at the 

equality line, the coefficient of determination (R2) is 1, 

corresponding to the best result of the prediction model. It 

 
(a) Esposito et al. model (2016) 

 
(b) Kawabata et al. model (2017) 

 
(c) Martin et al. model (2017) 

 
(d) The proposed model: ANN 8-10-1 

Fig. 6 The relationship between the ratios (βEc, 

predicted/βEc, measured) and expansion level of existing 

empirical models and the proposed model (SD: standard 

deviation) 

 

 

can be seen from the figure that all the training and testing 

samples are uniformly distributed around the equality line, 

which indicates good prediction performance. The main 

reason contributing to this result is that the connection 

weights and bias of the developed ANN model are  
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optimised during the training procedure. Consequently, the 

model with the best parameter values can achieve high 

performance in terms of predicting the elastic modulus of 

ASR-affected concrete.  

 

5.2 Comparison to empirical degradation laws 
 

In this section, the existing empirical models (Esposito 

et al. 2016, Kawabata et al. 2017, Martin et al. 2017) were 

applied to estimate the elastic modulus according to the 

available collected experimental database. The ratio 

between predicted and measured elastic modulus change of 

all 177 experimental ASR affected concrete samples 

mentioned above are plotted with the expansion level in 

Fig. 6. It is observed that three empirical models provide a 

better estimation of the elastic modulus reduction at low 

expansion level of less than 0.2%, and then increase 

estimation error as the expansion level increases. 

Furthermore, the ratio of predicted to measured elastic 

modulus reduction obtained from three empirical models 

vary in a wide range, as shown in Table 2. The proposed 

ANN model, however, achieves highly accuracy in a large 

range of the expansion level where the mean and standard 

deviation of the ratio is just 1.003 and 0.085, respectively. 

In addition, the data points below the equality line in this 

figure mean that the predicted normalised elastic modulus is 

lower than the measured one, indicates the underestimation 

of the elastic modulus reduction due to ASR. In this context, 

it is apparent that the estimations based on regression 

parameters from Martin et al. (2017), Esposito et al. (2016) 

are strongly conservative, where the estimated elastic 

 

Table 2 Comparison of experimental data and calculated 

normalised elastic modulus according to different empirical 

models and the proposed ANN model 

Model 
Fitting 

constants 

βEc, predicted/βEc, 

measured 

Prediction 

performance 

Min Max MSE R2 

Esposito et al. 

(2016) 

ql=1.04 

ml=-0.46 

mm=-1.89 

mh=-1.08 

me=-0.21 

0.641 4.035 0.0601 0.616 

Kawabata et al. 

(2017) 

dmax=0.740 

ω=470 

ε0=0 

0.403 2.503 0.0204 0.617 

Martin et al. 

(2017) 

dmax=1 

ω=120 

ε0=0 

0.630 4.012 0.0505 0.613 

ANN 8-10-1  0.781 1.297 1.90E-03 0.965 

 

 

modulus is higher than the measured values for most of the 

data groups, as shown in Figs. 6(a)-(b). These two empirical 

models give the reduction level approximately more than 

40% higher than the measured value.  

In term of the mean square error (MSE) and coefficient 

of determination (R2), the performances of the existing 

empirical models and the ANN model are shown in Fig. 7 

and Table 2. Lower and upper bounds, which cover 95% of 

all the data points, are also plotted in Fig. 7 to present the 

variation of predictive values. Among the three empirical 

models, the fitting curve from  Kawabata et al. (2017) 

presents the highest accuracy, while the curve of Martin et  

 

  

 

 (a) Esposito et al. model (2016) (b) Kawabata et al. model (2017)  

 

  

 

 (c) Martin et al. model (2017) (d) The proposed model: ANN 8-10-1  

Fig. 7 Comparison of measured and predicted results of existing empirical models and the proposed model 
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Fig. 8 Neural interpretation diagram of the model ANN 8-

10-1 

 

 

al. (2017) is the lowest accuracy. More importantly, it is 

clear that the prediction performances of these empirical 

models are much lower than the proposed ANN model. For 

instance, the MSE (R2) calculated based on the formulas 

from Esposito et al. (2016), Kawabata et al. (2017) and  

Martin et al. (2017) are 6.01e-2 (0.616), 2.04e-2 (0.617) and 

5.05e-2 (0.613), respectively; while the MSE (R2) of the 

model ANN 8-10-1 is 1.90e-3 (0.965). It is clearly seen from 

Figs. 6 and 7 that the estimated results from the three fitting 

curves are markedly scattered from the equality line. 

Moreover, the 95% confidence intervals of their predictive 

results are significantly wider than the results from the 

model ANN 8-10-1.  

These observations prove the advantage and excellent 

capacity of neural networks techniques in optimisation and 

prediction problems. The fitting curves that are proposed to 

fit a certain set of data and just consider the effect of only 

the expansion level, thus, could not represent the elastic 

modulus change due to ASR from different studies with 

differences in mix proportions, reactive aggregate, exposure 

condition and compressive strength. By taking into account 

the effect of different factors on the ASR in concrete, the 

proposed ANN approach shows excellent performance for 

the prediction of the change in concrete elastic modulus.  

 

5.3 Interpretation of input variables contribution 
 

Fig. 8 shows the neural interpretation diagram (NID) of 

the model ANN 8-10-1, which represents the connection 

weights from input neurons to hidden neurons and hidden 

neurons to the output. The width of lines connecting nodes 

represent the absolute value of weight factors, and the 

colour represents polarity with red indicates the highest 

positive value and cyan corresponds to the highest negative 

value. At a glance, the NID provides a visual assessment of 

individual as well as the interacting impact of the model 

inputs. It is evident in Fig. 8 that weights of connection 

between the expansion level (EXP) and the output are the 

most considerable, followed by MAXEXP. Other input 

variables also contribute at a certain level to the output, 

however, their relative contribution levels are difficult to be 

identified using the NID. Therefore, the use of connection 

weights approach and partial derivatives method is 

necessary for a quantitative quantification. 

 

Fig. 9 Relative contribution of input variables to the output 

 

 

Fig. 9 shows the results from the connection weights 

approach and partial derivatives method for calculating 

relative contributions of input variables. There is an obvious 

similarity in the relative importance levels between 

connection weights approach and partial derivatives. It is 

clearly seen that the impact of the expansion and maximum 

measured expansion on the modulus change are dominant 

compared to the rest. This represents the strong correlation 

between the expansion and modulus of elasticity change 

due to ASR as the common conclusion from the literature. 

Therefore, expansion is only variable that has been used to 

estimate elastic modulus reduction in various empirical 

models in current practice. Nevertheless, it is not a 

comprehensive evaluation if effects of other influencing 

factors are neglected. For instance, the contributions of T, 

ALKALI, and FRAC to the output are also significant based 

on the results from both the connection weights approach 

and partial derivatives. Other model inputs such as C, 

CRAC and CS also have certain impacts on the elastic 

modulus change but at lower levels. Their relative 

important levels are different depending on the evaluation 

methods.  

 

 

6. Conclusions 
 

The mechanism of ASR and its consequent effects on 

the modulus of elasticity are extremely complicated, yet the 

change in the modulus of elasticity hugely influence the 

structural behaviour of ASR-affected concrete structures. 

This poses a great challenge on the accurate determination 

of the change of elastic modulus of the ASR-affected 

concrete, even in the laboratory testings. Based on readily 

available experimental data published in the literature, this 

study developed an innovative approach to evaluate the 

elastic modulus of concrete affected by ASR, utilising 

artificial neural network (ANN). This approach takes into 

account not only ASR-induced expansion but also other 

influencing factors including the cement content, proportion 

of reactive fine and coarse aggregate, exposure condition, 

total proportion of alkali content, initial compressive 

strength at the undamaged condition, and maximum 

measured expansion. Two training algorithms, Levenberg-

Marquardt (LM) and Bayesian regularization (BR), were 
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utilised in learning process for a comparison and 

optimization study of the ANN structures. The following 

conclusions can be drawn: 

• The prediction results from both LMNN and BRNN 

for the elastic modulus change due to ASR in this study 

agree quite well with the measured values. However, the 

BRNN presents a substantially better performance 

compared to LMNN in term of MSE and R2 for the 

currently available dataset, which shows the advantages 

of the regularization procedure.   

• The optimized ANN model has the ability to accurately 

evaluate the change of concrete elastic modulus due to 

ASR by including and weighting the contributions of 

various influential factors. 

• In comparison to current empirical models, the ANN 

approach demonstrates superior performance with 

significantly lower mean square error and higher 

coefficient of determination in prediction of the change 

in concrete elastic modulus due to ASR. This approach 

thus provide better estimation of elastic modulus for 

evaluation of ASR-damaged concrete as well as 

numerical modelling to assess structural behaviour. 

Once again, this result shows that contributions of the 

influencing factors have to be considered in the 

evaluation of elastic modulus change on ASR-affected 

concrete. 
• Based on results from the connection weights approach 
and partial derivatives method, the expansion level has a 
major impact on the modulus of elasticity of ASR-
affected concrete among the 8 input variables. In 
addition, the maximum measured expansion, 
temperature, amount of alkali content and fine reactive 
aggregate also have significant contributions, while 
cement content and proportion of reactive aggregate 
have less impact on the change of elastic modulus due to 
ASR.  
The proposed approach is able to gain insight into ASR 

effects on the change in elastic modulus. However, 
additional experimental data on the elastic modulus of ASR-
affected concrete is desirable to improve the model 
accuracy as well as to enhance the evaluation of influencing 
factors effects. Furthermore, other mechanical properties 
such as splitting tensile and compressive strength are also 
important for load capacity evaluation and condition 
assessment of ASR-affected concrete structures. Developing 
predictive models for these properties is necessary to 
provide a comprehensive assessment of the concrete 
properties degradation due to ASR. 
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