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1. Introduction 
 

The composite materials are widely employed in civil, 

aerospace, automobile and other engineering fields because 

of their advantage of important stiffness and strength to 

weight ratio. With the increasing uses of laminated 

composites in environmental conditions, thermo-

mechanical response of such structures has attracted 

considerable attention. During the operational life, the 

distribution of temperature diminishes the elastic moduli 

and degrades the strength of the laminated material.  

Shear deformation influences become more considerable 

in such structures because of the low transverse shear 

moduli as compared to high in-plane tensile moduli, when 

subjected to transverse loads. This requires the accurate 

structural investigation of composite plates. Since the 

transverse shear deformation is ignored in the classical plate 

theory (CPT), it cannot be suitable for the analysis of 

moderately thick or thick plates in which transverse shear 

deformation impacts are more important. To avoid the 

problems found in the CPT and accurately introduce the 

transverse shear influences, many shear deformation models 

have been proposed. The first order shear deformation 

theories (FSDTs) accounts for the transverse shear 

deformation influences, but necessitate a shear correction 

factor to satisfy the free transverse shear stress conditions 

on the top and bottom surfaces of the plate (Della Croce and 

Venini 2004, Ganapathi et al. 2006, Zhao and Liew 2009, 
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Zhao et al. 2009, Lee et al. 2010, Hosseini-Hashemi et al. 

2010, Hosseini-Hashemi et al. 2011, Mantari and Ore, 

2015, Mantari and Granados 2015a,b). Although the FSDT 

gives a sufficiently accurate description of response for thin 

to moderately thick plates, it is not convenient to use 

because of the difficulty in evaluation of correct value of 

the shear correction factor. To avoid the use of shear 

correction factor, many higher order shear deformation 

theories (HSDTs) were developed based on the assumption 

of nonlinear variations of in-plane displacements within the 

plate thickness. Reddy (1984) has proposed HSDT 

considering polynomial functions in-terms of thickness 

coordinate. Soldatos (1992) developed a hyperbolic shear 

deformation model for homogenous monoclinic plates 

whereas Thermal flexural investigation of symmetric 

laminated plates under a single sinusoidal thermal load is 

presented by Ali et al. (1999) by employing displacement 

based higher-order theory. Rohwer et al. (2001) presented 

higher-order theories for thermal stresses in layered plates. 

A novel inverse hyperbolic shear deformation model is 

developed by Grover et al. (2013). Karama et al. (2003, 

2009) developed an exponential function in terms of 

thickness coordinate for laminated composite beam and 

plates. Versino et al. (2013) have been proposed a refined 

zigzag theory for the investigation of homogeneous, 

multilayer composite and sandwich plates. Xiang and Kang 

(2013) studied bending response of functionally graded 

plates by employing nth-order shear deformation theory and 

meshless global collocation method based on the thin plate 

spline radial basis function. A two-dimensional higher-order 

deformation theory is proposed by Matsunaga (2009) for 

the evaluation of displacements and stresses in functionally 

graded plates subjected to thermal and mechanical loadings. 
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Hadji et al. (2019) presented an analytical solution for 

bending and free vibration responses of functionally graded 

beams with porosities. Ghugal and Kulkarni (2011) 

presented thermal stresses analysis in cross-ply laminated 

plates under a sinusoidal thermal load within the thickness 

of the plate by utilizing refined shear deformation theory. 

Draiche et al. (2014) studied the free vibration of a simply 

supported laminated composite plate with distributed patch 

mass using a trigonometric four variable plate theory. Kar et 

al. (2015) examined the nonlinear flexural behavior of 

laminated composite flat panel under hygro-thermo-

mechanical loading. Chattibi et al. (2015) investigated the 

thermomechanical bending response of anti-symmetric 

cross-ply composite plates using a simple four variable 

sinusoidal plate theory. Mahapatra et al. (2016a) used a 

micromechanical approach to study the nonlinear flexural 

response of laminated composite panel under hygro-thermo-

mechanical loading. Mahapatra et al. (2016b) investigated 

the geometrically nonlinear flexural behavior of hygro-

thermo-elastic laminated composite doubly curved shell 

panel. Mehar and Panda (2017a) presented a numerical 

investigation of nonlinear thermomechanical deflection of 

functionally graded CNT reinforced doubly curved 

composite shell panel under different mechanical loads. 

Mahapatra et al. (2017) studied the nonlinear thermoelastic 

deflection of temperature-dependent functionally graded 

material (FGM) curved shallow shell under nonlinear 

thermal loading. Mehar and Panda (2017b) analyzed the 

thermoelastic response of FG-CNT reinforced shear 

deformable composite plate under various loadings. Mehar 

and Panda (2017c) discussed the nonlinear static behavior 

of FG-CNT reinforced composite flat panel under 

thermomechanical load. Hirwani et al. (2018a) examined 

the thermomechanical deflection and stress responses of 

delaminated shallow shell structure using higher-order 

theories. Mehar et al. (2018a) employed the finite element 

method for studying the thermoelastic deflection responses 

of CNT reinforced sandwich shell structure. Also Mehar et 

al. (2018b) used a finite element approach for investigating 

the stress, deflection, and frequency analysis of CNT 

reinforced graded sandwich plate under uniform and linear 

thermal environment. Mehar and Panda (2018) presented 

nonlinear finite element solutions of thermoelastic flexural 

strength and stress values of temperature dependent graded 

CNT-reinforced sandwich shallow shell structure. Hirwani 

et al. (2018b) analyzed numerical flexural strength of 

thermally stressed delaminated composite structure under 

sinusoidal loading. Hirwani and Panda (2019) presented 

nonlinear finite element solutions of thermoelastic 

deflection and stress responses of internally damaged 

curved panel structure. Draiche et al. (2019) studied the 

bending behavior of laminated reinforced composite plates 

using a simple first-order shear deformation theory. Zarga et 

al. (2019) analyzed the thermomechanical bending response 

of functionally graded sandwich plates using a simple 

quasi-3D shear deformation theory. Mehar et al. (2019) 

investigated numerically the buckling response of graded 

CNT-reinforced composite sandwich shell structure under 

thermal loading. Mehar and Panda (2019) used a multiscale 

modeling approach for thermal buckling analysis of 

nanocomposite curved structure.  

 

 

Fig. 1 Coordinate system and layer numbering used for a 

typical laminated plate 

 

 

In the present paper, a new simple four variable 

trigonometric plate theory is proposed for the thermo-

mechanical bending response of laminated composite 

plates. The addition of the integral term in the displacement 

field leads to a reduction in the number of unknowns and 

governing equations. Analytical solutions of simply 

supported antisymmetric cross-ply laminates are determined 

and the results are compared with the existing solutions. 

The analysis is relevant to aerospace and nuclear 

engineering structures experiencing significant heat effects. 

 

 
2. Mathematical model 

 

The system examined, shown schematically in Fig. 1 is 

a beam of variable cross section, carrying a so called heavy 

tip mass M. Its mass moment of inertia with respect to the 

perpendicular axis at the centroid S is denoted by JS. The 

publications (Abolghasemi and Jalali 2003, Younesian and 

Esmailzadeh 2010, Arvin and Bakhtiari-Nejad 2011) are 

considered also with rotating beams in which nonlinear 

oscillations are investigated. Analytical and experimental 

investigations on vibrating frames carrying concentrated 

masses with characteristics of frames have been studied by 

using analytical solutions and the finite element method 

(Cheng et al. 2013a, b). …… 

Consider a fiber-reinforced rectangular laminated plate 

of length a, width b and uniform thickness h (see Fig. 1). 

The plate is composed of n orthotropic layers oriented at 

angles θ1; θ2; . . .; θn. The material of each layer is supposed 

to contain one plane of elastic symmetry parallel to the x-y 

plane. Perfect bonding between the orthotropic layers and 

temperature-independent mechanical and thermal 

characteristics are supposed. Let the plate be subjected to a 

transverse load q(x,y) and temperature field T(x,y,z). 

 

2.1 Kinematics and strains 
 

In this work, further simplifying assumptions are made 
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to the conventional HSDT so that the number of unknowns 

is reduced. The displacement field of the conventional 

HSDT is given by  

0

0( , , , ) ( , , ) ( ) ( , , )x
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u x y z t u x y t z f z x y t
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where u0; v0; w0, θx, θy are five unknown displacements of 

the mid-plane of the plate, f(z) presents shape function 

representing the variation of the transverse shear strains and 

stresses across the thickness. In this work a new 

displacement field with 4 unknowns is proposed 
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The constants k1 and k2 depends on the geometry and the 

function f(z) is given by 
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The strains are related to the displacements given in (2) 

and can be expressed as  
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The integrals used in the above relations shall be 

resolved by a Navier solution and can be expressed by 
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In which the coefficients A′ and B′ are determined 

according to the type of solution considered, in this case via 

Navier. Thus, A′ and B′ are defined by 
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where α and β are defined in expression (22). 

 
2.2 Constitutive and governing equations 
 

The stress-strain relationships, accounting for thermal 

and transverse shear deformation influences, in the plate 

coordinates for the kth layer can be defined as 
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where T=T(x,y,z) is the temperature distribution; and (αx, αy, 

αxy) are the thermal expansion coefficients in the plate 

coordinates, and are related to the coefficients (αL, αT,0) in 

the material principal directions. ijQ  are the transformed 

elastic coefficients are the transformed material constants 

given as (Bogdanovich and Pastore 1996) 
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where Qij are the (plane stress-reduced) material stiffness of 

the lamina 
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in which Ex and Ey are Young’s moduli in the x and y 

material principal directions, respectively; vxy and vyz are 

Poisson’s ratios; and Gxy; Gyz and Gxz are shear moduli in 

the x-y, y-z and x-z surfaces, respectively. 

The stress and moment resultants of a laminated 

composite plate made up of n layers of orthotropic laminate 
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can be determined by integrating (8) over the thickness, and 

are expressed as 
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and stiffness components are given as 
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Note that, zk denotes the distance from the mid-surface 

to the lower surface of the kth layer. The stress and moment 

resultants, T

xN  , 
T

yN ; . . . etc., due to thermal loading are 

expressed by 
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The considered temperature variation T (x, y, z) within 

the thickness are supposed to be 
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The governing equations of equilibrium can be obtained 

by employing the principle of virtual displacements. The 

governing equations associated with the present theory are 

( )

0

0

2 22

0 2 2

2 22

1 2 1 2 1 22 2

 :    0

 :    0

 :    2 0

 :  -  ' -  '  ' '  ' ' 0

xyx

xy y

b bb
y xyx

s s ss s
y xy yzx xz

NN
u

x y

N N
v

x y

M MM
w q

x yx y

M M SM S
k A k B k A k B k A k B

x y x yx y







 


+ =

 

 
+ =

 

 
+ + + =

  

   
− + + + =

    

 
(15) 

Eq. (15) can be presented in terms of displacements (u0, 

v0, w0 and θ) by substituting for the stress resultants from 

Eq. (11). For homogeneous laminates, the governing Eq. 

(15) become 

( )
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( ) ( ) ( )

( )

11 11 0 16 12 0 66 22 0 12 66 12 0 26 22 0 16 11 0

11 111 0 16 112 0 12 66 122 0 26 222 0

1 2 66 122 1 11 2 12 1 1 2 16 112

1 16 2 26 2 1

2

3 2

' ' ' '

,

s s s s

s s

A d u A d u A d u A A d v A d v A d v

B d w B d w B B d w B d w

k A k B B d k B k B d k A k B B d

k B k B d F

  



+ + + + + +

− + + + +

+ + + + + +

− + =

 (16a) 

( )

( )( )

( ) ( ) ( )

( )

11 16 0 12 66 12 0 26 22 0 66 22 0 26 12 0 22 22 0

16 111 0 26 122 0 12 66 112 0 22 222 0

1 2 66 112 2 22 1 12 2 1 2 26 122

1 16 2 26 1 2

2

3 2

' ' ' '

,

s s s s

s s

A d u A A d u A d u A d v A d v A d v

B d w B d w B B d w B d w

k A k B B d k B k B d k A k B B d

k B k B d F

  



+ + + + + +

− + + + +

+ + + + + +

+ + =

 (16b) 

( )( )

( )( )

( )

( ) ( )

11 111 0 16 112 0 12 66 122 0 26 222 0

16 111 0 26 122 0 12 66 112 0 22 222 0

11 1111 0 12 66 1122 0 22 2222 0

16 1112 0 26 1222 0

1 11 2 12 11 1 2 66 1122

1 12

3 2

3 2

2 2

4 4

2 ' 's s s

s

B d u B d u B B d u B d u

B d v B d v B B d v B d v

D d w D D d w D d w

D d w D d w

k D k D d k A k B D d

k D

 

+ + + +

+ + + + +

− − + −

− −

+ + + + +

( ) ( )

( ) ( )

2 22 22 1 16 2 26 12

1 2 16 1112 1 2 26 1222 3

2

' ' ' '

s s s

s s

k D d k D k D d

k A k B D d k A k B D d q F

 

 

+ + +

+ + + + + =

 
(16c) 

( ) ( ) ( )

( )

( ) ( ) ( )

( )

( ) ( )

1 2 66 122 0 1 11 2 12 1 0 1 2 16 112 0

1 16 2 26 2 0

1 2 66 112 0 2 22 1 12 2 0 1 2 26 122 0

1 16 2 26 1 0

1 11 2 12 11 0 1 2 66 1122 0 1

( ' ' ' '

)

( ' ' ' '

)

2 ' '

s s s s

s s

s s s s

s s

s s s

k A k B B d u k B k B d u k A k B B d u

k B k B d u

k A k B B d v k B k B d v k A k B B d v

k B k B d v

k D k D d w k A k B D d w k

− + + + + +

− +

− + + + + +

+ +

+ + + + + ( )

( )

( ) ( )

( )

( )( )

( ) ( )

12 2 22 22 0

1 16 2 26 12 0

1 2 16 1112 0 1 2 26 1222 0

2

11 1 22 2 12 1 2 1 2 66 1122

1 2 16 26 12

2 2

44 2 22 55 1 11 45 1 2 12 4

2

' ' ' '

2 ' '

2 ' '

' ' 2 ' '

s s

s s

s s

s s s s

s s

s s s

D k D d w

k D k D d w

k A k B D d w k A k B D d w

H k H k H k k k A k B H d

k A k B H H d

A k B d A k A d A k k A B d F

   



  

+

+ +

+ + + +

− − − − +

− + +

+ + + =

 
(16d) 

where dij, dijl and dijlm are the following differential 

operators 

2 3 4

, , ,

( , , , 1,2).
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 (17) 

and {F}={F1, F2, F3, F4}t is a generalized force vector 

given by 
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(18) 
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3. Analytical solutions for anti-symmetric cross-ply 
laminates 

 

The Navier procedure is utilized to deduce the analytical 

solutions of the partial differential equations in Eq. (16) for 

simply supported rectangular plates. For anti-symmetric 

cross-ply laminates, the following plate stiffnesses are 

identically zero 

16 26 16 26 16 26 16 26

12 16 26 66 12 16 26 66

22 11 22 11

0

0

;   

s s s s

s s s s

s s
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= = = = = = = =

= = = = = = = =

= − = −

 (19) 

To solve this problem, Navier supposed that the 

transverse mechanical and temperature loads q, T1, T2 and 

T3 in the form of a double trigonometric series as 

0

1 1

2 2

3 3
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q q
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 (20) 

where q0, t1, t2 and t3 are constants. 

Based on the Navier method, the following expansions 

of displacements are adopted to automatically respect the 

simply supported boundary conditions of plate 

0
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cos(  )sin(  )

sin(  ) cos(  )

sin(  )sin(  )

sin(  )sin(  )

mn

mn

m n mn

mn

U x yu

V x yv

W x yw

X x y

 

 

 

 

 

= =

  
  

   
=   

   
      

  (21) 

where Umn, Vmn and Xmn are coefficients, and α and β are 

expressed as 

/ /m a and n b   = =  (22) 

Substituting Eqs. (21) and (20) into Eq. (16), the Navier 

solution of anti-symmetric cross-ply plates can be deduced 

from equations 
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(24) 

The components of the generalized force vector 

{F}={F1, F2, F3, F4}t are given by 
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4. Numerical results and discussion 

 

In this section, various numerical results are presented 

for verifying the exactitude and efficiency of the present 

model in predicting the thermo-mechanical behavior of 

simply-supported anti-symmetric cross-ply composite 

plates. The exact closed-form solution of Reddy and Hsu 

(1980) for simply supported rectangular plates under 

sinusoidal thermal and mechanical loading is employed to 

demonstrate the validity of the present method. Calculations 

were carried out for the fundamental mode (i.e., m=n=1). 

All of the lamina are considered to be of the same thickness 

and made of the same orthotropic material. In all problems, 

the lamina characteristics are supposed to be 
6 6 6

6

25 10  psi, 10  psi, 0.5 10  psi

0.2 10  psi, 0.25

x x xy xz

yz xy

E E G G

G 

=  = = = 

=  =
 

Note that, values of (αx(≡α1)) and αy(≡α2) are given 

during the discussion of material results. We will supposed 

in all of the considered cases (unless otherwise stated) that 

a/h=10, a/b=1, t1=1, and α2/α1=3. 

Table 1 contains results of non-dimensional center 

transverse displacements 
2

2110 / ( )w wh T a=  of two-

layer cross-ply (0°/90°) plates engendered by thermal 

loading. After a detailed comparison investigation, it can be 

said that the present plate model provides very closed 

results to the values computed by the conventional 

sinusoidal plate theory (SSDT) obtained by Zenkour (2004), 

Chatibi et al (2015).  

In Table 2, the following non-dimensional transverse 

displacement w  of two-layer cross-ply (0°/90°) plates 

under to combined loading is employed (see Reddy and Hsu 

1980) 
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Table 1 Nondimensional center deflections 

𝑤̅ =10wh/(α1 𝑇̅2 a2) of cross-ply square plates (0°/90°) 

subjected to thermal loading (𝑇̅3 = 0) 

a/h Exact (a) 
Chattibi et 

al. (2015) 
HSDT (b) SSDT (b) Present 

100 1.6765 1.6766 1.6766 1.6766 1.6766 

50 1.6765 1.6767 1.6767 1.6767 1.6767 

25 1.6765 1.6771 1.6770 1.6771 1.6771 

20 1.6765 1.6774 1.6773 1.6774 1.6774 

12.5 1.6765 1.6789 1.6786 1.6789 1.6789 

10 1.6765 1.6802 1.6798 1.6802 1.6802 

6.25 1.6765 1.6858 1.6848 1.6858 1.6858 

5 1.6765 1.6910 1.6894 1.6910 1.6910 

(a) Reddy and Hsu (1980) 
(b) Zenkour (2004) 

 

Table 2 Nondimensional center deflections w  of cross-ply 

square plates (0°/90°) subjected to combined loading 

(q0=100, 𝑇̅2=100, 𝑇̅3=0, α1=10-6) 

a/h Exact (a) 
Chattibi et 

al. (2015) 
HSDT (b) SSDT (b) Present 

100 2.4451 2.4481 2.4481 2.4481 2.4481 

50 2.4597 2.4585 2.4586 2.4584 2.4585 

25 2.5083 2.4999 2.5006 2.4996 2.4999 

20 2.5443 2.5309 2.5321 2.5304 2.5309 

12.5 2.7001 2.6650 2.6679 2.6636 2.6650 

10 2.8438 2.7885 2.7927 2.7859 2.7885 

6.25 3.4666 3.3186 3.3273 3.3090 3.3186 

5 4.0415 3.8013 3.8120 3.7821 3.8013 

(a) Reddy and Hsu (1980) 
(b) Zenkour (2004) 
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The computed results are given in Table 2 and are 

compared to those calculated via various plate theories 

(Zenkour 2004, Chattibi et al. 2015) and the solution of 

Reddy and Hsu (1980). It can be observed that the present 

model with only four unknowns agree extremely well with 

those determined in (Zenkour 2004, Chattibi et al. 2015).   

The non-dimensional transverse displacement calculated 

by employing using various theories for two-, four-, six- 

and ten-layer anti-symmetric cross-ply square laminates are 

reported in Table 3. The results clearly show that the present 

new simple four variable plate theory and the conventional 

sinusoidal theory (SSDT) provide identical results. 

The variation of non- dimensionalized vertical 

displacement 𝑤̅ versus the ratio a/h for anti-symmetric 

two- and four-layer cross-ply square plates is shown in Figs. 

2 and 3, respectively. An interesting result deduced from 

Figs. 2 and 3 is that the vertical displacement 𝑤̅ is 

independent of the side to-thickness ratio for the case of the 

CPT. On the other hand, with the consideration of the shear 

deformation effect, all responses of the present theory, 

HSDT, SSDT, and FSDT become dependent on the side to- 

5 10 15 20 25 30 35 40 45 50

1,676

1,678

1,680

1,682

1,684

1,686

1,688

1,690

1,692

w

a/h

 FSDT
(b)
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(b)

 SSDT
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Fig. 2 Effect of thickness on the dimensionless deflection 

𝑤̅ of a two-layer, anti-symmetric cross-ply (0/90) square 

plate (t3=0) 
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Fig. 3 Effect of thickness on the dimensionless deflection 

𝑤̅ of a four-layer, anti-symmetric cross-ply (0/90)2 square 

plate (t3=0) 

 

 

thickness ratio. It is known that the dependency of the 

responses on the side to-thickness ratio for the present 

theory, HSDT, SSDT, and FSDT is uniquely due to the 

effect of shear deformation. The obtained results are 

compared with those generated by HSDT, SSDT, and FSDT 

as is shown in Figs. 2 and 3. In addition, it is seen that the 

vertical displacement 𝑤̅ decreases with increasing the side 

to-thickness ratio for two- layer plates, whereas for four- 

layer plates ones the increase in vertical displacement due 

to the same theories is shown.  

The effect of the ratio of thermal expansion coefficients 

(α2/α1) on the bending response of anti-symmetric four-

layer cross-ply square plate is demonstrated in Fig. 4. It can 

be seen that the vertical displacement is linearly 

proportional to the α2/α1 ratio. 

Fig. 5 demonstrates the effects of the aspect ratio (a/b) 

on the non- dimensionalized vertical displacement 𝑤̅ of 

anti-symmetric four-layer cross-ply square plate subjected 

to linear temperature distribution and/or mechanical 

loading. It is found that the aspect ratio effect is more 

pronounced on the thermal bending deflection 𝑤̅ (q=0) of  
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 SSDT
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Fig. 4 Effect of the ratio of thermal expansion coefficients 

α2/α1 on the dimensionless deflection 𝑤̅ of a four-layer, 

anti-symmetric cross-ply (0/90)2 square plate (t3=0) 

 

Table 3 The non-dimensional transverse displacement 

calculated by employing using various theories for two-, 

four-, six- and ten-layer anti-symmetric cross-ply square 

laminates 

No. of 

layers 
Theory 

a/h 

2 4 10 20 50 100 

(0/90)1 

CLPT 1.6765 1.6765 1.6765 1.6765 1.6765 1.6765 

FSDT 1.6765 1.6765 1.6765 1.6765 1.6765 1.6765 

SSDT 1.7590 1.6989 1.6802 1.6774 1.6767 1.6766 

Present 1.7590 1.6989 1.6802 1.6774 1.6767 1.6766 

(0/90)2 

CLPT 1.8598 1.8598 1.8598 1.8598 1.8598 1.8598 

FSDT 1.8598 1.8598 1.8598 1.8598 1.8598 1.8598 

SSDT 1.8296 1.8516 1.8584 1.8594 1.8597 1.8598 

Present 2 1.8296 1.8516 1.8584 1.8594 1.8597 1.8598 

(0/90)3 

CLPT 1.8745 1.8745 1.8745 1.8745 1.8745 1.8745 

FSDT 1.8745 1.8745 1.8745 1.8745 1.8745 1.8745 

SSDT 1.8602 1.8706 1.8739 1.8744 1.8745 1.8745 

Present 2 1.8602 1.8706 1.8739 1.8744 1.8745 1.8745 

(0/90)5 

CLPT 1.8811 1.8811 1.8811 1.8811 1.8811 1.8811 

FSDT 1.8811 1.8811 1.8811 1.8811 1.8811 1.8811 

SSDT 1.8759 1.8797 1.8809 1.881 1.8811 1.8811 

Present 2 1.8759 1.8797 1.8809 1.881 1.8811 1.8811 

 

 

a plate under non-uniform temperature distribution.  

The effect of the modulus ratio (E1/E2) on the bending 

response of anti-symmetric four-layer cross-ply square plate 

is shown in Fig. 6. It can be deduced that the bending 

response of the composite plate depends strongly on the 

material anisotropy of the layer. 

 

 

4. Conclusions 
 

A simple four variable sinusoidal plate theory has been 

successfully developed for the thermo-mechanical of simply 

supported laminated plates. The theory accounts for the 

shear deformation effects without requiring a shear 

correction factor. By dividing the transverse displacement 

into bending, shear and stretching components, the number 
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Fig. 5 Effect of aspect ratio on the dimensionless combined 

deflection 𝑤̅  of a four-layer, anti-symmetric cross-ply 

(0/90)2 plate (t3=0) 
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Fig. 6 The effect of material anisotropy E1/E2 on the 

dimensionless deflection 𝑤̅ of a four-layer, anti-symmetric 

cross-ply (0/90)2 square plate (t3=0) 

 

 

of unknowns and governing equations of the present theory 

is reduced to four and is therefore less than alternate 

theories. The accuracy and efficiency of the present theory 

has been demonstrated for thermo-mechanical bending 

behavior of antisymmetric cross-ply laminates.  

An improvement of the present formulation will be 

considered in the future work to consider other type of 

materials (Benferhat et al. 2016, Kar et al. 2017, Eltaher et 

al. 2018, Selmi and Bisharat 2018, Natanzi et al. 2018, 

Panjehpour et al. 2018, Shahadat et al. 2018, Faleh et al. 

2018, Karami et al. 2018, Chemi et al. 2018, Bensattalah et 

al. 2018 and 2019, Hussain and Naeem 2019, Avcar 2019, 

Alimirzaei et al. 2019, Addou et al. 2019, Rajabi and 

Mohammadimehr 2019, Karami et al. 2019, Safa et al. 

2019, Hadji and Zouatnia 2019, Fadoun 2019). 
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