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1. Introduction 
 

Determination of shear capacity is a critical step in 

structural element design of reinforced concrete structures. 

Numerous mechanistic models have been proposed 

researchers standardisation committees to evaluate the shear 

capacity of reinforced concrete beams. Typically these 

models are empirical and account for various parameters, 

not always the same and often with quite different results. 

This has led to  researchers to turn towards non-

deterministic techniques for wish an in-depth review and 

critical literature examination can be found in the works of 

Flood and Kartam (1994), Adeli (2001), Asteris and Plevris 

(2013, 2017) and Asteris et al. (2016a, b), Sarir et al. 2019. 

Amongst the non-deterministic methods, the method of 

Artificial Neural Networks (ANN) appears to be the most 

attractive and reliable. ANNs have materialized as an 

innovative simulation technique, with wide spectrum of 

applications in a variety of technological disciplines. Over 

the last two decades, there has been extensive use of ANNs 

in predicting the behavior and evaluating the mechanical 

properties of structural materials and in particular of 

concrete (Waszczyszyn and Ziemiański 2001, Asteris and 

Kolovos 2019, Asteris et al. 2017). The pertinent literature 

includes studies on the application of ANNs in the 
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determination of compressive strength and elasticity 

modulus of concrete (Dias and Pooliyadda 2001, Lee 2003, 

Topçu and Saridemir 2008, Trtnik et al. 2009), for which 

various other methods of artificial intelligence, such as the 

fuzzy logic and genetic algorithms were also (Baykasoǧlu et 

al. 2004, Akkurt et al. 2004, Özcan et al. 2009, Asteris et al. 

2019a). ANNs have also been used for the determination of 

the shear strength of reinforced concrete structural elements 

(Sanad and Saka 2001, Mansour et al. 2004, Seleemah 

2005, 2012, El-Chabib et al. 2006, Amani and Moeini 2012, 

Mohammadhassani et al. 2014, 2015, Kotsovou et al. 2017, 

Keskin 2017, Kaveh et al. 2018, Sarveghadi et al. 2019, 

Yaseen et al. 2018, Yavuz  2016, 2019). 

This paper examines the adoption of Artificial Neural 

Networks for the estimation of shear strength of reinforced 

concrete. In particular, a heuristic algorithm is proposed to 

determine the optimal Artificial Neural Network 

architecture for estimating shear resistance of reinforced 

concrete members in terms of mean square error. For the 

training of the network, a research database is used, which 

includes the shear resistance of reinforced concrete beams 

specimens with various dimensions, materials and 

geometric properties. The backward propagation method is 

examined in the procedure of neural network design and 

development, while the well accepted Levenberg-Marquardt 

algorithm (Lourakis 2005) is used as the training algorithm. 

For the training, nine parameters concerning the mechanical 

and geometric characteristics of the beams are used as input 

parameters, while the experimental test shear capacity is 

used as the output parameter. Comparisons are made with 
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other models to determine accuracy and efficiency. 

In addition to the architecture of the proposed optimum 

neural system, a supplementary materials section is 

included which provides a simple design/education tool 

which can assist both in teaching, as well as the 

interpretation of the behavior of reinforced concrete beams 

under shear loading. The decision to include all the 

necessary information for anyone to be able to test the 

proposed model, in addition to the reliability it ensures, also 

provides the means for other researchers, students or field 

practitioners to further test the reliability of the proposed 

model. 

 

 

2. Research significance 
 

Despite the abundance of research works, both 

experimental and theoretical, conducted since the middle of 

the previous century (Clark 1951) up to today, the 

determination of the shear stress value still remains an open 

issue of great interest in structural engineering. The need for 

further research is indicated by the fact that the majority of 

available models, use different parameter and lead to 

different results with a high degree of variation. This may 

be due to the many (more than ten) parameters which 

influence the shear capacity estimation. Even though five 

values for each parameter can be considered as a 

satisfactory set to work with, that would demand the results 

of 9765625 (510) experiments to comprehend and interpret 

the ten-dimensional space underlying the specific problem. 

An experimental endeavor of such magnitude is unfeasible; 

hence, other approaches that can give results from fewer 

results are necessary. 

Non-deterministic techniques, such as soft computing 

techniques, can contribute towards the solution of this 

problem. To this end, a soft computing mathematical model 

based on Artificial Neural Networks (ANNs) is proposed 

herein, aiming to predict shear strength of reinforced 

concrete beams with or without stirrups. 

 

 

3. Shear capacity of reinforced concrete beams 
 

This section presents and discusses the experimental test 

results and main empirical expressions proposed for the 

determination of shear resistance. Typical geometrical 

parameters for a beam test are shown in Fig. 1. 
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Fig. 1 Reinforced concrete beam under shear force 

3.1 Experimental tests results 
 

Since the early 1950s, a number of comprehensive 

experimental works have been published on the shear 

capacity of reinforced concrete beams with or without shear 

reinforcement (stirrups). The widely utilised works by Clark 

(1951), Placas and Regan (1971) and Fukuhara and 

Kokusho (1982) are worth mentioning and these are 

included in the baseline used in the present study as well as 

the experimental results of another six studies, those of Xie 

et al. (1994), Yoon et al. (1996), Angelakos et al. (2001), 

Zararis et al. (2009), Ismail (2009), Londhe (2011), which 

are presented in detail in  the next section. These works 

were selected to better cover all the ranges of values of the 

parameters involved in the problem under consideration.  

Fig. 2 shows the values of shear strength for the 300 

experimental results (datasets) examined versus six of the 

most important parameters that affect the shear resistance of 

reinforced concrete beams. These are the shear ratio (a/d), 

compressive strength of concrete (fc), percentage of 

lateral/shear reinforcement, percentage of longitudinal 

reinforcement (ρl), (ρw), and the yield strength of shear and 

longitudinal reinforcement. 

In fact, these three experimental databases are included 

in the baseline used in the present study  along with the 

experimental results of the studies by Xie et al. (1994), 

Yoon et al. (1996), Angelakos et al. (2001), Zararis et al. 

(2009), Ismail (2009), Londhe (2011). Diagrams of Fig. 2 

show the non-linear and complex behavior of the 

aforementioned parameters which may explain the inability 

of deterministic methods to formulate an analytical 

relationship to evaluate the value of shear capacity of 

reinforced concrete beams. 

 

3.2 Shear strength according to building codes  
 

In addition to transverse reinforcement, other 

mechanisms as consider to contribute to the shear capacity 

of a concrete member including: shear transfer in the 

compressive region, dowel action of longitudinal 

reinforcement and aggregate interlock. The total shear 

resistance Vn of a concrete member without axial force is 

normally given as the summation of two contributions 

𝑉𝑛 = 𝑉𝑐 + 𝑉𝑠 (1) 

where 𝑉𝑐 is the concrete shear contribution and 𝑉𝑠 is the 

transverse reinforcement contribution.  

Different design codes propose different expressions for 

both of these contributions, but vary much more in the 

determination of the concrete shear contribution. 
In the current study, four design codes are examined for 

the estimation of the shear capacity of reinforced concrete 
beams: the American ACI-318-14 (2015), the Canadian 
CSA-Α23.3-04 (2004), the New Zealand NZS-3101 (2006) 
and the European Eurocode 2 (EN 1992-1 2004) as 
presented below:  

 
3.2.1 Eurocode 2 - EN 1992-1 (2004) 
According to the Eurocode (EC2) concrete shear 

contribution 𝑉𝑐  of members without shear reinforcement 

and without axial force is given by the following expression 
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𝑉𝑐 = [𝐶𝑅,𝑐 𝑘 (100 𝜌𝑙𝑓𝑐)1 3⁄ ]𝑏𝑤𝑑 ≥ 0.035 𝑘3 2⁄ √𝑓𝑐𝑏𝑤𝑑 (2) 

where 𝑓𝑐 (MPa) is the concrete compressive strength, 𝑏𝑤 

(mm) is the smallest width of the cross-section in the tensile 

area, d (mm) is the effective depth of a cross-section, 

𝐶𝑅,𝑐 = 0.18 ,  k = 1 + √
200

d
 ≤ 2.0   (d in mm) ,ρl =

Asl

bwd
≤

0.02 is the longitudinal reinforcement ratio and 𝐴𝑠𝑙 is the  

 

 

area of the longitudinal reinforcement.  

The transverse reinforcement contribution 𝑉𝑠 is 

expressed as  

𝑉𝑠 =
𝐴𝑠𝑤

𝑠
 𝑧 𝑓𝑦𝑤 𝑐𝑜𝑡 𝜃 (3) 

Where 𝐴𝑠𝑤 is the area of the shear reinforcement, s is 

the spacing of the stirrups, z is the inner lever arm with an 

  

  

  
Fig. 2 Experimental values of shear strength of reinforced concrete beams 
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approximate value z=0.9d for members without axial force, 

𝑓𝑦𝑤 (MPa) is the yield stress of the shear reinforcement, θ 

is the angle between the concrete compression strut and the 

beam axis perpendicular to the shear force, 1≤cotθ≤2.5, 

𝜌𝑤 =
𝐴𝑠𝑤

𝑏𝑤 𝑠
  the transverse reinforcement ratio. 

The maximum value of the shear strength is equal to 

𝑉𝑚𝑎𝑥 = 𝑎𝑐𝑤𝑏𝑤  𝑧 𝑣1

𝑓𝑐

(𝑐𝑜𝑡 𝜃 + 𝑡𝑎𝑛 𝜃)
 (4) 

where 𝑎𝑐𝑤 = 1.0 and 𝑣1 = 𝑣 = 0.6 [1 −
𝑓𝑐

250
]. 

 

3.2.2 ACI building code - ACI 318-14(2015) 
According to ACI 318-14 building code, the concrete 

shear contribution, 𝑉𝑐, for members without axial force is 

given by  

𝑉𝑐 = 0.17𝜆√𝑓𝑐𝑏𝑤𝑑  with √𝑓𝑐  ≤ 8.3 𝑀𝑃𝑎 (5) 

where 𝜆=1.0 for normal weight concrete. The transverse 

reinforcement contribution 𝑉𝑠 is expressed as 

𝑉𝑠 =
𝐴𝑠𝑤

𝑠
 𝑑 𝑓𝑦𝑤  ≤ 0.66√𝑓𝑐𝑏𝑤𝑑 (6) 

 

3.2.3 Canadian Standard Code-CSA-Α23.3-04 
The Canadian Building Code (CSA-Α23.3-04) in the 

simplified method proposes the following expressions for 

the calculation of the concrete shear contribution, 𝑉𝑐, of 

elements without axial load. The expression of the shear 

strength depends on the height of the cross-section and the 

area of the transverse reinforcement. 

For ℎ ≤ 250 mm 

Vc = 0.21 √fcbwd (7) 

If 𝐴𝑠𝑤 ≥
0.06√𝑓𝑐𝑏𝑤𝑠

𝑓𝑦𝑤
 

𝑉𝑐 = 0.18 √𝑓𝑐𝑏𝑤𝑑 (8) 

If 𝐴𝑠𝑤 <
0.06√𝑓𝑐𝑏𝑤𝑠

𝑓𝑦𝑤
  and ℎ > 250 mm 

𝑉𝑐 = (
230

1000 + 𝑑𝑣
) √𝑓𝑐𝑏𝑤𝑑 (9) 

where √𝑓𝑐  ≤ 8.0 √MPa  and dv = max{0.9d , 0.77h} 

The transverse reinforcement contribution Vs is given by 

𝑉𝑠 =
𝐴𝑠𝑤

𝑠
𝑑𝑣𝑓𝑦𝑤 𝑐𝑜𝑡 𝜃 ≤ 0.66√𝑓𝑐𝑏𝑤𝑑 (10) 

In the simplified method, the Canadian building code 

proposes that the angle between the concrete compression 

strut and the beam axis perpendicular to the shear force 

should be taken equal to 42° for beams with height ℎ ≤
250 mm or else to be taken equal to 35ο. 

 

3.2.4 New Zealand Standards - NZS 3101 
The New Zealand code is valid for concrete with 

compressive strength that does not exceed 100 MPa. The 

nominal shear stress 𝑣𝑛 = 𝑉𝑛 𝑏𝑤𝑑⁄  should be equal to or 

less than the smaller of 0.2𝑓𝑐 or 8 MPa. 

According to that code, the concrete stress contribution 

is equal to 

𝑉𝑐 = 𝑘𝑑(0.07 + 10𝜌𝑙)√𝑓𝑐𝑏𝑤𝑑   
≥ 0.08 √𝑓𝑐

< 0.20 √𝑓𝑐

 (11) 

where 𝑓𝑐 ≤ 50 MPa  and for  𝐴𝑠𝑤 ≥ 𝐴𝑠𝑤,min =
1

16
√𝑓𝑐

𝑏𝑤𝑠

𝑓𝑦𝑤
 

or 𝑑 < 400 mm 

𝑘𝑑 = 1.0 (12) 

If 𝐴𝑣 < 𝐴𝑠𝑤,min =
1

16
√𝑓𝑐

𝑏𝑤𝑠

𝑓𝑦𝑤
 and 𝑑 > 400 mm 

𝑘𝑑 = (
400

𝑑
)

0.25

 (13) 

If 𝑑 < 200 mm 

 𝑉𝑐 = max {
𝑘𝑑(0.07 + 10𝜌𝑙)√𝑓𝑐𝑏𝑤𝑑

0.17 √𝑓𝑐𝑏𝑤𝑑
 (14) 

For members with an effective depth between 200 mm 

and 400 mm, the value of 𝑉𝑐  shall be found by linear 

interpolation. 

 

3.3 Shear strength according to previous research 
studies 

 

3.3.1 Gandomi et al. (2017) 
Gandomi et al. (2017) gathered from the literature a 

large database of experimental data, containing 466 RC 

beams with shear reinforcement. Gene expression 

programming was developed to predict the shear strength of 

RC beams with stirrups and their model concluded to the 

following expression 

𝑉𝐺𝐸𝑃(𝑘𝑁) =
𝜌𝑙

2

𝜌𝑙 − 6
− (𝜌𝑤𝑓𝑦𝑤 + 𝜌𝑙 +

𝑎

𝑑
+ 6)

2

+ 

√𝜌𝑙(𝑓𝑐𝜌𝑤𝑓𝑦𝑤𝜌𝑙(𝑑 − 𝑏) − 𝑑𝜌𝑙
2)

24

+ 5
𝑎

𝑑
+ 𝑏𝑤 + 8 

(15) 

where 𝑏𝑤 (mm) is the smallest width of the cross-section 

in the tensile area, d (mm) is the effective depth of a cross-

section, a/d is the shear span to depth ratio, 𝑓𝑐 (MPa) is the 

concrete compressive strength, 𝜌𝑙 = 𝐴𝑠𝑙 𝑏𝑤𝑑⁄  (%) is the 

longitudinal reinforcement ratio, 𝜌𝑤𝑓𝑦𝑤 = 𝐴𝑠𝑤𝑓𝑦𝑤 𝑏𝑤𝑠⁄  

(MPa) is the shear reinforcement contribution, 𝐴𝑠𝑙 and 

𝐴𝑠𝑤  are the area of the longitudinal and shear 

reinforcement, respectively, s is the spacing of the stirrups 

and 𝑓𝑦𝑤  (MPa) is the yielding strength of the shear 

reinforcement. 

 

3.3.2 Russo et al. (2013) 
According to Russo et al. (2013), the shear capacity of a 

reinforced concrete beam is given by 

𝑉𝑢 = 0.72 𝜉 [𝜌𝑙
0.4𝑓𝑐

0.39 + 0.5𝜌𝑙
0.83𝑓𝑦

0.89 (
𝑎

𝑑
)

−1.2−0.45 
𝑎
𝑑

] 

+0.075 𝑓𝑐
0.5(𝜌𝑤𝑓𝑦𝑤)

0.7
 

(16) 

where  is a function that takes the size effect into 

consideration. 

Fig. 3 presents a comparison between some of the 

aforementioned expressions for the evaluation of the  
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Fig. 3 Comparison of equations for the evaluation of shear 

strength of concrete beams 
 

 

concrete beam shear strength in relation of transverse 

reinforcement ratio ρw. It is obvious that the concrete beam 

shear strength calculated based on these expressions shows 

considerable variation, revealing the need for further 

investigation and refinement of the proposals. 

 

 

4. Artificial neural networks architectures 
 

4.1 Back-propagation ANNs 
 

The back-propagation neural network (BPNN) appears 

to be the simplest and most applicable network for the 

modeling of concrete structures. This has mainly to do with 

its ability to regulate the weights of all layers based on the 

inaccuracy present at the network results. A representative 

arrangement of BPNN model contains an input layer, one or 

more concealed layers and an output layer while every layer 

is made of several neurons (Armaghani et al. 2017).  

Through a variety of procedures, the error is being fed 

through the network. On the basis of this information, the 

algorithm regulates the weights of each connection in order 

to reduce the error function value to a small percentage 

value. Having resumed this process for a sufficiently large 

number of training cycles, the network usually converges 

with a fairly low computational error. In order to adjust 

appropriately the weights, a generalized method for 

nonlinear optimization, called gradient descent, is applied. 

For the minimization of these errors, the derivative of the 

error function is calculated as a function of the network 

weights, while the weights are changed so as to reduce the 

error (downward path on the surface of the error function). 

For this reason, the backward algorithm is limited only to 

networks with productive functions. The back-spreading 

method of the error usually allows to achieve rapid 

convergence to local minimum errors for the networks. 

BPNN is a multi-level and feed-forward network with 

specific structure where neurons are not connected within a 

plane, but participate in the neuron of that plane with all the 

neurons of the previous and subsequent levels. In this case,  

Σ
(n)

p1

Input Neuron with vector input

a=¦(Wp+b)

b

¦
(a)

1

W1,R

W1,1p2
p3

pR

 
Fig. 4 Simple neuron with a simple input vector R 

 

 

the neural network has the following structure 

𝑁 − 𝐻1 − 𝐻2 −∙∙∙ −𝐻𝑁𝐻𝐿 − 𝑀 (17) 

where N the number of input parameters, 𝐻𝜈  the number 

of neurons in N-hidden level for =1, … , NHL where, NHL 

is the number of the hidden layers, and Μ the number of 

output parameters. 

Based on the above a BPNN with a 5 entry neurons, two 

hidden levels of 4 and 3 neurons, respectively, and 2 output 

neurons is encoded as 5-4-3-2 BPNN. 

Fig. 4 depicts the basic neural network architecture, 

which consists of a single neuron with multiple inputs 

(vector p). For each node, each value of the input vector 𝑝1,
𝑝2, … , 𝑝𝑅  is multiplied by the corresponding weight 𝑤1,1,

𝑤1,2, … , 𝑤1,𝑅, and the weighted values feed the summation 

node. Then, the scalar product, wp, is computed by the 

vector-line 𝑊 = ⌈𝑤1,1, 𝑤1,2, … , 𝑤1,𝑅⌉  and the vector-

column 𝑝 = ⌈𝑝1, 𝑝2, … , 𝑝𝑅⌉𝑇. This scalar product is added 

to another input product, which is always equal to the unit 

vector multiplied by its corresponding weight b. This last 

input into the adder is called bias, which has the ability of 

increasing or decreasing the input to the transfer function 

when it is positive or negative, respectively. This sum is 

described by the equation 

𝑛 = 𝑤1,1𝑝1 + 𝑤1,2𝑝2 +   … +  𝑤1,𝑅𝑝𝑅 + 𝑏 = 𝑊𝑝 + 𝑏 (18) 

This sum, n, has to do with the input of activation 

function, which describes the output value of the network. 

The selection of activation function mainly affects the 

complexity and the effectiveness of neural networks. In this 

study, the Logistic Sigmoid as well as the Hyperbolic 

Tangent are adopted as transfer functions. 

 

4.2 Optimal artificial neural network architecture 
 

In order to find the optimal architecture of an ANN, it is 

enough to calculate the number of hidden neurons, since the 

number of input and output parameters is already known. At 

this point, it is worth noting that the best solution should 

avoid the problem that the optimal solution leads to over-

fitting. The phenomenon of over-fitting arises when a 

model is too complex, e.g., when it has too many 

parameters in relation to the number of observations. 

Similarly, in the case where the training data do not cover 

the whole range of the input parameters of the problem and  
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especially when the number of parameters is equal to or 

exceeds the number of observations. On the other hand, a 

simple model can predict training data by memorizing 

them, but fails to predict new ones because it does not learn 

to be generalized. In order to avoid the problem of over-

fitting, various techniques, algorithms and criteria have 

been proposed (e.g., see Blum 1992, Boger and Guterman 

1997, Berry and Linoff 1997, Papadopoulos et al. 2012, 

Lamanna et al. 2012, Chen 2013, Giovanis and 

Papadopoulos 2015, Asteris et al. 2016a, b, Cavaleri et al. 

2016, 2017, 2019, amongst others) . 

In the present paper, a simple heuristic algorithm is 

proposed which reliably leads to an optimal ANN 

architecture. The steps of this algorithm are as follows: 

Step 1. Development and training of many neural 

networks: The development and training of NN takes 

place for a series of hidden levels ranging from 1 to 2 

and with a number of neurons ranging from 1 to 30. 

Also, each neural network is trained for various 

activation functions. 

Step 2. Determining the mean square error (MSE): For 

each of the above NNs, the average square error for the 

validation data that is not used during the training data 

process of the ANNs. 

Step 3. Determine upper and lower limits: Enter upper 

and lower bounds for output parameter (shear capacity) 

based on experimental or numerical data, as well as 

reasonable estimates by users. For the work presented 

herein a lower limit for all the values of shear strength 

for the case of concrete beams with Shear span to 

Effective depth of beam ratio greater or equal to 5.00 

(a
d⁄ ≥ 5.00) is proposed in a next section. 

Step 4. Choose optimal architecture: The optimal 

architecture is the one that gives the minimum average 

square error. 

The main advantage of ANN, in comparison with other 

evaluation strategies based on computational methods, is 

reduced computation effort (Plevris and Asteris 2014a, b, 

2015, Giovanis and Papadopoulos 2015, Asteris and Plevris 

2013, 2017, Asteris et al. 2016a, b, 2017, Cavaleri et al. 

2016, 2017). 

 

 

5. Materials and method 
 

5.1 Database 
 

The database examined here consists of the data and 

results of 300 experiments on reinforced concrete beams 

with stirrups (synthesized from data published in thirteen 

(13) pertinent research studies as shown in Table 1. Despite 

the fact that a large number of databases are available in 

relevant literature, it was decided to compile a new 

database, in contrast to complementing an existing 

database. This decision was made for the following reasons: 

(i) the existing databases took into account different input 

parameters than the current research, (ii) quite frequently 

different values are given for the same experiments 

(incorrect transliteration of the original experimental data), 

but above all, because (iii) the datasets are not distributed as 

to cover the full range of input parameter values, but only a 

certain area of the whole range. It is worth noting that the 

number of a database’s datasets is not enough to ensure its 

reliability; the distribution of input parameter values taken 

into account, however, plays a crucial role in this procedure. 

That is, if the model can represent and manage the 

knowledge available through experiments for the totality of 

parameters and, if possible, for the whole range of their 

values.  

In light of the above, the database used herein, was 

compiled, abiding by the following principles: 

• Datasets include experimental data from reinforced 

concrete beams both with and without stirrups (160 and 

140 datasets respectively). This selection was 

intentional, despite the fact that the majority of 

researchers, in the field of soft computing technique, 

investigate concrete beams only with stirrups (Sanad 

and Saka 2001, Cladera and Marí 2004b) or without 

stirrups (Oreta 2004, Cladera and Marí 2004a, Seleemah 

2005, 2012, Iruansi et al. 2010). By studying both cases 

the database is more complete and, furthermore, the 

values of shear strength of the beams with stirrups serve 

as the upper limit of the shear strength of the beams 

without stirrups, while the opposite is also true; the 

Table 1 Database statistics 

No 
Source Number of Beams Shear Strength 

MPa 

Main Parameters 

Authors Year Total With Stirrups Without Stirrups 𝑓𝑐  MPa 𝑎 𝑑⁄  

1 Ismail 2009 22 13 9 2.78-11.33 30.50-88.10 0.91-1.67 

2 Zararis et al. 2009 11 4 7 2.55-6.20 16.80-24.00 0.61-0.83 

3 Yoon  et al. 1996 12 9 3 1.01-2.94 36.00-87.00 3.28 

4 Angelakos et al. 2001 21 6 15 0.59-1.63 21.00-99.00 2.92 

5 Londhe 2011 21 8 13 1.60-8.80 24.44-36.67 1.07-1.78 

6 Clark 1951 58 48 10 2.26-6.59 13.79-47.58 1.16-2.43 

7 Placas and Regan 1971 22 17 5 1.08-4.63 12.76-48.13 3.36-5.05 

8 Fukuhara and Kokusho 1982 43 41 2 1.56-8.35 18.54-30.19 1.18-2.35 

9 Xie et al. 1994 15 9 6 1.34-12.85 37.73-103.23 1.00-4.00 

10 Kani 1967 42 - 42 0.87-7.78 24.75-30.75 1.00-9.05 

11 Ghannoum 1998 16 - 16 0.89-1.78 34.20-58.60 2.50 

12 Feldman & Siess 1955 11 - 11 1.21-4.28 21.03-36.68 2.01-7.04 

13 Tompos & Frosh 2002 6 5 1 0.98-2.84 35.85-42.75 3.00 

  Total 300 160 140 0.59 - 12.85 12.75-103.23 0.61-9.05 

474



 

Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks 

 

shear stress of the beams without stirrups serves as the 

lower limit of beams with stirrups. Thus, the 

aforementioned selection assists the neural network to 

reveal the natural laws by which the phenomenon under 

examination abides by, as will be illustrated in the 

following sections. 

• It has been decided not to include beams with inclined 

stirrups in the compiled database, but only beams with 

vertical stirrups. Despite the fact that shear strength is 

largely affected by the angle of inclination of web 

reinforcement (Robinson 1968, Placas and Regan 1971), 

the number of available experimental data in relevant 

research dealing with inclined stirrups is too scarce to 

allow them to be included.  

• All the datasets included in the database are referred to 

reinforced concrete beams with rectangular cross 

section. 

• Only experimental data based on beams under 

concentrated loads have been used. 

• For data which corresponded to the same experiment, 

with the same mechanical and geometric characteristics, 

however with different strength values, the average of 

the measured mechanical strength of the different 

experiments was used as output value for the respective 

dataset.  

Suitable collection of participation features is vital for 

precise evaluation of shear capacity of reinforced concrete 

beams using ANN models. Nine parameters (Table 2) are 

selected for the training of the neural network based on 

experience from past experimental studies and which are 

also generally acknowledged as crucial variables in 

determining shear capacity of reinforced concrete beams. 

These relate to the mechanical and geometric characteristics 

of the beams, while the output parameter is the value of 

their experimental shear strength. Table 2 shows these 

parameters and their distributions, i.e., the minimum, 

maximum, average and standard deviation. 

 

 

Table 2 Parameters of database 

Code Variable Unit 
Data used in NN models 

Min Average Max STD 

01 Width of beam (b) mm 80.00 195.12 612.14 97.49 

02 
Effective depth of beam 

(d) 
mm 132.08 414.64 1097.28 221.57 

03 
Cylinder compressive 

strength of concrete (fc) 
MPa 12.76 36.29 103.23 19.99 

04 

Yield stress of 

longitudinal 

reinforcement (fy) 

MPa 0.00 418.18 910.11 135.54 

05 
Yield stress of transverse 

reinforcement (fyw) 
MPa 0.00 284.72 1414.17 365.18 

06 
Shear span /Effective 

depth of beam (a/d) 
- 0.61 2.39 9.05 1.33 

07 
Longitudinal 

reinforcement ratio (ρl) 
(%) 0.00 2.41 4.54 1.10 

08 
Transverse reinforcement 

ratio (ρw) 
(%) 0.00 0.28 2.25 0.38 

09 
Effective span / depth 

(L/d) of beam 
- 1.22 5.86 20.01 3.19 

10 Shear strength (V) MPa 0.59 3.46 12.85 2.27 

5.2 Training algorithms 
 

Numerous training back-propagation neural network 

algorithms have been proposed in the past, such as: quasi-

Newton, Resilient, One-step secant, Gradient descent with 

momentum and adaptive learning rate, and Levenberg-

Marquardt. Perhaps, the best prediction algorithm for non-

linear behavior of shear capacity of reinforced concrete 

beams with stirrups appears to be the Levenberg-Marquardt 

(Lourakis 2005), which seems to be the fastest one for 

medium-sized neural network training with feed forward ( 

up to several hundreds of weights) as well as for non-linear 

problems. 

 

5.3 Normalization of data 
 

The normalization of data is a pre-processing phase 

which has been proved to be a crucial step in the field of 

soft computing techniques such as the artificial neural 

networks techniques. In the present study, during the pre-

processing stage, the Min-Max (Delen et al. 2006) and the 

ZScore normalization methods are used. In particular, the 

nine input parameters (Table 2) as well as the single output 

parameter have been normalized using the Min-Max 

normalization method. As stated in Iruansi et al. 2010, in 

order to avoid problems associated with low learning rates 

of the ANN, the normalization of the data should be made 

within a range defined by appropriate upper and lower limit 

values of the corresponding parameter. In this work, the 

input and output parameters have been normalized in the 

range [0.10, 0.90]. Detailed and in-depth reports on 

normalization techniques can be found in works by Asteris 

et al. (2019b), Asteris and Nikoo (2019) and Cavaleri et al. 

(2017). 

 

5.4 Lower limit of shear strength 
 

As already mentioned in Step 3 of the proposed 

heuristic algorithm, which was presented in the previous 

section for the development and selection of the optimum 

ANN, it is recommended, when possible, to implement 

upper and lower limits in order to control the value of the 

parameter which the ANN model is requested to predict. 

Specifically, it is proposed to select the optimum neural 

network, not only through the use and evaluation of 

statistical indexes, but also based on whether the predicted 

values fulfill additional criteria, based on conditions, 

benchmarks and principles relating to the natural 

phenomenon under investigation. 

To this end, an effort is made to formulate such criteria 

in the current section, relating to the lowest value of shear 

stress of reinforced concrete beam for specific cases of 

different beam geometries and location of concentrated load 

(Fig. 5). In particular, based on the fact that flexural failure 

occurs for a/d values equal or higher than 5.00, it can be 

stated that a beam’s resistance capability is based solely on 

the flexural capacity provided by its longitudinal bars. 

Based on equilibrium of internal forces (Fig. 5) the 

following equation applies: 

𝑀 − 𝑧𝐹𝑦 = 0 (19) 
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Fig. 5 Simply supported reinforced concrete beam under 

concentrated loads 
 

 

where  

𝑀 is the maximum applied bending moment due to 

external forces defined as 

𝑀=𝑎𝑃 (20) 

𝑃 is the applied concentrated load 
𝑎 is the is the distance between the concentrated 
load and the support (shear span) 
𝑧 is the lever arm of internal forces, approximately 
equal to 0.9d 
𝑑 is the effective depth of the beam 
𝐹𝑦 is the yield force of the reinforcement defined by 

the equation 

𝐹𝑦 = 𝑓𝑦𝐴𝑠𝑙 (21) 

𝑓𝑦 is the yield strength of reinforcement 

𝐴𝑠𝑙  is the tensile reinforcement area defined by 

𝐴𝑠𝑙 = 𝜌𝑙𝑏𝑑 (22) 

𝜌𝑙  is the ratio of the longitudinal reinforcement 
𝑏  is the width of the cross section 
Based on the above equations the shear strength at 

failure can be calculated with the following equation in 

stress terms 

𝑣 =
𝑃

𝑏𝑑
= 0.90

𝜌𝑙

𝑎
𝑑⁄

𝑓𝑦 (23) 

The proposed equation above, consists a criterion (limit) 

regarding the value of shear stress. This limit will be used 

during the evaluation and selection of the optimum NN 

among the trained and developed NN models for the 

prediction of the value of shear strength of reinforced 

concrete beams. 

 

5.5 Performance evaluation 
 

For the assessment of the developed NN models the 

following four performance statistical indices have been 

used (Johnsson 2018) 

• The Pearson’s correlation coefficient R 

𝑅 = √1 −
∑ (𝑋𝑖𝑚𝑒𝑠−𝑋𝑖𝑝𝑟𝑒𝑑)

2𝑁
𝑖=1

∑ (𝑋𝑖𝑚𝑒𝑠 − 𝑥)2𝑁
𝑖=1

 (24) 

• Root Mean Square Error (RMSE) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑋𝑖𝑝𝑟𝑒𝑑−𝑋𝑖𝑚𝑒𝑠)

2𝑁

𝑖=1
 (25) 

• Mean Absolute Percentage Error (MAPE) 

𝑀𝐴𝑃𝐸 =
100

𝑁
∑

|𝑋𝑖𝑝𝑟𝑒𝑑−𝑋𝑖𝑚𝑒𝑠|

𝑋𝑖𝑚𝑒𝑠

𝑁

𝑖=1
 (26) 

• Variance Account For (VAF) 

𝑉𝐴𝐹 = [1 −
𝑣𝑎𝑟(𝑋𝑖𝑚𝑒𝑠 − 𝑋𝑖𝑝𝑟𝑒𝑑)

𝑣𝑎𝑟(𝑋𝑖𝑚𝑒𝑠)
] × 100 (27) 

where the parameters 𝑋𝑖𝑚𝑒𝑠 , 𝑋𝑖𝑝𝑟𝑒𝑑  and 𝑥  represent 

measured, predicted and mean values, respectively. N 

denotes the total number of data. In theory, the lower the 

RMSE, the more accurate is the evaluation. The Pearson’s 

correlation coefficient R measures the variance that is 

interpreted by the model, which is the reduction of variance 

when using the model. R values ranges from 0 to 1 while 

the model has healthy predictive ability when it is near to 1 

and is not analyzing whatever when it is near to 0. These 

performance metrics are a good measure of the overall 

predictive accuracy.  

Furthermore, the following new engineering index, the 

a20-inex, has been recently proposed for the reliability 

assessment of the developed ANN models (Apostolopoulou 

et al. 2019, Armaghani et al. 2019, Chen et al. 2019, Asteris 

et al. 2019c, Asteris et al. 2019d, Xu et al. 2019) 

𝑎20 − 𝑖𝑛𝑑𝑒𝑥 =
𝑚20

𝑀
 (28) 

where M is the number of dataset sample and m20 is the 

number of samples with value of rate Experimental 

value/Predicted value between 0.80 and 1.20. Note that for 

a perfect predictive model, the values of a20-index values 

are expected to be unity. The proposed a20-index has the 

advantage that their value has a physical engineering 

meaning. It declares the amount of the samples that satisfies 

predicted values with a deviation ±20% compared to 

experimental values. 

 

 

6. Results and discussion 
 

6.1 Development of artificial neural networks 
 

Based on the above mentioned algorithm as well as on 

the parameters presented in Table 3, 982800 models of 

back-propagation neural networks were designed and 

trained. Namely, NNs architectures for the following four 

cases have been trained and developed 

Case I: 5400 architectures of NN models with one 

hidden layer and without any preprocess, 

Case II: 5400 architectures of NN models with one  
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Table 3 Training parameters of ANN models 

Parameter Value 

Training Algorithm Levenberg-Marquardt Algorithm 

Normalization Minmax in the range 0.10 - 0.90 

Number of Hidden Layers 1; 2 

Number of Neurons per 

Hidden Layer 
1 to 30 by step 1 

Control random number 

generation 

rand (seed, generator) where generator 

range from 1 to 10 by step 1 

Training Goal 0 

Epochs 250 

Cost Function MSE; SSE 

Transfer Functions Tansig (T); Logsig (L); Purelin (P) 

Note: 

MSE: Mean Square Error; SSE: Sum Square Error 

Tansig (T): Hyperbolic Tangent Sigmoid transfer function 

Logsig (L): Log-sigmoid transfer function 

Purelin (P): Linear transfer function 

 

hidden layer and with preprocess based on minmax 

normalization technique (the input and output 

parameters have been normalized in the range [0.10, 

0.90]), 

Case III: 486000 architectures of NN models with two 

hidden layers and without any preprocess, 

Case IV: 486000 architectures of NN models with two 

hidden layer and with preprocess based on minmax 

normalization technique (also the input and output 

parameters have been normalized in the range [0.10, 

0.90]). 

Each model was trained through 180 data (out of a total 

of 300, i.e., 60%) and the reliability of the results was 

validated via 60 data values (20%) and tested against the 

remaining 60 data values (20 % of the total). 

All the 982800 developed ANN models have been 

classified based on the RMSE index and the optimum  
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Fig. 6 Architecture of the optimum BPNN 9-30-4-1 
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architecture for each one from the four cases are shown in 

Table 4. Based on these results, the optimal model of neural 

networks appears to be the 9-30-4-1 (see also Fig. 6) with a 

RMSE value equal to 0.3340 for the case of test datasets. 

This network represents the case of architectural neural 

networks with two hidden levels and without the use of any 

normalization technique. Furthermore, as it is presented in 

Fig. 6 the transfer functions are the Hyperbolic Tangent 

Sigmoid transfer function (tansig) for the first and second 

hidden layer and the Linear transfer function (purelin) for 

the output layer. 

 

 

 

Fig. 7 depicts the experimental values of shear strength 

relative to those predicted by the optimum neural network 

9-30-4-1. It is observed that the neural network evaluates 

adequately the shear capacity of the reinforced concrete 

beams. 

 

6.2 Neural network results assessment 
 

In order to assess the results of the neural network, a 

detailed comparison between the shear capacity values 

predicted by the neural network with those provided by  

  

  
Fig. 7 Comparison of experimental values of shear strength with those predicted by the optimum BPNN 9-30-4-1 

Table 4 Statistical Indexes of the optimum BPNN models 

Case Model Normalization DataSet 
Statistical Indices 

a20-index R RMSE MAPE VAF 

I 9-23-1 NoPreprocess 

Training 

1.0000 0.9984 0.1304 0.0375 99.6726 

II 9-21-1 MinMax [0.10, 0.90] 0.9722 0.9964 0.1930 0.0589 99.2839 

III 9-27-7-1 NoPreprocess 0.9944 0.9985 0.1265 0.0411 99.6974 

IV 9-30-4-1 MinMax [0.10, 0.90] 1.0000 0.9988 0.1125 0.0307 99.7566 

I 9-23-1 NoPreprocess 

Test 

0.8500 0.9788 0.4534 0.1109 95.7530 

II 9-21-1 MinMax [0.10, 0.90] 0.8167 0.9838 0.3968 0.1106 96.7576 

III 9-27-7-1 NoPreprocess 0.9167 0.9849 0.3907 0.0953 96.8833 

IV 9-30-4-1 MinMax [0.10, 0.90] 0.9333 0.9884 0.3340 0.0792 97.6924 
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code regulations and other researchers is shown in Table 5 

as well in the following figures, examining the total gamut 

of 300 experimental data. 

Fig. 8 depicts the experimental values of shear capacity 

predicted by both the ANN method and the pertinent 

 

 

regulations of codes. This figure demonstrates the wide 

dispersion of the values provided by the regulations as well 

as the much better evaluation by the proposed neural 

network approach. Furthermore, the Pearson correction 

factors - alpha factors - are provided. 

  

  

  
Fig. 8 Comparison of experimental test results of shear capacity with those provided by the Artificial Neural Network and 

previous studies from the pertinent literature 
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Figs. 9 and 10 show the ratio of the predicted shear 

capacity versus the shear span/effective depth of beam (a/d) 

and shear reinforcement ratio (ρw), respectively. It is 

obvious that the neural network approach provides much 

better predictions than the other methods.  Their accuracy 

in descending order is: Proposed Neural Network method, 

EC2, Canadian Code, Gandomi et al. (2017), New Zealand 

 

 

Code and ACI. It is worth noting that EC2 for a/d ratios 

greater than 2.0 provides very good estimated values for the 

shear capacity. 

 

6.3 Weights for FF-NN model 
 

In most of previous research studies that examined  

  

  

  
Fig. 9 Variation in the experimental tests values of shear capacity to those predicted by the Artificial Neural Network and by 

previous research studies, based on the ratio a/d 
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artificial neural networks, information concerning the 

values of ANN weights is missing while the main topic of 

the studies has to do with the proposed architecture of the 

optimum NN model. In such cases, the proposed methods 

have limited applicability as it is difficult for other 

researchers and practicing engineers to reproduce the 

 

 

results. To address this issue, the (quantitative) values of 

weights are given so that the proposed ANN scheme can be 

readily implemented in a spreadsheet and be accessible to 

everyone interested in the procedure of simulation. More 

specifically, in this paper, the final weights’ values and 

biases for the optimal with two hidden layers BPNN 9-30- 

  

  

  
Fig. 10 Variation in the experimental tests values of shear capacity to those predicted by the Artificial Neural Network and by 

previous research studies, based on the ratio ρw 
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Table 5 Statistical Indexes of the optimum BPNN models 

Ranking Based on 

Model 

Statistical Indices 

a20-index R 
a20-

index 
R RMSE MAPE VAF 

1 1 9-30-4-1 0.9667 0.9944 0.2397 0.0519 98.8798 

2 4 EC8 0.4933 0.6824 1.8384 0.6259 42.9313 

3 3 
Canadian 

Code 
0.3500 0.6832 1.9753 0.8064 43.8300 

4 6 

Gandomi 

et al. 

2017 

0.3000 0.5799 2.6227 0.9071 
-

31.9055 

5 2 NZS 0.2833 0.6931 2.0795 0.8612 47.9592 

6 5 ACI 0.1900 0.5862 2.3534 0.9600 15.1939 

 

 

4-1 for the prediction of shear capacity of concrete beams 

are explicitly reported in Fig. 11 and in the Table 6. 

Adopting the provided values of weights and biases an 

ANN-based estimator can be straightforwardly constructed 

for the shear capacity of concrete beams. 

 

6.4 Sensitivity analysis 
 

Based on the proposed optimum neural network, a 

sensitivity analysis has been performed in order to further 

assess its reliability as well as to reveal the dependence of 

shear strength on the mechanical and geometrical 

parameters of concrete beams. More specifically, in 

addition to the aforementioned standard neural network 

reliability test performed above, and based on the capability 

for the neural network to predict reliably the shear strength 

for 60 experimental tests (out of a total of 300 databases), 

three additional investigations have been conducted. 

 

 

Investigation 1:  

Using the proposed neural network, the behavior of 

eight beams, which were experimentally tested by Lodhe 

(2011) are investigated. These experimental results have 

been used toward the neural network training. The data for 

these beams, the corresponding experimental values, and 

the values predicted by the neural network are shown in 

Table 7 and in Fig. 12. It is evident that the proposed neural 

network predicts accurately the experimental values 

(R=0.9993). Moreover, the proposed neural network 

identifies the engineering laws that apply to intermediate 

values of the percentage of longitudinal reinforcement, 

especially for values between 1=1.20 and 1=1.80%. In 

addition, the smoothness of the curvatures of the respective 

curves indicate that the proposed heuristic algorithm 

successfully addresses the frequently encountered over-

fitting problem during the training and development of 

ANN models.  

 

Investigation 2:  

In the second investigation, the behavior of 6 beams that 

were experimentally tested by Wafa et al. (1994) are 

examined. These experimental results, unlike the first 

investigation, have not been used in neural network training 

(i.e., they were not included in the database). The data for 

these beams, the corresponding experimental results, and 

the values predicted by the neural network are shown in 

Table 8 and Fig. 13. The neural network predicts well the 

experimental values (R=9954). As in the case of the first 

investigation, the neural network reveals the engineering 

laws that apply to shear strength. The smoothness of the 

curvatures is an indication that the proposed heuristic  

 
Fig. 11 Weights and Bias values of the optimum with two hidden layers BPNN 9-30-4-1 for the evaluation of shear capacity 

of concrete beams (The values are presented in Table 6) 
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algorithm successfully addresses the frequently encountered 

over-fitting problem during the training and development of 

ANN models. 

 

Investigation 3: 

In this investigation, unlike the two previous 

investigations, the behavior of a number of beams has been 

studied; for these beams, the corresponding experimental 

results are not available, but they are estimated by the 

proposed neural network to investigate the a/d ratio for 

values from 1 to 7 and for 5 different concrete compressive 

strengths (20, 30, 40 50 and 60 MPa). 

The geometrical and mechanical characteristics of the 

beams are shown in Table 9. These values correspond to 

330 different cases of beams for which the proposed neural 

network 9-30-4-1 predicts the corresponding values of shear 

strength as shown in Fig. 14. The results confirm the fact 

that the shear strength changes with respect to both the a/d 

parameter and the compressive strength of the concrete. It 

should be mentioned that this diagram is a first indication of 

 

 

the fact that the shear strength varies with respect to two of 

the most important parameters involved in the problem. It is 

worth noticing that the number of experimental data with 

a/d ratio values greater than 4.00 is relatively small and a 

larger number of experimental data is required. Toward this 

direction, an extensive database of experimental data has 

already begun to be developed for the training and 

development of a new neural network that will cover a 

larger range of data. 

 

 

7. Limitations 
 

The proposed neural network is applied in the ten-

dimensional space defined by the ten parameters which 

influence the development of shear strength of reinforced 

concrete beams with or without stirrups. In fact, the neural 

network is applicable for parameter values ranging between 

the lowest and highest values of each parameter, as 

presented in Table 2. Taking into account that included  

Table 6 Final values of weights and bias of the optimum NN model 9-30-4-1 

IW {1,1} (30×9) LWT{2,1} (30×4) B{1,1} (30×1)  
-1.27 -0.39 -0.10 0.35 -1.03 0.44 -1.01 0.00 0.05 0.11 0.10 -0.05 0.09 2.04 

0.34 0.63 -0.31 0.31 -0.09 1.31 0.12 1.20 -0.52 -0.07 -0.29 -0.20 0.19 -1.90 

0.41 0.62 0.77 0.22 -0.77 -0.69 -1.19 -0.39 0.57 -0.28 -0.38 0.27 0.42 -1.76 

0.80 0.24 -0.88 0.58 0.87 -0.46 0.80 -0.69 -0.51 0.19 0.13 0.23 0.18 -1.62 

-0.49 -0.83 -0.04 1.02 -0.61 0.12 -0.21 -1.16 -0.65 0.35 -0.43 -0.11 -0.43 1.48 

-1.36 -1.11 -0.86 0.49 0.03 -0.06 -0.11 0.12 0.29 0.20 0.03 -0.18 -0.34 1.34 

0.96 1.10 -0.34 0.21 0.74 0.22 -0.19 0.79 -0.78 -0.25 0.15 -0.44 -0.10 -1.20 

-0.06 -0.46 0.72 0.65 -0.70 -0.98 0.93 -0.70 0.46 -0.02 -0.43 0.07 -0.12 1.06 

0.90 -0.56 -0.40 0.82 0.48 1.08 0.53 -0.60 0.42 0.16 -0.44 0.32 0.21 -0.92 

-0.31 -0.01 1.05 -0.61 -0.28 0.89 -1.02 0.67 -0.49 -0.39 0.30 -0.35 -0.18 0.77 

-1.59 0.36 0.87 -0.02 -0.70 0.49 0.01 -0.16 -0.08 -0.32 -0.15 0.19 0.39 0.63 

-0.26 0.92 0.10 0.67 -0.85 0.62 0.54 0.93 -0.74 0.25 0.27 0.06 0.02 0.49 

-0.59 0.16 1.01 0.50 -0.77 0.29 0.72 0.12 -1.15 0.38 0.33 0.14 -0.43 0.35 

-0.75 -0.54 -0.26 -0.80 -0.94 0.48 -0.09 -1.22 -0.04 -0.23 -0.18 0.17 0.25 0.21 

-0.93 -0.39 0.85 -0.96 0.71 0.14 -0.88 -0.05 -0.46 0.43 -0.20 -0.27 0.40 0.07 

-0.25 0.33 0.32 0.30 -0.62 1.04 0.95 -1.12 -0.41 0.28 0.04 0.03 -0.05 -0.07 

-0.89 0.22 0.93 -0.21 0.35 -0.71 1.03 0.28 0.81 0.00 -0.31 -0.47 0.40 -0.21 

0.52 -0.13 0.53 -0.74 -0.83 -0.97 0.30 -0.84 0.79 0.35 -0.31 -0.02 0.22 0.35 

0.81 -1.17 0.82 0.85 0.23 -0.68 0.37 -0.24 -0.20 -0.28 0.31 0.31 0.06 0.49 

-0.27 -0.05 0.01 1.09 -0.20 -0.48 -0.80 -0.94 -1.06 0.37 0.31 -0.39 0.31 -0.63 

0.57 0.01 0.82 -1.02 -1.02 0.54 0.77 -0.40 0.20 0.11 -0.14 -0.35 0.27 0.77 

-0.88 0.04 -0.40 0.08 -0.26 0.85 0.21 1.14 1.05 0.35 -0.14 -0.02 0.30 -0.92 

-0.20 0.17 0.13 0.89 1.00 -0.55 -0.52 0.87 -0.98 0.22 0.26 0.12 0.06 -1.06 

-0.77 -0.75 1.05 -0.30 0.52 -0.57 0.28 1.05 0.20 0.19 -0.29 -0.02 0.44 -1.20 

0.59 1.03 0.43 0.35 0.85 -0.60 -0.78 0.06 -0.87 0.38 -0.21 -0.36 0.28 1.34 

0.29 0.77 -0.49 0.02 -0.84 0.67 -1.08 -0.64 0.72 -0.01 0.08 -0.36 -0.37 1.48 

-0.11 -0.75 1.11 0.41 0.10 0.71 0.66 -0.62 0.93 -0.25 0.36 -0.45 -0.13 -1.62 

-1.03 -0.33 0.25 -0.56 0.58 0.52 1.01 -1.00 -0.13 0.20 0.35 0.25 -0.06 -1.76 

0.50 1.08 -0.86 0.33 0.79 -0.51 -0.38 0.83 0.44 -0.02 -0.21 0.13 0.18 1.90 

-0.50 0.90 -0.34 0.81 0.60 1.08 0.32 0.71 0.47 0.43 -0.13 -0.44 -0.04 -2.04 

LW{3,2} (1×4)      BT{2,1} (1×4) B{3,1} (1×1) 

0.82 -0.57 -0.73 0.47      -1.47 -0.49 -0.49 1.47 -0.63 

Note 

IW{1,1}=Weights values for Input Layer 

LW{2,1}=Weights values for  1st hidden Layer , LW{3,2}=Weights values for 2nd hidden Layer 

B{1,1}= Bias values for 1st hidden layer, B{2,1}= Bias values for 2nd hidden layer, B{3,1}= Bias values for output layer 

T denotes the transpose of a matrix. 
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Table 9 Parameters of beams 

Νο. Variable Valuet 

1 Width of beam (b) 200 mm 

2 Effective depth of beam (d) 400 mm 

3 
Cylinder compressive strength 

of concrete (fc) 

20 to 60 MPa 

by step 10 MPa 

4 
Yield stress of longitudinal 

reinforcement (fy) 
500 MPa 

5 
Yield stress of transverse reinforcement 

(fyw) 
500 MPa 

6 
Shear span /Effective depth 

of beam (a/d) 

0.5 to 7.00 

by step 0.10 

7 Longitudinal reinforcement ratio (ρl) 3.00 (%) 

8 Transverse reinforcement ratio (ρw) 0.50 (%) 

9 Effective span / depth (L/d) of beam 8.00 

 

 

experimental datasets for a/d ratios over 4.00 are sparse, it 

is proposed to limit the use of the NN model only for a/d 

ratios between 0.61 and 4.00. 

 

 

8. Conclusions 
 

In this paper, Artificial Neural Networks are developed 

to evaluate the shear capacity of reinforced concrete beams 

with shear reinforcement - stirrups. More specifically, a new 

algorithm is proposed for finding the optimal neural 

network architecture. The main conclusions of this study 

are the following: 

• Artificial Neural Networks can be used to evaluate the 

shear capacity of reinforced concrete beams with the 

minimum computational effort, in comparison with 

 

 
Fig. 12 Sensitivity of the shear strength to the transverse 

reinforcement ratio of beams based on the optimum BPNN 

9-30-4-1 as well as comparisons with experimental data by 

Lodhe (2011) 
 

 

other computational/numerical methods 

• the proposed heuristic algorithm contributes to finding 

the optimal architecture of Artificial Neural Networks 

• the proposed method gives the most reliable estimation 

for the shear capacity of reinforced concrete beams in 

the dataset, in comparison with available semi-empirical 

and/or analytical relations proposed others or used in 

international standards. 

• Using the architecture of the proposed optimum neural 

network and the resulting values of final weights of the 

parameters (see supplementary materials) a useful tool is 

developed for researchers, engineers, and for supporting  

Table 7 Experimental datasets by Lodhe (2011) 

No 

Input Parameters Output Parameter Vexp / 

Vpred 
R 

b d 𝑓𝑐  𝑓𝑦 𝑓𝑦𝑤  a/d 𝜌𝑙 𝜌𝑤 L/d Vexp Vpred 

(mm) (mm) (MPa) (MPa) (MPa) - (%) (%) - (MPa) (MPa) - - 

(1) (5) (6) (7) (8) (9) (10) (11) (12) (13) (15) (16) (17) (18) 

1 100 375.00 32.14 445.0 445.4 1.07 0.60 0.50 2.67 2.80 2.75 1.02 

0
.9

9
9
3
 

2 100 375.00 32.19 445.0 445.4 1.07 0.60 0.75 2.67 3.33 3.40 0.98 

3 100 375.00 32.20 445.0 445.4 1.07 0.60 1.25 2.67 4.00 4.18 0.96 

4 100 375.00 32.16 445.0 445.4 1.07 0.60 2.25 2.67 4.27 4.34 0.98 

5 100 375.00 32.14 446.0 445.3 1.07 2.40 0.50 2.67 7.79 7.76 1.00 

6 100 375.00 32.19 446.0 445.3 1.07 2.40 0.75 2.67 8.40 8.37 1.00 

7 100 375.00 32.20 446.0 445.3 1.07 2.40 1.25 2.67 8.53 8.74 0.98 

8 100 375.00 32.16 446.0 445.3 1.07 2.40 2.25 2.67 8.80 8.79 1.00 

Table 8 Experimental datasets by Wafa et al. (1994) 

No 

Input Parameters Output Parameter Vexp / 

Vpred 
R 

b d 𝑓𝑐  𝑓𝑦 𝑓𝑦𝑤  a/d 𝜌𝑙 𝜌𝑤 L/d Vexp Vpred 

(mm) (mm) (MPa) (MPa) (MPa) - (%) (%) - (MPa) (MPa) - - 

(1) (5) (6) (7) (8) (9) (10) (11) (12) (13) (15) (16) (17) (18) 

1 125 215 94.8 460 0 1.00 2.84 0.00 4.33 7.10 9.50 0.75 

0
.9

9
5
4
 2 125 215 94.9 460 0 2.00 2.84 0.00 6.33 3.35 3.63 0.92 

3 125 215 93.7 460 0 2.50 2.84 0.00 7.33 2.07 2.47 0.84 

4 125 215 91.5 460 0 3.00 2.84 0.00 8.33 2.05 1.90 1.08 

5 125 215 92.3 460 0 4.00 2.84 0.00 10.33 1.90 1.48 1.28 

6 125 215 92.0 460 0 6.00 2.84 0.00 14.33 1.49 1.43 1.05 
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Fig. 13 Sensitivity of the shear strength to the effective 

depth of beam based on the optimum BPNN 9-30-4-1 as 

well as comparisons with experimental data by Wafa et al. 

(1994) 
 

 

the teaching and interpretation of the behavior of 

reinforced concrete beams under shear loading. 
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Notations 
 

The following symbols and abbreviations are used in 

this paper: 

 

Latin letters 

𝑎 Shear span 

ANNs Artificial Neural Networks 

𝐴𝑐 area of concrete 

𝐴𝑠𝑙 is the area of the longitudinal reinforcement 

𝐴𝑠𝑤 is the area of the shear reinforcement 

𝑏 width of beam 

𝑏𝑤 
the smallest width of the cross-section in the 

tensile area 

𝐵 vector of bias values 

BP Back Propagation 

𝑑 effective depth of beam 

𝑓𝑐 cylinder compressive strength of concrete 

𝑓𝑦 yield stress of longitudinal reinforcement 

𝑓𝑦𝑤 yield stress of transverse reinforcement 

𝐹𝑐 concrete compressive force 

𝐹𝑦 longitudinal reinforcement tensile force 

ℎ height of beam 

𝐼𝑊 matrix of weights values for Input Layer 

𝐿 effective span of beam 

𝐿𝑊 matrix of weights values for hidden Layer 

M bending moment 

NZS New Zealand Standards 

𝑠 is the spacing of the stirrups 

𝑉 shear force at section 

𝑣 =
𝑉

𝑏𝑑
 shear stress at section 

𝑉𝑐 the concrete shear contribution 

𝑉𝑠 the transverse reinforcement shear contribution 

𝑧 is the inner lever arm 

 

Hellenic letters 

𝜌𝑙 longitudinal reinforcement ratio 

𝜌𝑤 transverse reinforcement ratio 

𝜏 =
𝑉

𝑏𝑑𝑓𝑐

 dimensionless shear stress at section 
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