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1. Introduction 
 

Self-compacting concrete (SCC) can be introduced as an 

advanced kind of concrete that is able to compact under its 

own weight without requiring any mechanical vibration 

(Krishna et al. 2010). The development and use of this 

concrete can lead to a reduction in noise pollution in the 

plants and construction sites, faster construction, 

improvement in the working conditions and finally, making 

the concrete productions with very high surface quality 

(Ouchi et al. 2003). Similar to other concretes, the 

mechanical properties of this concrete are obtained by 

experimental works that are time-consuming and costly. 

Therefore, using a new technique in order to decrease these 

experimental works can be very useful. 

In the past two decades, many researchers have made 

use of different computational methods, especially artificial 

neural network technique, which are able to solve extremely 

complicated problems, to predict the various properties of 

concrete (Topcu and Sarıdemir 2007, Yeh 1998).  

 Altun et al. (2008) predicted the strength of steel fiber 

added lightweight concrete using artificial neural network 

(ANN) and multi linear regression (MLR) technique. To 

construct the models, of the 126 produced experimental 

examples, the 105 examples were used for training the 
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network and 21 examples were used for testing. Different 

combinations of various variables including; steel fiber 

dosage (SFD), water (W), water-cement ratio (W/C), 

cement dosage (C), pumice sand (PS), pumice gravel (PG), 

and super plasticizer content (SC) were used as input 

variables in order to estimate the desired output. The study 

concluded that the model with a combination of SFD, W 

and W/C as input variables has the smallest mean square 

error (MSE) 1.49, and the highest correlation coefficient (R) 

0.859 in the prediction of the compressive strength. It was 

also found that the ANN can predict the compressive 

strength of steel fiber added lightweight concrete better than 

the multi linear regression technique.  

Barbuta et al. (2012) estimated the compressive and 

flexural strength of polymer concrete with Fly Ash 

successfully using multilayer perceptron (MLP) neural 

network. Boga et al. (2013) constructed a four-layered feed-

forward neural network for predicting the mechanical and 

chloride permeability properties of concrete containing 

ground granulated blast furnace slag (GGBFS) and calcium 

nitrite-based corrosion inhibitor (CNI). Bilim et al. (2009) 

developed a feed-forward, single hidden layer neural 

network model with six inputs including the cement, ground 

granulated blast furnace slag, water, hyperplasticizer, 

aggregate and age of samples for predicting the 

compressive strength of ground granulated blast furnace 

slag concrete. From 225 experimental examples, 113 

examples were used for training the network, and the 

remaining 112 examples were randomly selected and used 

for testing the network. To train the network, the number of 

neurons in the input, hidden and output layer were 6, 15 and 

1 respectively. The scaled conjugate gradient (SCG) 

algorithm, Levenberg-Marquardt (LM) algorithm, one step 
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secant backpropagation algorithm (OSS) and BFGS quasi-

Newton backpropagation algorithm were used for learning 

the network. The results showed that Ann, as a feasible tool, 

are able to predict the compressive strength of ground 

granulated blast furnace slag concrete using the components 

of concrete as inputs. In addition, among the various 

algorithms used in this research, the Levenberg-Marquardt 

algorithm was found as the best learning algorithm.  

Demir (2008) applied ANNs with different architectures 

to predict the elastic modulus of normal and high strength 

concrete. Pala et al. (2007) predicted long-term effects of 

fly ash and silica fume on compressive strength of concrete 

using ANN. For this aim, a computer program was 

performed in MATLAB. A feed forward neural network 

with the back-propagation learning algorithm was 

developed. The number of neurons in the input, hidden and 

output layer were 8, 9 and 1 respectively. According to the 

results, ANNs can evaluated the effect of cementitious 

material on the compressive strength of concrete with high 

accuracy. It was also found that fly ash content has a little 

effect on the strength of concrete at early ages in 

comparison with later ages. Furthermore, addition of silica 

fume to mixes can cause a reduction in the early 

compressive strength of concrete, however it increases the 

long-term compressive strength. 

 Li et al. (2011) used ANN with six input variables 

including the cement, fly ash, blast furnace slag, super 

plasticizer, sand ratio and water/binder for predicting the 

workability of SCC. Ghafoori et al. (2013) used linear and 

nonlinear regressions, and also neural network models to 

approximate rapid chloride permeability of self-

consolidating concretes based on their mixture ratios. For 

this purpose, various models were designed by varying 

number of independent variables and mixtures allocated to 

training and testing. The obtained outcomes of this research 

demonstrated the better performance of neural networks 

than the prediction models obtained by linear and nonlinear 

regressions.  
Sonebi et al. (2016) designed a multilayer feed forward 

neural network with seven inputs namely, the cement 

content, the dosages of limestone powder, water, fine 
aggregate, coarse aggregate, superplasticizer and time to 
predict the fresh properties of self-compacting concrete. In 
addition, the slump flow, T50, T60, V-funnel flow time, 
Orimet flow time, and blocking ratio (L-box) were 
considered as outputs. The results of this paper showed that 

the ANN model is able to predict the fresh properties of 
SCC instantly and accurately.  

The main objective of the current study is to examine 

the potential of Elman ANNs to predict the mechanical 

properties of SCC under conditions that the designed 

networks contain different types of SCC. It means, unlike 

some researches, which were focused on only one type of 

SCC, such as (Prasad Meesaraganda et al. 2019, Azizifar 

and Babajanzadeh 2018, Vakhshouri and Nejadi 2015), this 

study covers the different types of SCC containing various 

materials (i.e., SCC with fiber, lightweight aggregates, 

recycled materials and pozzolans). For this purpose, 

experimental data of many different concrete mix-designs 

of various types of SCC were gathered from different 

sources (section 3.1) to make comprehensive models, which  

 

Fig. 1 A schematic of an artificial neuron (Haykin 1999) 

 

 

can predict each of the desired properties of SCCs. 

Furthermore, a review of the past studies shows that in spite 

of the different works reported on using artificial neural 

networks in the concrete field (mentioned above), little 

attention has been paid to study the effectiveness of the 

different input variables on the mechanical properties of 

SCCs. Therefore, checking the effectiveness of the different 

factors, as input variables, on the network performance in 

predicting the intended properties is another aim of this 

study. A summary of the intended purposes is presented as 

follows: 

• Performance evaluation of Elman artificial neural 

network in predicting compressive strength, tensile strength, 

flexural strength and elastic modulus of SCC, in the case of 

that the expansive and dispersion of sources and mixed 

designs, which were used in this research, are large. This 

study clearly shows the high potential and reliability of this 

network in prediction. 

• Making almost comprehensive models to predict the 

mechanical properties of SCC, in which the designed 

models contain different mix designs of various types of 

SCC. (Not just one type of SCC).  

• Performance comparison of the constructed networks 

under conditions that the considered effective variables are 

different in them as inputs. Therefore, once, 8 variables and 

again, in order to simulate a real experimental conditions, 

140 variables were entered as inputs in Elman ANNs. Then 

the results obtained from the models with 8 and 140 inputs 

were compared with each other and finally, the results 

obtained from the best models were compared with the 

experimental results. 

 

 

2. Artificial neural networks 
 

The human brain consists of multimillions of neurons in 

which each neuron works as a numerical processor and they 

are connected together extremely in a complex way with 

parallel operation (Ayazi et al. 2009). Similar to the human 

brain, artificial neural networks consist of many 

interconnected artificial neurons that are linked to each 

other with connection weights. Each neuron has a transfer 

function in order to determine the output (Uysal and 

Tanyildizi 2012). A schematic of an artificial neuron is 

given in Fig. 1 (Haykin 1999). According to Haykin (1999), 

the output of the neuron k can be calculated by the 

following Equations 

𝑢𝑘  =   ∑ 𝑤𝑘𝑚 × 𝑥𝑚               (1) 
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𝑦𝑘  =   𝑓(𝑢𝑘 + 𝑏𝑘)               (2) 

Where: 𝑥1, 𝑥2, 𝑥3, … 𝑥𝑚 are inputs;  𝑤𝑘1, 𝑤𝑘2, 𝑤𝑘3 , … 𝑤𝑘𝑚 

are synaptic weights of neuron k; 𝑢𝑘 is the linear combiner 

output due to inputs; 𝑏𝑘  is the bias; 𝑓(𝑢𝑘 + 𝑏𝑘) is the 

transfer function and finally, 𝑦𝑘  is the output. 

Typically, the network architecture has three main layers 

including an input layer, an output layer, and one (or more) 

hidden layers. The input variables are fed to the ANN in the 

input layer. The output layer represents the response of the 

network to the input of the system. The hidden layer helps 

network to prepare nonlinear mapping of the data to 

forecast the desired output (Ashtiani et al. 2018).  

 ANNs have shown to provide good approximates to 

nonlinear data. It has been demonstrated that neural 

networks have the ability to fit any data properly when 

utilizing the right amount of neurons and the appropriate 

topology (Cybenko 1989, Hornik et al. 1989, Hornik 1991, 

Funahashi 1989). Other advantages of these networks 

contain their fitness for parallel computing, their relative 

insensitivity to computational errors and their speed and 

precision in predicting generalized data (Haykin 1999, 

Kalogirou 2000). Once trained, artificial networks are also 

easy to retrain as new or more precise data becomes 

available (Haykin 1999). However, a disadvantage of the 

neural network, is its black box system approach, which is 

incapable to explain the weights and the interrelationship 

between the inputs and output (Barbuta et al. 2012). 

Another problem is that the optimal form or value of most 

network design parameters (such as the number of hidden 

layer neurons) can vary for each application and cannot be 

theoretically defined. For this reason, the appropriate 

structure of the network and also the number of neurons in 

the hidden layers are usually determined via trial and error 

technique (Devos and Rientjes 2005). Furthermore, large 

amounts of data are needed for training and calibration of 

these networks (Piryonesi and El-Diraby 2018). In some 

investigations, other algorithms such as decision trees are 

utilized due to their easiness of performance, but the 

accuracy of these algorithms might be lower than the neural 

networks (Provost and Fawcett 2013, Hastie et al. 2009, 

Shahin et al. 2009). 

There are different types of neural networks, which 

prepare flexibility and strong means to disclose underlying 

relationships between input variables and the output of the 

system (Ashtiani et al. 2018). One of these is Elman ANN, 

which is used in this study. Elman ANN is a recurrent 

neural network that was suggested by Elman in 1990 

(Elman 1990). The recurrent networks not only are able to 

transmit the information forwards, but also can transmit it 

backwards. The structure of Elman ANN has a feedback 

loop from hidden layer to input layer (Krenker et al. 2011) 

as shown in Fig. 2. This feedback loop permits the ANN to 

both detect and generate time varying patterns (Desai et al. 

2011). This network is usually introduced as a special type 

of feed-forward ANN, containing additional memory 

neurons and feedback loop (Koker 2006). 

 

 

3. Project data and details of the networks 
preparation 

 

Fig. 2 A schematic of Elman recurrent neural network 

 

 

3.1 Description of the data 
 

To establish almost comprehensive models, which 

include different kinds of SCC (containing fiber, 

lightweight aggregates, recycled materials and pozzolans), 

experimental samples from different sources were collected 

(Douglas 2004, Yazicioglu et al. 2006, Turk and Karatas 

2011, Mahajan and Singh 2013, Abdul Hameed 2005, 

Kumar et al. 2013, Corinaldesi and Moriconi 2011, Krishna 

et al. 2010, Venkateswara Rao et al. 2012, Dubey and 

Kumar 2012, Dumne 2014, Ranjbar et al. 2013, Sahmaran 

et al. 2005, Khaleel et al. 2011, Jalal et al. 2012, Beigi et al. 

2013, Hossain et al. 2013, Aydin 2007, Guneyisi et al. 

2010, Uysal and Yilmaz 2011, Patel et al. 2011). In fact, for 

predicting 3, 7, 28, 56 and 90-day compressive strength 75, 

275, 549, 52 and 203 samples, for elastic modulus 38 

samples and for 28-day tensile and flexural strengths 274 

and 102 samples were used respectively.  

Separating data into training and testing sets has a 

remarkable effect on the performance of the final model 

(Wu et al. 2012). The size of the training samples has a 

significant effect on the generalization abilities of the neural 

networks, because it is responsible for adjusting weights 

during the learning process of these networks (Richards 

1991). Furthermore, small training sample sizes can cause a 

poor performance in the ANNs (Moyo and Sibanda 2015). 

Different sampling methods can be used to divide the data 

(May et al. 2010, Lohr 2009). In most articles, samples are 

selected randomly. Fathi et al. (2019) divided the data into 

the training and testing sets randomly. They used 80% of 

the data for training the network and 20% of the data for 

testing. Wang et al. (2018) randomly selected 85% of the 

data for training the network and 15% of the data for 

testing.  

In this study, in order to attain a good generalization 

ability in the neural networks, the samples were divided into 

two sets randomly: 

Training set: 85 percent of all samples were selected 

randomly for training the networks. 

Testing set: 15 percent of the remaining samples were 

applied for testing the trained ANNs. 

It should be noted an early stopping technique, (the 

default method for improving generalization), was used 

during the training process to avoid over-fitting. In this 

technique, a validation set is separated out of the training 

set automatically. The validation set is a fraction of the 

training set such that monitors and controls the training 

process (MATLAB Software 2013). 

First, in order to take prediction conditions closer to 

experimental conditions, data utilized in ANNs were  
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Table 1 Introducing the different input variables for 

networks with 140 inputs 

The amounts of gravel, sand, lightweight aggregates, recycled 

materials, cement, pozzolan, limestone powder, fiber, water, 

Nano-silica and polymer. (
𝐾𝑔

𝑚3⁄ ) 

The shapes of gravel including: fully rounded corner, rounded 

corner, relatively rounded corner, relatively sharp corner and 

sharp corner. 

Length (mm), diameter (mm), tensile strength (MPa) and the 

shapes of the fibers including: fiber with straight end and fiber 

with hooked end. 

Specific gravity of gravel, sand, lightweight aggregates, recycled 

materials, cement, pozzolan, limestone powder, fiber, super 

plasticizer, Nano-silica, viscosity-modifying agent (VMA) and 

high water reduction agent (HWRA). (
𝑔𝑟

𝑐𝑚3⁄ ) 

Maximum size of gravel and lightweight aggregates. (mm) 

Water absorption of gravel, sand and lightweight aggregates. (%) 

Grading of gravel, sand and lightweight aggregates. 

Chemical properties of recycled materials, cement, pozzolan 

and limestone powder. 

Curing conditions (Dry, Wet, Sealed). 

Solid contents of super plasticizer and Nano-silica. (%) 

PH of super plasticizer. 

Dosage of super plasticizer, viscosity-modifying agent (VMA) 

and high water reduction agent (HWRA). (
𝐾𝑔

𝑚3⁄ ) 

Concrete’s delivery time (min). 

Temperature operation (C°). 

 

Table 2 Introducing the different shapes of sand, fiber and 

also various curing conditions to the ANNs 

Sand Fiber Curing Conditions 

Fully rounded 

corner = 0 

Fiber with straight 

end = 0.5 
Dry conditions = 0 

Rounded corner = 0.25 
Fiber with hooked 

end = 1 

Wet conditions 

= 1 

Relatively rounded 

corner = 0.5 
- 

Sealed conditions 

= 2 

Relatively sharp corner 

= 0.75 
- - 

Sharp corner = 1 - - 

 

 

categorized in a large set of 140 inputs, according to Table 1. 

In other words, the reason for choosing this number of 

variables is that the authors have tried to simulate prediction 

conditions to experimental conditions, by using a large part 

of key factors affecting the desired outputs, in order to 

measure the accuracy of the constructed networks in 

predicting the intended properties. 

It should be noted that introducing the different shapes 

of sand, fiber and also various curing conditions to the 

neural networks were conducted by allocating constant 

digits for each shape and curing condition according to 

Table 2.  

Second, some of the factors affecting the mechanical 

properties of concrete were ignored and, only 8 more 

common variables which have been seen frequently in 

related studies in this field, were used; namely: water-to-

cement materials ratio, the amounts of cement, sand and 

gravel, super plasticizer dosages and specific gravity of 

cement, sand and gravel (Khademi and jamal 2016, Oztas et 

al. 2006, Altun et al. 2008, Shah et al. 2018, Das et al. 

2015, Soleymani and Karimi Livary 2012, Rajaram et al. 

2018, Dias and Pooliyadda 2001, Yuan et al. 2014, Nazari 

and Riahi 2011). It means, at the first time, the authors 

collected input variables with more sensitivity (in order to 

simulate a real experimental conditions). But, the second 

time, this sensitivity was ignored and the authors just tried 

to gather the factors which had the most selection as input 

variables among similar articles. Finally, these collected 

variables were arranged in a format of 8 inputs. 

It is worth mentioning that, some methods, such as data 

analytics and multi-stage methodology can be helpful for 

the data-collection and prediction (Piryonesi and El-Diraby 

2018, Panagoulia et al. 2017). For each network, one of 

these mentioned mechanical properties i.e. elastic modulus, 

tensile strength, flexural strength or compressive strength of 

SCCs was considered as output variable. 

 

3.2 Networks architecture  
 

The MATLAB Neural Network Toolbox was utilized to 

make and train Elman ANNs. For structure of these 

networks, one input layer, one hidden layer and also one 

output layer were considered. The number of neurons in 

each of the input and output layers is fixed. The input layer, 

by the size of the input vector, i.e., the number of neurons in 

the input layer is equal to the length of the input vector 

(input variables). Also, the number of neurons in the output 

layer is equal to the number of response variables (size of 

the output vector) (Gopi 2007, Champa and AnandaKumar 

2010). Therefore, for networks with 8 and 140 inputs, the 

number of neurons in the input layer were 8 and 140 with 

one neuron in the output layer (equal to the number of input 

and output variables). In order to determine the number of 

hidden layer neurons trial and error technique usually is 

applied, because there are no fixed rules to determine it 

(Masters 1993). According to the Kanellopoulas and 

Wilkinson (1997), in this study, the number of neurons in 

the hidden layer were chosen at least twice as many as the 

number of input variables, it means for networks with 8 and 

140 inputs, 16 and 300 neurons were considered 

respectively. In order to achieve the optimum ANNs with 

appropriate structures, which can predict the desired 

properties with the minimum values of the test errors, it is 

necessary to find the optimal number of hidden layer 

neurons. Therefore, for networks with 8 and 140 inputs, the 

number of hidden layer neurons varied from 4 to 16 and 30 

to 300 neurons respectively. 

 

3.3 Data transformation 
 

The training and test sets were scaled between 0 and 1 

by utilizing below codes in MATLAB software (MATLAB 

Software 2013) 

 [pn, ps]= mapminmax (p, 0, 1)           (3) 

 [tn, ts]= mapminmax (t, 0, 1)           (4) 

Where p and t represent the original inputs and targets, 
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pn and tn are the normalized inputs and targets, ps and ts 

contain the settings, in this case the minimum and 

maximum values of the original inputs and targets 

(MATLAB Software 2013). It should be noted that in this 

study, in order to show the effect of using scaled and raw 

data on the values of the test MSE, a set of raw data was 

also utilized in Elman networks. 

 

3.4 Neural networks training 
 

For training Elman models, a type of back propagation 

algorithm, namely Scaled Conjugate Gradient (SCG) 

algorithm, which has an excellent and fast performance for 

large networks with large number of weights, was used 

(Indra Kiran et al. 2010). In order to reach the optimum 

iteration numbers of Maximum fail, the number of 

maximum fail iterations of the networks were set between 6 

and 500. This domain was selected randomly. Furthermore, 

different combinations of the transfer functions that are 

usually utilized in ANN modeling, including tan-sigmoid, 

purelin and the log-sigmoid were applied in the networks in 

order to determine the optimum ANNs. All networks were 

trained for a maximum of 1000 epochs. 

 

3.5 ANN performance functions 
 

Mean Square Error (MSE) and the Correlation 

Coefficient (R) were used to evaluate the results of the 

networks. These functions are defined as: 

MSE = 
1

𝑁
 ∑ (𝑋𝑒𝑥 (𝑖) − 𝑋𝑐𝑎𝑙 (𝑖))2𝑁

𝑖=1          (5) 

R = [1 -  
∑ (𝑋𝑒𝑥 (𝑖)− 𝑋𝑐𝑎𝑙 (𝑖))2𝑁

𝑖=1

∑ (𝑋𝑒𝑥 (𝑖) − 𝑋𝑒𝑥 ̅̅ ̅̅ ̅̅ )2𝑁
𝑖=1

]1/2               (6) 

Where 𝑋𝑒𝑥 (𝑖) ,  𝑋𝑐𝑎𝑙 (𝑖) , 𝑋𝑒𝑥
̅̅ ̅̅̅   and N are the 𝑖 th 

experimental value, 𝑖 th calculated value, mean of 

experimental values and the number of data points 

respectively (Badrnezhad and Mirza 2014). 

 

 
4. Results and discussions 
 

4.1 Optimization of Elman ANNs 
 

In this investigation, Elman ANNs are proposed to 

predict the mechanical properties of SCCs. Three main 

characteristics of the networks, including the number of 

hidden layer neurons, the number of maximum fail 

iterations and the transfer functions in each layer are 

considered as variable characteristics and are optimized in 

each network separately, in order to achieve the optimum 

networks with the best structures (based on the minimum 

values of the test errors). The required settings to optimize 

models is shown in Table 3. It should be noted that the 

effect of using scaled and raw data on the values of the test 

MSE, which was mentioned previously, is also evaluated in 

this section of the paper. The details and results of this 

process are presented as follows: 

• The results obtained from using raw and scaled data in 

predicting the mechanical properties of SCCs are compared 

Table 3 Required settings to optimize Elman ANNs 

Transfer 

functions 

between 
layers 

The 

number of 

max-fail 
iterations 

Training 

algorithm 

The 

number of 
hidden 

layer 

neurons 

Network 

type 
Purposes 

T*1-T 
(Network 

Default) 

6 (Network 
Default) 

SCG 
Variable 

between 4-

16 

8 inputs 
Determination 

of the optimum 
number of 

hidden layer 

neurons 

T-T 

(Network 
Default) 

6 (Network 

Default) 
SCG 

Variable 

between 
30-300 

140 inputs 

T-T 

(Network 

Default) 

Variable 

between 6-

500 

SCG 

The 

optimum 

number 

8 inputs 
Determination 

of the optimum 
iteration 

numbers of 

maximum fail 

T-T 
(Network 

Default) 

Variable 
between 6-

500 

SCG 
The 

optimum 

number 

140 inputs 

T-T, T-P*2, 

T-L*3, P-T, 
P-L, 

P-P, L-T, 

L-P, L-L 

The 
optimum 

iteration 

SCG 
The 

optimum 

number 

8 inputs Determination 

of the best 

combination of 
the transfer 

functions 

between layers 

T-T, T-P, 
T-L, P-T, 

P-L, 
P-P, L-T, 

L-P, L-L 

The 

optimum 
iteration 

SCG 

The 

optimum 
number 

140 inputs 

*1: Tansig; *2: Purelin; *3: Logsig 

 

Table 4 The obtained minimum values of the test errors by 

using raw and scaled data in the ANNs with 8 and 140 

inputs 

Data 

type 

Number 

of 
inputs 

Outputs 

3-day 

FC*1 

7-day 

FC 

28-day 

FC 

56-day 

FC 

90-day 

FC 

28-day 

Ft*2 

28-day 

FL*3 
ES*4 

Test MSE 

Raw 

8 
N*12-

32.99 

N16-

78.40 

N8-

172.24 

N16-

82.17 

N12-

107.51 

N4-

0.87 

N8-

1.17 

N16-

7.97 

140 
N300-

12.72 

N150-

35.77 

N240-

47.85 

N120-

24.66 

N120-

48.60 

N120-

0.33 

N270-

0.91 

N300-

1.07 

Scaled 

8 
N4-

27.62 
N4-

75.52 
N8-

148.05 
N16-
63.95 

N12-
107.34 

N16-
0.69 

N4-
1.05 

N8-
7.82 

140 
N120-

4.12 

N150-

21.81 

N240-

40.07 

N30-

17.32 

N120-

48.36 

N60-

0.31 

N210-

0.71 

N300-

0.44 

*: Number of neurons; *1: Compressive strength; *2: Tensile 

strength; *3: Flexural strength; *4: Elastic modulus 

 

 

with each other in Table 4. As shown in this table, for all 

networks with 8 and 140 input variables, the results of the 

test errors for scaled data are smaller than the raw data. For 

example, for 3-day compressive strength (in the networks 

with 8 inputs), the minimum test MSE is obtained 32.99 

using raw data, but by using scaled data, the minimum test 

error is obtained 27.62 and it shows the test MSE is 

decreased. Accordingly, for all networks, scaling data leads 

to improve the test errors. Therefore, the scaled data are 

used for doing all sections of this study. Furthermore, the 

optimum number of neurons in the hidden layer is 

determined based on the minimum test errors that were 

obtained using scaled data in Table 4. Therefore, for 

networks with 8 and 140 inputs, the obtained optimum 

number of hidden layer neurons are equal to (4, 120; 4, 150; 

8, 240; 16, 30; and 12, 120) for 3, 7, 28, 56 and 90-day  
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Table 5 The obtained values of the test MSE in the different 

iteration numbers of maximum fail for networks with 8 and 

140 inputs 

Number 

of 

Max_ 

fail 

iterations 

Number 

of 

inputs 

Outputs 

3-day 

FC 

7-day 

FC 

28-day 

FC 

56-day 

FC 

90-day 

FC 

28-

day 

Ft 

28-

day 

FL 

ES 

Test MSE 

6 
8 27.62 75.52 148.05 63.95 107.34 0.69 1.05 7.82 

140 4.12 21.81 40.07 17.32 48.36 0.31 0.71 0.44 

10 
8 18.98 70.38 135.76 432.19 95.12 0.60 0.98 40.45 

140 5.26 39.83 75.77 19.21 81.31 0.45 1.23 1.64 

50 
8 12.66 55.39 142.89 34.67 61.90 0.46 2.02 11.31 

140 34.40 24.23 31.19 22.46 19.55 0.18 0.71 0.39 

100 
8 13.81 39.34 63.92 69.23 119.82 0.42 1.62 8.69 

140 28.81 15.05 43.42 9.61 19.15 0.33 2.89 1.23 

500 
8 13.25 40.58 82.67 13.61 100.65 0.37 1.95 8.33 

140 35.55 27.28 28.18 4.92 27.59 0.33 0.24 0.92 

 

 

compressive strength, and (16, 60; 4, 210; and 8, 300) for 

tensile strength, flexural strength and elastic modulus, 

respectively.  

• Maximum fail parameter is related to an early stopping 

technique, (the default method for improving 

generalization), during the training process to avoid 

overfitting. In this method, a validation set is separated out 

of the training set automatically. The number of “validation 

checks” indicates the number of continuous iterations that 

the validation performance fails to decrease (MATLAB 

Software 2103, Muluneh 2014). It means the training 

process continues until the validation error fails to decrease. 

When the validation error increases for a specified number  

 

 

of iterations (max_fail iterations), the training process stops. 

In the other words, the validation check indicates whether 

the current completed iteration has minimized error 

compared to the previous iterations. This criterion can be 

changed by setting the parameter net. trainParam. max_fail 

in MATLAB software (MATLAB Software 2013). The 

network is trained while the validation checks is 

periodically utilized to evaluate the model performance 

during the training in order to avoid over-training 

(Reitermanova 2010). In this study, as mentioned earlier, in 

order to reach the optimum iteration numbers of maximum 

fail (maximum validation checks), the number of maximum 

fail iterations of the networks was set between 6 and 500. 

For each iteration in the training process, the performance 

of the networks was checked. For models with two different 

sets of inputs, the values of the test MSE obtained from 

each output in the different iteration numbers of maximum 

fail is given in Table 5. As it can be seen, for networks with 

8 and 140 inputs, the minimum test errors, which are 

specified in the table, are obtained in (50, 6; 100, 100; 100, 

500; 500, 500; and 50, 100) iterations for 3, 7, 28, 56 and 

90-day compressive strength, and in (500, 50; 10, 500; and 

6, 50) iterations for 28-day tensile strength, 28-day flexural 

strength and elastic modulus, respectively. These iterations 

show that the training process should be stopped and no 

further iteration should be done. In fact, the designed 

networks in these iterations, have the best performance in 

the training process and no further training is necessary and 

if done, may forecast the results incorrectly. Therefore, 

these iterations are chosen as the optimum iterations of 

maximum fail in the networks due to having the most 

influence over the improved value of the test errors. 

• The results are shown in Table 6. According to this 

table, for networks with 8 and 140 inputs, respectively, the  

 

 

Table 6 The obtained results by using different combinations of three transfer functions (Tangsig, Logsig, Purelin) 

in the networks with 8 and 140 inputs 

Outputs 
Number of 

inputs 

Transfer functions between layers 

Tansig-

Tansig 

Tansig-

Logsig 

Tansig-

Purelin 

Purelin-

Logsig 
Purelin-Purelin Purelin-Tansig 

Logsig-

Logsig 

Logsig-

Purelin 

Logsig-

Tansig 

Test MSE 

Fc3*1 
8 12.66 310.57 14.29 310.57 40.58 29.80 310.57 32.79 32.80 

140 4.12 336.45 62.40 338.31 648.96 265.78 242.88 43.76 9.14 

Fc7*2 
8 39.34 162.33 62.32 174.60 82.32 81.10 176.96 62.28 36.57 

140 15.05 163.17 32.96 185.44 659.25 44.30 167.47 13.54 15.34 

Fc28*3 
8 63.92 308.06 104.47 308.06 212.09 224.40 308.06 113.87 129.32 

140 28.18 260.08 60.97 306.36 144.76 45.96 260.65 29.54 18.91 

Fc56*4 
8 13.61 224.18 11.95 221.42 95.43 88.21 222.64 12.91 16.75 

140 4.92 313.56 146.98 396.27 56.81 831.97 317.86 23.00 16.53 

Fc90*5 
8 61.90 181.80 91.52 192.77 227.99 270.42 470.82 61.02 79.13 

140 19.15 154.80 101.11 206.12 4.1817e+04 3.2214e+03 192.40 46.43 17.79 

Ft28*6 
8 0.37 1.81 0.49 1.81 0.99 1.01 1.59 0.40 0.52 

140 0.18 1.25 0.39 1.63 0.51 4.11 1.29 0.40 0.38 

Fl28*7 
8 0.98 7.21 1.59 6.88 1.29 1.14 6.76 1.34 0.89 

140 0.24 9.33 0.33 72.60 116.35 19.97 8.90 0.47 1.57 

ES*8 
8 7.82 27.90 9.13 27.66 10.85 47.36 26.02 23.40 37.79 

140 0.39 2.77 37.98 16.85 7.8401e+03 14.30 0.47 3.67 2.22 

*1: 3-day compressive strength; *2: 7-day compressive strength; *3: 28-day compressive strength; *4: 56-day compressive 

strength:*5: 90-day compressive strength; *6: 28-day tensile strength; *7: 28-day flexural strength; *8: elastic modulus 
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obtained optimum results for each output are delineated as 

follows: 

◦ 3-day compressive strength: the minimum test MSE 

(12.66 and 4.12), with the combination of (Tansig-Tansig). 

◦ 7-day compressive strength: the minimum test MSE 

(36.57 and 13.54), with the combinations of (Logsig-Tansig 

and Logsig-Purelin). 

◦ 28-day compressive strength: the minimum test MSE 

(63.92 and 18.91), with the combinations of (Tansig-Tansig 

and Logsig-Tansig). 

◦ 56-day compressive strength: the minimum test MSE 

(11.95 and 4.92), with the combinations of (Tansig-Purelin 

and Tansig-Tansig). 

◦ 90-day compressive strength: the minimum test MSE 

(61.02 and 17.79), with the combinations of (Logsig-Purelin 

and Logsig-Tansig). 

◦ 28-day Tensile strength: the minimum test MSE (0.37 

and 0.18), with the combination of (Tansig-Tansig). 

◦ 28-day flexural strength: the minimum test MSE (0.89 

and 0.24), with the combinations of (Logsig-Tansig and 

Tansig-Tansig). 

◦ Elastic modulus: the minimum test MSE (7.82 and 

0.39), with the combination of (Tansig-Tansig). 

After building the optimum models with 8 and 140 inputs, 

in the next section of this research, a comparison is carried 

out between these models in order to determine the best 

networks, which are more successful in the prediction of the 

desired properties of SCCs. 

 

4.2 Performance comparison of the optimum ANNs 
with 8 and 140 input variables, determination and 
performance evaluation of the best networks 
 

The statistical values obtained from the optimum neural 

networks with 8 and 140 inputs are compared with each 

 

 

Fig. 3 Elman ANN predicted results versus experimental 

results (Target) for 3-day compressive strength: (A) training 

set; (B) testing set 

 

 

other in Table 7. As shown in this table, for all outputs, 

Elman ANNs with 140 inputs have a smaller test MSE and 

consequently a better predictive capability than the  

Table 7 Comparison between statistical values of the optimum networks with 8 and 140 inputs 

140-input-network test error improvement in 

comparison with 8-input- network test error 

Train 

R 

Test 

R 

Train 

MSE 

Test 

MSE 

Number of input 

variables 
Outputs 

67.45 
0.95 0.95 13.78 12.66 8 3-day Compressive 

Strength 0.97 0.99 8.56 4.12 140 

62.97 
0.83 0.86 42.67 36.57 8 7-day Compressive 

Strength 0.96 0.95 10.87 13.54 140 

70.41 
0.90 0.88 58.16 63.92 8 28-day Compressive 

Strength 0.97 0.97 17.15 18.91 140 

58.82 
0.98 0.98 9.56 11.95 8 56-day Compressive 

Strength 0.98 0.99 12.77 4.92 140 

70.84 
0.86 0.92 109.90 61.02 8 90-day Compressive 

Strength 0.97 0.97 19.03 17.79 140 

51.35 
0.90 0.87 0.30 0.37 8 28-day Tensile 

Strength 0.95 0.95 0.15 0.18 140 

73.03 
0.83 0.84 1.64 0.89 8 28-day Flexural 

Strength 0.95 0.97 0.38 0.24 140 

95.01 
0.96 0.96 2.78 7.82 8 Elastic 

Modulus 0.95 0.98 5.00 0.39 140 

*: The specified rows show the best networks 
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networks with 8 input variables. In other words, in the 

prediction of the desired outputs, networks with 140 inputs 

compared to ones with 8, have 67.45, 62.97, 70.41, 58.82 

and 70.84 (for 3, 7, 28, 56 and 90-day compressive strength 

respectively), 51.35 (for 28-day tensile strength), 73.03 (for 

28-day flexural strength) and 95.01 (for elastic modulus) 

percent improvement regarding their test errors. This 

indicates the prediction accuracy can greatly be improved 

by the more simulation of the predicted conditions to the 

 

 

 

 

experimental conditions, which is achievable via optimizing 

neural networks by considering a more complete set of key 

factors affecting the desired outputs, as input variables. 

Therefore, in this paper, the optimum networks with 140 

inputs are selected as the best networks in predicting the 

mechanical properties of SCC due to having the minimum 

test errors and the highest correlation coefficients. 

The performance of training and testing sets of the best 

networks, networks with 140 inputs, can be seen in Figs. 3- 

    

Fig. 4 Elman ANN predicted results versus experimental results (Target) for 7-day compressive strength: (A) 

training set; (B) testing set 

    

Fig. 5 Elman ANN predicted results versus experimental results (Target) for 28-day compressive strength: (A) 

training set; (B) testing set 

    

Fig. 6 Elman ANN predicted results versus experimental results (Target) for 56-day compressive strength: (A) 

training set; (B) testing set 
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10. As shown in these Figures, the values obtained during 

the training and testing Elman ANNs are in an excellent 

correlation with experimental values and it demonstrates 

that the networks have an acceptable performance in 

predicting all outputs. Also, this clearly shows that the 

optimal neural networks learned well the relationship 

between the considered input and output variables. It should 

be noted that in some cases (Figs. 3-6-9 and 10), the 

 

 

 

 

performance of the model in predicting, for the test set is 

slightly higher than that for the training set. It means that 

although due to this fact that ANN models are trained and 

calibrated based on the training set, the performance of the 

ANN models for the training data is expected to be higher 

as compared to that of the test data, but this is not always 

the case (Akbari and Afshar 2013, Oztas et al. 2006). 

Because the all of the data are randomly divided into the  

    

Fig. 7 Elman ANN predicted results versus experimental results (Target) for 90-day compressive strength: (A) 

training set; (B) testing set 

    

Fig. 8 Elman ANN predicted results versus experimental results (Target) for 28-day tensile strength: (A) training 

set; (B) testing set 

    

Fig. 9 Elman ANN predicted results versus experimental results (Target) for 28-day flexural strength: (A) training 

set; (B) testing set 
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Fig. 11 Comparison between 3-day experimental 

compressive strength and 3-day ANN predicted 

compressive strength 

 

 

Fig. 12 Comparison between 7-day experimental 

compressive strength and 7-day ANN predicted 

compressive strength 

 

 

Fig. 13 Comparison between 28-day experimental 

compressive strength and 28-day ANN predicted 

compressive strength 

 

 

training and test sets and any unexpected result may occur. 

In addition, the differences between the performances in the 

mentioned cases are not considerable and this issue shows  

 

 

Fig. 14 Comparison between 56-day experimental 

compressive strength and 56-day ANN predicted 

compressive strength 

 

 

Fig. 15 Comparison between 90-day experimental 

compressive strength and 90-day ANN predicted 

compressive strength 

 

 

Fig. 16 Comparison between 28-day experimental tensile 

strength and 28-day ANN predicted tensile strength 

 

 

that both training and test sets employed have similar 

characteristics. 

Moreover, the experimental and predicted results of the 

best networks with 140 inputs are compared with each other 

in Figs. 11-18. As can be seen in these figures, the results 

obtained from the optimal ANNs have a great similarity to  

    

Fig. 10 Elman ANN predicted results versus experimental results (Target) for elastic modulus: (A) training set; (B) testing set 
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Fig. 17 Comparison between 28-day experimental flexural 

strength and 28-day ANN predicted flexural strength 

 

 

the experimental values. This case confirms that the 

developed Elman networks with a more complete set of 

effective input variables, are quite successful in predicting 

all of the desired outputs. 

 

 

5. Conclusions 
 

Elman artificial neural networks with 8 and 140 input 

variables were designed to predict the compressive strength, 

tensile strength, flexural strength and elastic modulus of 

SCCs. Experimental samples of different concrete mix-

designs of SCC were taken from various publications for 

developing the networks. The number of neurons in the 

hidden layer, the number of maximum fail iterations and the 

transfer functions in each layer were optimized based on the 

minimum values of the test MSE. Furthermore, for training 

the networks, both raw and scaled data sets were used, 

which was deduced that for all constructed networks scaling 

data can lead to improve the test errors. According to the 

obtained outcomes, despite the dispersion of the used 

sources in the research, which is expected to reduce the 

prediction accuracy of the network, Elman ANNs can 

effectively predict the desired mechanical properties of 

SCCs without demanding to do any experimental works 

along with high accuracy. The excellent agreement between 

the designed models and experimental data illustrated that 

the ANNs learned well the behavior of the considered 

variables in the prediction of the desired outputs. It was also 

found that for all of the desired properties, the optimized 

networks with 140 inputs have a more satisfactory 

performance than networks with 8 inputs. This clearly 

shows that the variables which are selected as the input, 

directly influence the network errors. Therefore, if inputs 

are identified and selected more sensitively, the network is 

modeled by more efficient factors that are available in the 

experimental conditions, and ultimately the constructed 

model presents a better performance in predicting the 

desired output. In other words, whatever the conditions of 

predicting ANNs through utilizing a more complete set of 

key factors affecting the desired outputs, as input variables, 

get closer to experimental conditions, these networks 

predict the desired outputs more precisely. 
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