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1. Introduction 
 

Nowadays the use of steel-concrete composite beams 

has spread over the world for the construction of civil 

engineering structures such as bridges and floors in 

multistory buildings. There exist various standards in which 

design guidelines are provided to protect these structures at 

the serviceability stage, where control of deflections 

becomes an essential part of the design process. As well 

known, time-dependent effects and concrete cracking have 

a meaningful effect on the internal redistribution of stresses 

at reinforced concrete (RC) sections. In fact, these features 

are associated to the increase of deflections with time 

(Nguyen and Hjiaj 2016). In this scenario, it is desirable to 

undertake an accurate prediction of deflections along the 

entirely serviceability stage at which the structure is 

exposed. This may be accomplished via a finite element 

(FE) based model and viscoelasticity theory, together with a 

rheological concrete model. Among the most recognized 

creep and shrinkage models found in the literature, it can be 

cited the ACI Committee 209 (2008), B3 (Bazant and 
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Bajewa 1995), GL2000 (Gadner and Lockman 2001), CEB 

MC 90 (CEB 1993), CEB MC 99 (CEB 1999) and FIB 

2010 (FIB 2012) models, all of which are developed 

according to curve fitting procedures of experimental data 

in concrete specimens, with exception of the B3 model, 

which has a more rigorous theoretical background. In this 

study, all the aforementioned models are applied in the 

evaluation of long-term deflections in composite beams. 

The evaluation of long-term deflections in steel-concrete 

composite beams is of importance and has been topic of 

various research studies. In Nguyen and Hjiaj (2016), the 

B3 model is used to evaluate the long-term response of two 

continuous steel-concrete composite beams for a period of 

340 days. Concrete cracking and shrinkage are identified as 

the major factors for time effects. In Zhu and Su (2017), 

four simply supported steel-concrete composite beams are 

modeled with the CEB MC 90, in which good agreement 

was found between predicted and experimental data. In Ban 

et al. (2015) is studied the long-term behavior of simply 

supported composite beams with blind bolts, using 

Australian standards for a period of 260 days. In Erkmen 

and Bradford (2011) and Liu et al. (2013), a long-term 

analysis based on the CEB model code is carried out for 

evaluating deflections in simply supported composite beams 

curved in plan. In Partov and Kantchev (2011) is studied the 

creep effect in steel-concrete composite beams according to 

the ACI Committee 209 and CEB MC 90-99 regulations, 

whilst stochastic analyses are studied in Xiang et al. (2016) 

to account for uncertainties in materials by using the CEB 

MC 90. In Varshney et al. (2013), the CEB MC 90-99 are  
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Abstract.  Steel-concrete composite beams are widely employed in constructions and their performance at the serviceability 

stage is of concern among practitioners and design regulations. In this context, an accurate evaluation of long-term deflections 

via various rheological concrete models is needed. In this work, the performance and predict capability of some concrete creep 

and shrinkage models ACI, CEB, B3, FIB and GL2000 are ascertained, and compared by using statistical bias indicators. Ten 

steel-concrete composite beams with existing experimental and numerical results are then modeled for this purpose. The 

proposed modeling technique uses the finite element method, where the concrete slab and steel beam are modeled with shell 

finite elements. Concrete is considered as an aging viscoelastic material and cracking is treated with the common smeared 

approach. The results show that when the experimental ultimate shrinkage strain is used for calibration, all studied rheological 

models predict nearly similar deflections, which agree with the experimental data. In contrast, significance differences are 

encountered for some models, when none calibration is made prior to. A value between twenty and thirty times the cracking 

strain is recommended for the ultimate tensile strain in the tension stiffening model. Also, increasing the relative humidity and 

decreasing the ambient temperature can lead to a substantial reduction of slab cracking for beams under negative flexure. 

Finally, there is not a unique rheological model that clearly excels in all scenarios. 
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Fig. 1 FE modeling of composite beams by means of shell 
and beam-column elements 

 

 

used to assess time effects in composite beams, while in 

Sousa et al. (2013), the long-term response of a pre-stressed 

concrete bridge, which was monitored for 2000 days, is 

presented. Thereby, measured data is compared with the 

long-term numerical predictions using the European 

standard EC2 (2004). In Gilbert et al. (2012), a procedure is 

presented for the time-dependent service analysis of 

composite concrete slabs with wave form steel decking, 

mainly caused by concrete shrinkage. 

Other works are based only on the evaluation of creep 

and shrinkage models in concrete specimens. In Theiner et 

al. (2014), drying shrinkage is assessed via various 

shrinkage models. In Wendner et al. (2015), the 

performance of a new version of the B3 model, named B4, 

is evaluated with a huge concrete experimental data set, and 

also with other model codes such as ACI Committee 209, 

GL2000 and CEB MC 90-99. In Bazant and Li (2008), 

statistical bias indicators are used for evaluating the 

performance of rheological models GL2000, B3, ACI and 

CEB against laboratory test data. However, works 

advocated to the comparison of predicted long-term 

deflections with experimental data in steel-concrete 

composite beams by using statistical bias indicators for 

various creep and shrinkage models are more limited, if 

any. In this work, the aforementioned model codes are 

selected and their performances are evaluated via five 

statistical indicators according to the ACI Committee 209 

(2008), all of which can measure dispersion between 

predicted and experimental response along time. In this 

sense, a better insight can be given about the suitability of 

each rheological model at the particular case. Otherwise, the 

used FE model is referred to an in-house code previously 

developed by the authors (Tamayo et al. 2015 and Dias et 

al. 2015), which has proved to perform well against other 

existing numerical and experimental results (e.g., Reginato 

et al. 2018, Moscoso et al. 2017, Tamayo and Awruch 

2016). The overall model is fully three-dimensional and is 

based on shell finite elements, where partial interaction at 

the slab-beam interface is modeled via bar elements as 

shown in Fig. 1. Ten steel-concrete composite beams with 

experimental results are then simulated and corresponding 

statistical bias indicators for deflections are calculated in all 

cases. 

2. Numerical modeling and constitutive models 
 

At the serviceability limit stage, both steel in tension 

and compression and concrete in compression behave 

nearly linearly elastic and nonlinearities are mainly due to 

concrete cracking and slipping at the slab-beam interface. 

Concrete is considered to be elastic in tension until its 

tensile strength is reached along the maximum principal 

stress direction, and then a crack is form perpendicular to 

this direction. Cracked concrete then behaves like an 

orthotropic material following their principal stress 

directions, where two mutually perpendicular cracks are 

allowed to form at each monitored point. Concrete in 

tension between cracks is capable of resisting some tensile 

stresses as a result of bond action between steel bars and 

concrete, thus contributing to the overall stiffness of the 

member, and reducing its deflection. This phenomenon is 

called tension stiffening and its assessment is relevant for 

serviceability analyses. Then, a smeared crack approach is 

assumed to represent discontinuous macrocrack brittle 

behavior, where initially open cracks can close and reopen 

due to internal stress redistribution. In this manner, 

averaged stresses and strains are introduced to predict 

member behavior. 

As it may be expected, concrete cracking has a major 

role on the long-term response of RC members under 

service loads (Xu et al. 2018). In Fig. 2(a) is depicted the 

stress-strain relationship available in the current FE code for 

cracked concrete due to tension stiffening and tension 

softening. In these diagrams, ∝ ≈ 0.5-0.7, 𝑓𝑡 is the tensile 

concrete strength, 𝜀𝑐𝑟  is the cracking strain, 𝜀𝑡𝑢 is the 

ultimate tensile strain and 𝐸𝑐 is the Young modulus of the 

material. In this work, it is considered that the tension 

stiffening diagram also accounts for the tension softening of 

cracked concrete and bond slip effects (Baskar et al. 2002). 

Regular concrete modeling defines mesh objectivity of FE 

results based on the fracture energy of brittle materials, 𝐺𝑓, 

and associated element size, ℎ (Dias et al. 2015). In this 

sense, the ultimate tensile strain can be determined. 

Nevertheless, RC slabs in steel-concrete composite beams 

deserve special attention as their behavior may not be 

modeled with regular concrete modeling in FE analyses, 

and some calibration may be needed for defining 𝜀𝑡𝑢 at the 

particular problem (see e.g., Baskar et al. 2002, Ramnavas 

et al. 2015, Reginato et al. 2018, ABAQUS 2011). For 

instance, a value of 0.001 seems reasonable for heavily 

reinforced concrete, while in other situations typical values 

around 𝜀𝑡𝑢 ≅ (10 − 20)𝜀𝑐𝑟 for common RC slabs are 

suggested by some researches (Baskar et al. 2002, 

Damjanic and Owen 1984). In contrast, a much higher 

value of 0.1 is recommended for concrete slabs acting in 

composite beams (Liang et al. 2005, Baskar et al. 2002, 

Rex and Easterling 2000). The trouble in defining 𝜀𝑡𝑢 lies 

in the fact that the RC slab failure due to concrete cracking 

in tension or compression does not imply overall failure of 

the structure, as the steel beam is able to resist additional 

load. Therefore, it seems to be arguable to adopt a random 

preliminary value, so a calibration procedure has been 

preferred in this study. After various trial analyses, values in 

the range of 𝜀𝑡𝑢 = (20 − 30)𝜀𝑐𝑟 have better fit the current  
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(a) One-dimensional behavior in tension 

 
(b) Shear force versus slip 

Fig. 2 Constitutive laws 

 

 

experimental data for the studied examples, then as a 

starting point, a value around 25 𝜀𝑐𝑟  is recommended 

herein. In relation to the long-term performance, concrete is 

treated regularly as a viscoelastic ageing material whose 

mechanism is commented in section 2.1. Otherwise, the 

steel beam behaves linearly elastic under service loads. 

Shell elements with eight and four nodes are used to 

represent the middle planes of the RC slab and parts of the 

steel beam, respectively. The RC slab is composed of 

several layers through its thickness to capture nonlinear 

concrete behavior, where additional smeared layers are used 

to represent reinforcing bars. The gap equal to the sum of 

half slab thickness plus half top flange thickness exists 

between the slab and the top steel flange of the beam. 

Therefore, a special beam-column element of length equal 

to this gap joints adjacent nodes of the middle-plane of the 

slab and that of the top steel flange at discrete locations. 

Strictly speaking, there is no geometric contact between 

these surfaces as already shown in Fig. 1. The interaction is 

accomplished by connectors disposed along the longitudinal 

direction of the beam in which uplift is not permitted by 

employing a great axial stiffness in the connector element, 

while compatibility of rotations are enforced in adjacent 

nodes of the steel and slab based on the assumption that the 

beam section remains plane after deformation. The relative 

displacement in the sliding direction at the interface is 

computed based on the connector end displacements and 

rotation. The shear stiffness along the sliding direction is 

the slope of the shear-slip relationship displayed in Fig. 

2(b), in which 𝐹𝑠 is the shear force in the connector, s the 

associated slip and a,b model parameters. When the space 

between connectors is considerable in the real project, 

fictitious elements with great axial stiffness can be 

introduced to avoid surface interpenetration (Tamayo et al. 

2019). Based on a mesh sensitivity assessment, three 

meshes are considered for each composite beam. For 

instance, Fig. 3 depicts the three meshes used in the case of 

  
(a) 286 elements (b) 1054 elements 

 
(c) 4126 elements 

Fig. 3 FE meshes for simply supported composite beam B1 

 

 

beam B1 of section 4.1. The coarser mesh in Fig. 3(a) yields 

similar results to the other ones, then this mesh is used in 

the following computations.   

 
2.1 Solidification theory for concrete creep 
 

The deformational behavior of concrete can be 

described mathematically as the sum of the short- and the 

long-term behavior of the material. Accordingly, the total 

strain εT(t) at time t can be decomposed as follows 

( ) ( ) ( ) ( )T i v sht t t t   = + +  (1) 

where εT(t), εv(t) and εsh(t) are the instantaneous part of the 

stress-dependent strains, viscoelastic and shrinkage strains, 

respectively. The uniaxial constitutive relation defining 

concrete as an ageing viscoelastic material with the 

instantaneous plus the viscoelastic parts under a stress 

history is introduced by the Stieltjes integral, which also 

applies to discontinuous functions.    

0

( ) ( , ') ( ')

t

t J t t t =   (2) 

in which J(t,t′) is the compliance function for a constant 

stress applied at time t′. The preceding integral-type 

constitutive equation can be converted to a differential-type 

form consisting of a system of first-order ordinary 

differential equation by using Dirichlet series expansion. 

Indeed, Solidification Theory (Bazant and Prasannan 1989) 

uses a rate-type creep law based on a Kelvin model with 

non-ageing properties for representing the microstrain γ(t) 

of the solidified matter (i.e., hydrated cement) as stated in 

Eq. (3). 

,E      + =       
1

N




 
=

=  (3) 

Integration of Eq. (3) for a constant unit stress σ applied at 

age t′ yields 

( ')

1

1
( ') (1 ),

N
t t

t t e
E






− −

=

− = −    E   =  (4) 

where Eμ, τμ and ημ are the elastic modulus, retardation time 

and viscosity of the µ-th Kelvin unit, respectively and N is 

the total number of units in the chain. Moreover, the 
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compliance function according to the Solidification theory 

can be expressed by Eq. (5). 

0

1 ( )
( , )

( )

t t
J t t

E t





− = +  (5) 

where E0 is the modulus of elasticity for the aggregates and 

microscopic particles of the cement paste.  

This form renders compliance functions given in some 

design regulations so that time-dependent functions, i.e., 

volume fraction of the solidified matter, υ(t), and γ(t−t′) can 

be identified. In this manner, parameters Eµ may be 

determined from Eq. (4) by the method of least squares. To 

permit structural creep analysis with increasing time, Eq. 

(3) is resolved with an exponential algorithm by considering 

that σ varies linearly during a time step i. The corresponding 

microstrain increment between times ti and ti+1 is then given 

by Eq. (6). 

( )

1

1 1

1
1

i

i i

N N
yi e

E E




  

  

 
 

+

−

= =

 = − =

   −
 + − −   

   
   

 
 (6) 

For ε(t), the quasi-elastic stress-strain relation is 

obtained in Eq. (7) by using 

1/2 1/2/ /i i shE    + + =  + +  and 1i i  + = − . 

* *( )E   =  −  (7) 

where parameters ∆yμ, λμ, E* and ∆ε* are given in section 

2.3 for the three-dimensional case. Then, the rheological 

problem can be treated as a quasi-elastic analysis with 

initial strains as will be explained in section 2.2. Moreover, 

concrete is considered as an aging viscoelastic linear 

material in compression under the elastic limit and in 

tension before cracking. It is further assumed that the 

principle of superposition is still valid in the cracked phase, 

where the creep phenomenon is coupled to the behavior due 

to tension stiffening effect. A smeared fixed crack approach 

is used to model the behavior of cracked concrete, coupled 

with a tensile strength criterion to predict crack initiation. 

Two orthogonal cracked planes are allowed to form at each 

sampling point and a reduced shear modulus is used in the 

cracked zones. Full bond is assumed at the 

concrete/reinforced interface, but the tension stiffening 

concept is used to account for the gradual bond 

deterioration with progressive cracking (Tamayo et al. 

2015). The creep compliance function and the shrinkage 

strains are also assumed to be the same in tension and 

compression (Macorini et al. 2006, Sakr and Sakla 2008). 

 

2.2 Numerical simulation procedure 
 
The entire time period is divided into a number of time 

steps ∆t1, ∆t2, ∆t3,…, ∆tn, in which changes in external loads 

occur at the beginning of a time step. The external load may be 

further subdivided into a number of load steps as shown in Fig. 

4. The procedure is summarized as follows. 

1. Read the load control data for the current time ti and time 

step ∆t1(∆t1=ti+1−ti). Form the applied load vector R(ti) for 

time ti. Divide this vector according to a given number of load 

 
(a) Load history 

 
(b) Long-term displacement 

Fig. 4 History of applied loads and computed displacements 

 

 

steps to obtain the load vector for each load step of the current 

increment. 

2.  Start iterative solutions procedure for this load step. 

3.  Form the element stiffness matrices, and assemble the 

structural stiffness matrix.  

4. Solve the equilibrium equations to obtain nodal 

displacements increment vector. Add this to the previous ones 

to obtain the current total nodal displacement vector 

5.  For each element calculate the displacement, strain and 

stress increments. Update material matrix, and calculate the 

element resisting forces based on the current state. The stress 

increment vector is obtained through the material constitutive 

matrix and the mechanical strains.  

6.  Assemble the unbalanced force vector, which is given 

by subtracting the total applied external load from the internal 

resisting force vector. Check the force convergence. 

7.  If convergence has not been obtained, go back to step 3 

and repeat steps 3 through 6 until convergence is achieved. 

Continue to step 8, or if the solution diverges, stop the 

calculations. 

8.  If this is not the last load step for the current time, go 

back to step 1 and repeat steps 1 to 7 until the solution is 

obtained for all the specified load steps. When the last load step 

was reached, go to step 9. 

9.  Calculate the material properties at the end of the time 

steps, i.e., for time ti+1. For each element the creep and 

shrinkage strains are calculated. The equivalent nodal loads for 

each element are calculated by considering these strains as 

initial strains (see section 2.3) and then they are assembled into 

the load increment vector {∆R}i. Go to step 1 and repeat steps 

1 to 7.  

10.  If time ti is the last time the analysis is finished, 

otherwise go back to step 1 and continue the analysis for the 

next time step. 
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2.3 Solution procedure for creep and shrinkage 

effects 
 

At the beginning of the time step i, (∆t1=ti+1−ti), the 

stress vector {σ}i is known, as well as the stress vector 

{σ}i−1 of the previous step. The stress increment vector for 

time step i is calculated with {∆σ}i={σ}i−{σ}i−1. For the first 

time step, {∆σ}i−1 is set to zero.  

The following algorithm is used for calculating 

equivalent nodal forces due to long-term effects:  

- For e=1… m (where m is the total number of finite 

elements in the concrete slab); 

- For g=1… p (where p is the total number of sampling 

points for all layers): 

1.  The shrinkage strain increment is in the current step 

given by: 

     
( , , ) ( , , 1) ( , , )sh sh shg e i g e i g e i

  
+

 = −  

2.  Total strain increment due to creep and shrinkage is 

then computed by: 

     * *

( , , )( , , ) ( , , )
1

(1 )
N

y

sh g e ig e i g e i
e 



  
−

=

 = − +   

     
1* *

( , , )( , , )( , , ) ( , , 1)
( )

y

g e ig e ig e i g e i
D e 

    
− −

−
 =  +   

where [Dμ]-1 is the compliance constitutive matrix evaluated 

with an elasticity modulus equal to Eμ υi+1/2/λμ with

(1 ) /
y

e y

 


= −  and /iy t  =  , where i+1/2 refers 

to the middle of the interval [ti, ti+1]. It can be noted that it is 

necessary to store only the viscous strain of the previous 

step, avoiding storing all the loading history. Note that the 

total strain increment can be evaluated before the solution 

of the time step begins. 

3.  Matrix [D]* is evaluated by:   
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2 2
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2 2
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−
= +  

 

 

with G=E*/2(1+v) and v is the coefficient of Poisson and β 

is the shear retention factor for cracked concrete. The 

normal stress perpendicular to the slab middle plane is 

disconsidered. 

4.  The equivalent element force vector is formed by 

summation of the contribution of each sampling point: 

       
=

=
p

g V

eiegieg

T

egie

e

dVDBR
1

),,(
**

),,(),(),(   

5.  The global force vector due to creep and shrinkage 

at time step i, {∆R}i, is assembled, considering the 

contribution of each load vector at the element level. 

 
 
3. Statistical bias indicators 
 

Various creep and shrinkage models are proposed in the 

technical literature to predict concrete long-term response 

with different number of input parameters as shown in 

Table 1. It is crucial to have the best estimate of deflections 

not only at the end of the analysis, but for the entirely stress 

history of the structure. To compare the accuracy of each 

model in relation to laboratory test data of ten steel-concrete 

composite beams, five statistic indicators are used. The 

advantages of each statistical indicator are best explained in 

the following sections, but they are weighted depending on 

the time interval at which more test data is available. 

Indeed, concrete creep and shrinkage have a more 

pronounced effect during the first months, and their effects 

decrease as time progresses. In this manner, it is expected 

that common measured data will be more grouped at early 

times.  

 

3.1 Normalized standard deviation for experimental 
points 

 
In a first approach, the standard deviation (SD) 

expressed in Eq. (8) is calculated at time stations where 

experimental data is available. To make all results 

dimensionless, a coefficient of relative difference, namely 

RDEXP, is introduced in Eq. (9).   

( )
2

1

n

i i

i

C O

SD
n

=

−

=


 
(8) 

Table 1 Parameters ranges of concrete creep and shrinkage models 

Input variables ACI 209 B3 CEB MC 90 CEB MC 99 GL2000 FIB2010 

fcm,28 (MPa) --- 17 to 70 20 to 90 15 to 120 16 to 82 20 to 130 

a/c --- 2.5 to 13.5 --- --- ---  

Cement content (kg/m3) 279 to 446 160 to 720 --- --- --- --- 

w/c --- 0.35 to 0.85 --- --- 0.40 to 0.60  

Relative humidity, % 40 to 100 40 to 100 40 to 100 40 to 100 20 to 100 40 to 100 

Type of cement (U.S.) I or III I,II,III I,II,III I,II,III I,II,III I,II,III 

tc (moist cured) ≥1 day ≥1 day <14 days <14 days ≥1 day <14 days 

tc (steam cured) 1 to 3 days --- --- --- ---  

to (age at loading) ≥7 day to ≥tc >1 day >1 day to ≥ tc ≥1 day >1 day 

Temperature (oC) --- --- 5 to 30 10 to 30 --- 5 to 30 
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=

=
n

i

iEXP RD
n

RD
1

2.
1  (9) 

( )

i

ii
i

O

OC
RD

−
=  (10) 

where n is the number of observed points, iO and iC are the i-

th measured and i-th predicted value of the variable in 

question (i.e., deflections), and RDi is the normalized 

difference between these two points. One problem with 

conventional statistical indicators is the increasing 

divergence and scatter, so for common techniques such 

linear regression or percent deviation, the weighting of the 

later data could be greater than that of the earlier data or 

viceversa, therefore these techniques may not be adequate 

to uniquely distinguish between models. In an attempt to 

minimize this bias, a second approach, namely RD100p, is 

employed. This consists in defining points equally spaced at 

even time intervals in Eq. (9). e.g., n=100. Thereafter, a 

linear interpolation technique is applied to determine new 

“experimental” points, which are in charge of suppressing 

part of the scatter data. However, an inherent error is 

unavoidably introduced due to data manipulation. Thus, 

these coefficients are only taken as a reference because they 

are not a good measure of dispersion. 

 

3.2 The BP coefficient of variation ωBP 
 

A coefficient of variation BP (Bazant and Panula 1978) 

is determined for each data set, which is defined as the 

group of points contained in each logarithmic decade, 0 to 

9.9 days, 10 to 99.9 days, and so on. A weight is then 

assigned to each point based on the decade it belongs to and 

number of points contained in that decade. The coefficient 

of variation for all data sets is the root mean square of the 

data set values as stated in Eq. (11). 


=

=
N

j

jBP
N 1

21
  (11) 
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=

−
−

=
n

i

ijijij

j

j OC
nO 1

2
.

1

11
  (12) 


=

=
n

i

ijij

w

j O
n

O
1

1
  (13) 

kd

ij
nn

n
=  (14) 

where n is the number of data points in data set number j, nw is 
the sum of the weights of all data points in a data set, kn is the 

number of data points in the k-th decade, nd is the number of 

decades on the logarithmic scale spanned by measured data in 

data set j, N is the number of data sets, Oij and Cij are the 

measured and predicted values of deflection, respectively, for 

the i-th data point in data set number j, ωij is the weight 

attributed to the i-th data point in data set number j, ωj is the 

coefficient of variation for data set number j and ωBP is the 

overall coefficient of variation. The weight assigned to a data 

point in a decade on the logarithm scale is taken as inversely 

proportional to the number of data points, nk in that decade. 

The weights are normalized such that their sum equals to 1.0.    

 

3.3 CEB Statistical indicators: VCEB, FCEB and MCEB 
 

The CEB statistical indicators are the coefficient of 

variation VCEB, the mean square error FCEB and the mean 

deviation MCEB (Muller and Hilsforf 1990). These three 

indicators are evaluated in six time ranges of 0 to 10 days, 

11 to 100 days, 101 to 365 days, 366 to 730 days, 731 to 

1095 days, and above 1095 days. The final values are the 

root mean square of the six internal values. The CEB 

coefficient of variation is calculated with the following 

expression 


=

=
N
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jCEB V
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21
 (15) 
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=
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1
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where n is the number of data points in interval j, N is the total 

number of data sets considered, and Vj is the coefficient of 

variation in interval j. Otherwise, the CEB mean square error is 

determined with the following expressions: 
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where fi is the percentage difference between calculated and 

observed data point i and Fj is the mean square error in interval 

j. Finally, the CEB mean deviation indicates systematic 

overestimation or underestimation of a given model with the 

following expression 
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where Mj is the ratio of calculated to experimental values in 

time range j. Other variables not mentioned above have the 

same meaning as in the previous sections.     

 

3.4 The Gardner coefficient of variation ωG  
 

A not common definition of coefficient of variation is 

proposed by Gardner (2004), the mean observed value and the 

root mean square of the difference between calculated and 
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observed values are calculated in half logarithmic time 

intervals: 3 to 9.9 days, 10 to 31.5 days, 31.6 to 99 days, 100 to 

315 days, 316 to 999 days, 1000 to 3159 days, and above 3160 

days. The duration of each time interval is 3.16 times the 

previous one. To obtain a criterion of fit, the average values 

and root mean squares are averaged without regard to the 

number of observations in each half-decade. Then, the 

coefficient of variation is obtained by dividing the average root 

mean square normalized by the average value. 

O
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For all aforementioned indicators, a perfect correlation 

means 0%, while this is 1.0 for the MCEB indicator. That is, 

values greater and less than 1.0 indicate overestimation and 

underestimation, respectively. 

 
 
4. Numerical applications  
 

Environmental conditions such as temperature and relative 

humidity at which experimental tests were performed are not 

reported in six of the ten beams studied here (section 4.1 and 

4.2), but creep and shrinkage strain evolutions, which were 

obtained by means of separated cylindrical specimens, are 

available or at least the ultimate values are given. In these 

cases, a curve fitting or adjusting procedure is used, i.e. mean 

values for the environmental humidity, temperature, and 

cement type of the mix are initially adopted based on the 

recommendations given in Table 1. If the ultimate shrinkage is 

not achieved with this initial data set, another set of parameters 

is chosen and the procedure is repeated until finally achieve the 

given ultimate shrinkage strain. Meanwhile, the construction 

sequences, curing time and external loads are kept constant in 

all simulations. Emphasis is given to the shrinkage calibration 

because it has a major effect in the evaluation of deflections in 

relation to creep for the studied examples (Gilbert et al. 2012, 

Gilbert and Bradford 1995, Jiang et al. 2009, Wang et al. 2011, 

Jurkiewiez et al. 2005). Only the composite beams tested by 

Fan et al. (2010) in section 4.3 have all environmental data 

available. Then, a non-calibrated analysis with the current 

environmental data is additionally realized for these beams. A 

detail description of the adopted material properties can be 

found in the work of Moreno (2016). 

According to the experimental reports, all tested beams are 

propped after casting of the slab, and they remain in this 

situation up to the age of loading, after which the props were 

moved and the composite beam allowed deforming due to  

 

Fig. 5 Geometry and cross-section of beams B1,B2,B3 and 

B4 

 

 

shrinkage and external load. Also, the use of wet curing and 

testing at early age minimizes early shrinkage effects at this 

pre-loading stage (Bischoff 2001, Bradford 1997). Thus, the 

effect of shrinkage, up to the time of the props are present, 

would be negligible. Therefore, for the numerical simulations 

the time-history analysis commences at the age of loading, in 

which creep, shrinkage and cracking commence to act together 

over the composite section. In section 4.4, a parametric study is 

carried out to assess the effect of tension stiffening by means of 

the ultimate tensile strain, relative humidity and temperature on 

the computed long-term displacements. Finally in section 4.5, a 

practical example of a girder bridge is presented by using 

unpropped construction and considering a pre-loading stage 

(Kaklauskas et al. 2009). 

 
4.1 Simply supported steel-concrete composite 

beams tested by Bradford and Gilbert (1991) 
 

Four simply supported steel-concrete composite beams, 

namely B1, B2, B3 and B4, were tested by Bradford and 

Gilbert (1991) under sustained uniform vertical loads. All 

beam specimens are subjected to their self-weight (1.92 

kN/m), but beams B1 and B3 carried out an additional load 

of 7.52 kN/m. The loads are applied at 10 days after 

concrete casting and thereafter they are sustained for a 

period of 250 days. In Fig. 5 are depicted the geometry and 

cross sections of the beams, where pairs of connectors are 

welded to the top flange at 200 mm and 600 mm intervals 

for beams B1, B2 and B3, B4, respectively. The concrete 

compressive strength is 31 MPa, the ultimate shrinkage 

strain reported in the experimental work is 415×10-6 and the 

creep coefficient at the end of the analysis is 2.60. Other 

data sets related to environmental conditions during the test 

are not informed, and then typical values are assumed (see  
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Fig. 6 Curve fitting for ultimate shrinkage strain 

 

Table 2 Statistical indicator for deflection at mid-span in 

beam B1 

Model 
RDEXP 

(%) 

RD100p 

(%) 

ωBP 

(%) 

VCEB 

(%) 

FCEB 

(%) 
MCEB 

ωG 

(%) 

ACI 209 3.90 3.88 4.05 4.54 5.38 1.02 5.50 

Bazant B3 4.56 4.30 4.75 5.33 6.77 1.02 6.76 

GL2000 5.51 4.36 6.20 7.25 8.65 1.05 8.31 

CEB MC90 4.35 3.70 4.60 5.31 6.54 1.03 6.44 

CEB MC99 4.98 4.33 5.19 5.92 7.38 1.03 7.38 

FIB 2010 5.34 4.76 5.50 6.19 7.70 1.02 7.82 

 

Table 3 Statistical indicator for deflection at mid-span in 

beam B3 

Model 
RDEXP 

(%) 

RD100p 

(%) 

ωBP 

(%) 

VCEB 

(%) 

FCEB 

(%) 
MCEB 

ωG 

(%) 

ACI 209 5.68 4.99 9.06 6.27 6.60 1.09 6.62 

Bazant B3 5.71 4.92 9.54 6.39 7.02 1.10 7.14 

GL2000 8.39 7.51 11.23 8.84 9.53 1.12 10.09 

CEB MC90 6.43 5.75 9.10 7.00 7.55 1.09 7.88 

CEB MC99 6.19 5.33 9.16 7.11 7.80 1.09 7.97 

FIB 2010 6.07 5.13 9.16 7.12 7.87 1.09 8.00 

 

 

Table 1). As commented before, the relative humidity and 

temperature values are defined according to each 

rheological concrete model in order to match the ultimate 

shrinkage strain as depicted in Fig. 6. The slab is reinforced 

with a steel mesh F62, which is comprised of 6mm 

longitudinal and cross bars at 200 mm intervals. 

The abnormal behavior between 20 and 120 days given 

in Fig. 6 can be attributed to excessively humid conditions 

during the experiment, for which the numerical results are 

not able to capture due to the use of mean values for the 

environmental humidity and temperature. As it is expected, 

only the given ultimate shrinkage strain is attained for all 

models by the fitting procedure. In Figs. 7 and 8 are shown 

the deflection history at mid-span for beams B1, B2 and B3, 

B4, respectively, for all studied creep and shrinkage models. 

The obtained results are also compared with the 

experimental data and other published results (Wang et al. 

2010, Jurkiewiez et al. 2005 and Giussani and Mola 2010). 

As it may be observed, good agreement is found for beams 

B1 and B3, whereas a more significance discrepancy is 

distinguished for beams B2 and B4, which are subjected to 

their self-weight only. This mismatch, which may be 

Table 4 Statistical indicator for deflection at mid-span in 

beam B2 

Model 
RDEXP 

(%) 

RD100p 

(%) 

ωBP 

(%) 

VCEB 

(%) 

FCEB 

(%) 
MCEB 

ωG 

(%) 

ACI 209 15.15 16.04 19.14 12.76 13.38 0.80 15.23 

Bazant B3 17.07 18.17 21.74 14.92 14.68 0.78 16.27 

GL2000 16.11 17.62 21.55 14.50 14.14 0.79 15.11 

CEB MC90 17.39 18.59 22.40 15.24 14.96 0.78 16.43 

CEB MC99 15.11 16.81 21.02 13.87 13.44 0.79 13.97 

FIB 2010 15.23 16.92 21.15 13.98 13.55 0.79 14.08 

 

Table 5 Statistical indicator for deflection at mid-span in 

beam B4 

Model 
RDEXP 

(%) 

RD100p 

(%) 

ωBP 

(%) 

VCEB 

(%) 

FCEB 

(%) 
MCEB 

ωG 

(%) 

ACI 209 20.50 18.85 24.57 16.83 17.92 0.73 19.61 

Bazant B3 21.07 20.95 26.35 18.16 17.92 0.73 19.94 

GL2000 20.14 20.43 26.23 17.70 17.32 0.74 18.99 

CEB MC90 21.37 21.32 27.00 18.44 18.17 0.73 20.15 

CEB MC99 19.10 19.69 25.73 16.94 16.34 0.74 17.67 

FIB 2010 19.16 19.81 25.84 17.05 16.41 0.74 17.74 

 

 

considered negligible in practical terms, e.g., 3 mm for the 

ultimate deflection value, is also corroborated by the results 

published in the quoted references. Statistical bias 

indicators are presented in Tables 2 and 3 for beams B1 and 

B3, respectively. The statistical indicators represent 

different quantities, and comparisons can only be made 

across a column, but they cannot be made between columns 

in tables. In general the coefficients of variations are less 

than 10% and around 1.0 for the MCEB. As a reference, there 

exists a recommendation provided by the ACI committee 

209 (2008), which is intended for shrinkage strains in 

concrete specimens, but not for deflections. There, values 

below 15% and around 20% are considered to be excellent 

and adequate, respectively. In Tables 4 and 5 are shown the 

results for beams B2 and B4, respectively. In sum up, the 

lower percentage differences, i.e., best results are obtained 

for the ACI model for beams B1, B2, B3 and for the CEB 

MC 99 and ACI models in the case of beam B4. The 

associated coefficients of variations for beams B2 and B4 

vary between 12.76% and 27.0%, whereas they are below 

10% for beams B1 and B3. In general, the FIB 2010 model 

accompanies the CEB MC99. It is important to mention that 

RDEXP and RD100p coefficients are merely displayed as 

reference values because they do not necessarily represent a 

good measure of dispersion. The best model is appointed 

based on the partial results at each column of each table. 

That is, a candidate model is selected with the lowest 

percentage value for the ωBP, VCEB, FCEB and ωG indicators 

or with the closest value to 1.0 in the case of MCEB. Then, 

the model that better succeed more times is distinguished as 

the best. 

 

4.2 Continuous steel-concrete composite beams 
tested by Gilbert and Bradford (1995) 
 

Two-span steel-concrete continuous beams, namely B1 

and B2, were tested by Gilbert and Bradford (1995) for a  
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period of 340 days. Both beams are identical except in the 

applied load level, details of which are depicted in Fig 9. 

Beam B1 only supports its own weight (1.92 kN/m), while 

beam B2 support an additional live load of 4.75 kN/m (6.67 

kN/m in total). No arrangement of connectors is given in 

the experimental report, then shear connectors are designed 

to be 9 mm in diameter, 50 mm in height, and located in 

pairs at even intervals of 145 mm (Jiang et al. 2009). The 

age of loading and curing time are adopted as 7 days after 

concrete casting (Chaudharya et al. 2007). The ultimate 

shrinkage strain and creep coefficient are 520×10-6 and 

1.68, respectively. Other data set about environmental 

conditions are not reported, so the aforementioned fitting 

approach is applied. Concrete compressive strength is 27 

MPa. The reinforcement layout in the slab is not indicated 

in the original reference, only a total longitudinal steel area 

of 113 mm2 is reported. 

 

 

In Fig. 10 are shown the mid-span deflection versus 

time curves for beams B1 and B2. As it may be observed, 

the ultimate deflection is slightly overestimated (0.5 mm) 

for beam B2, whilst it is nearly equal to the experimental 

value for beam B1. In contrast, a significance difference is 

encountered for deflection values between 50 and 150 days. 

Moreover, cracking depends upon each rheological concrete 

model and can be identified by nearly vertical jumps in the 

curves. These abrupt changes of slope in the numerical 

curves are due to cracking that progressively occurs at 

certain time steps in layers of concrete elements. In Tables 6 

and 7 are listed the corresponding coefficient of variations 

for beams B1 and B2, respectively. The best results are 

obtained for the B3 and CEB MC 99 models for beam B1, 

whereas they are the CEB MC 90, FIB2010 and B3 models 

for beam B2. Conversely, it is interesting to note that the B3 

model would be one of the worst models according to  

  
(a) ACI 209 model (b)  Bazant B3 model 

  
(c) GL2000 model (d)  CEB-MC90 model 

  
(e) CEB-MC99 model (f) FIB-2010 model 

Fig. 7 Theoretical and experimental mid-span long-term deflection for beams B1/B2 

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250

D
ef

le
ct

io
n 

(c
m

)

Time (days)

B1 B2
ACI 209 Jurkiewiez et al.
Wang et al. Giussani e Mola

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250

D
ef

le
ct

io
n 

(c
m

)

Time (days)

B1 B2

Bazant B3 Jurkiewiez et al.

Wang et al. Giussani e Mola

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250

D
ef

le
ct

io
n 

(c
m

)

Time (days)

B1 B2
GL2000 Jurkiewiez et al.
Wang et al. Giussani e Mola

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250

D
ef

le
ct

io
n 

(c
m

)

Time (days)

B1 B2

CEB MC90 Jurkiewiez et al.

Wang et al. Giussani e Mola

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250

D
ef

le
ct

io
n 

(c
m

)

Time (days)

B1 B2
CEB MC99 Jurkiewiez et al.
Wang et al. Giussani e Mola

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250

D
ef

le
ct

io
n 

(c
m

)

Time (days)

B1 B2
FIB 2010 Wang et al.
Giussani e Mola Jurkiewiez et al.

387



 

Julian A. Moreno, Jorge L.P. Tamayo, Inácio B. Morsch, Marcela P. Miranda and Lucas H. Reginato 

 

 

Table 6 Statistical indicator for deflection at mid-span in 

continuous beam B1 

Model 
RDEXP 

(%) 

RD100p 

(%) 

ωBP 

(%) 

VCEB 

(%) 

FCEB 

(%) 
MCEB 

ωG 

(%) 

ACI 209 19.65 14.92 24.97 35.98 36.25 0.90 18.27 

Bazant B3 14.09 6.43 17.77 32.33 32.58 0.81 12.18 

GL2000 15.08 12.84 25.11 34.67 34.72 0.76 15.69 

CEB MC90 18.58 23.67 30.24 37.50 37.26 0.73 18.67 

CEB MC99 14.65 12.23 22.34 34.68 34.93 0.77 14.37 

FIB 2010 14.92 12.19 22.47 34.75 35.01 0.77 14.55 

 

 

RDEXP indicator for beam B2. This is because the quoted 

coefficient is not able to deal with sparse data. 

 

4.3 Steel-concrete composite beams tested by Fan et 
al. (2010) 

 

Table 7 Statistical indicator for deflection at mid-span in 

continuous beam B2 

Model 
RDEXP 

(%) 

RD100p 

(%) 

ωBP 

(%) 

VCEB 

(%) 

FCEB 

(%) 
MCEB 

ωG 

(%) 

ACI 209 13.69 14.25 16.38 17.36 17.12 1.10 12.63 

Bazant B3 9.35 11.22 12.61 12.97 12.91 1.06 9.29 

GL2000 7.87 10.98 12.84 13.24 13.13 1.08 8.96 

CEB MC90 8.01 9.38 11.48 11.91 11.84 1.06 8.45 

CEB MC99 8.56 10.89 12.67 13.17 13.02 1.08 9.13 

FIB 2010 7.91 10.29 12.14 12.57 12.46 1.07 8.70 

 

 

In Fan et al. (2010) four steel-concrete composite beams 

subjected to positive and negative moments are tested under 

sustained load for a period of three years (1085 days). Two 

of them, namely LCB1 and LCB2, are cast with concrete 

grade C20 and C30, respectively, and subjected to positive  

  
(a) ACI 209 model (b) Bazant B3 model 

  

(c) GL 2000 model (d) CEB-MC90 model 

  
(e) CEB-MC99 model (f) FIB 2010 model 

Fig. 8 Theoretical and experimental mid-span long-term deflection for beams B3/B4 
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bending moments, while the other two, namely LCB3 and 

LCB4, have different steel ratios, concrete grade C30 and 

subjected to negative bending moments. A sketch of the 

cross section and beam geometry is shown in Figs. 11-12. 

The welded shear studs are 10 mm in diameter and 45 mm 

 

 

 

in height, and they are spaced at even intervals of 150 mm 

for beam LCB3 and 80 mm for the other three. Simply 

supported beams LCB1 and LCB2 are submitted to a 

distributed uniform load of 7.29 kN/m including self-

weight, whereas beams LCB3 and LCB4, with an interior  

 
Fig. 9 Geometry and cross-section of continuous beams B1 and B2 

  
(a) ACI 209 model (b) Bazant B3 model 

  
(c) GL 2000 model (d) CEB-MC90 model 

  
(e) CEB-MC99 model (f) FIB 2010 model 

Fig. 10 Theoretical and experimental mid-span long-term deflection for continuous beams B1/B2 
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(a) Temperature 

 
(b) Relative humidity 

Fig. 13 Test environmental conditions in time 

 

 

span and two cantilevers, are submitted to point loads of 

2.02 kN at their free ends and to a distributed load of 3.0 

kN/m at the cantilever spans. These applied loads generate 

 

 

 

negative flexure at the interior span and continuity of 

flexural moments at the supports, similar to those 

encountered in a practical bridge structure. 

The ages of loading and curing time of the specimen 

beams are 7 days. Environmental conditions measured 

during the test are depicted in Fig. 13. In a first approach, as 

in the previous examples, the ultimate shrinkage strain is 

attained by a fitting procedure, while in a second approach 

current environmental quantities as depicted in Fig. 13 are 

employed in the numerical computations. Free-shrinkage 

strains at three parallepiped specimens were measured in 

the lab under the same environmental conditions of the 

specimen beams, and their average values are displayed in 

Figs. 14-15. Also, in the same figures are depicted the 

prediction of free shrinkage strains using the two 

aforementioned approaches for concrete grades C20 and 

C30. As it may be observed, the ultimate shrinkage strain is 

clearly attained in Fig. 14 as requested. In contrast, only the 

GL2000 model reaches spontaneously the experimental 

ultimate shrinkage strain in Fig. 15(a), while in other cases, 

shrinkage strains are clearly underestimated mainly for 

concrete grade C30 as shown in Fig. 15(b). 

In Fig. 16 are depicted the time-history evolution of 

deflections at some monitoring points, e.g., mid- and 

quarter-span for beams LCB1, LCB2 and free ends for 

beams LCB3 and LCB4. The results correspond to the case 

of adjusted ultimate shrinkage strain. As it may be 

observed, the predicted deflections do not oscillate with 

time and they are in general overestimated. In Fig. 17 are 

depicted the same results, but with current environmental 

conditions. As it may be observed, predicted values are in  
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Fig. 11 Geometry and cross-section of beams LCB1 and LCB2 

 
Fig. 12 Geometry and cross-section of beams LCB3 and LCB4 
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(a) C20 Concrete 

 
(b) C30 Concrete 

Fig. 14 Free-shrinkage strain: adjusted ultimate shrinkage 

strain for rheological models 

 

 
(a) C20 Concrete 

 
(b) C30 Concrete 

Fig. 15 Free-shrinkage strain: variable environmental 

conditions for rheological models 

Table 8 Statistical indicator for deflection at mid-span in 

continuous beam LCB1 

Model 
RDEXP 

(%) 

RD100p 

(%) 

ωBP 

(%) 

VCEB 

(%) 

FCEB 

(%) 
MCEB 

ωG 

(%) 

Adjusted shrinkage 

ACI 209 11.56 11.59 18.99 33.70 37.89 0.96 16.76 

B3 9.59 10.03 17.52 32.33 36.78 0.97 14.48 

GL2000 9.58 10.06 17.81 32.38 36.87 0.98 14.56 

CEB MC90 8.97 9.20 17.66 32.70 37.16 0.96 14.69 

CEB MC99 9.18 9.68 17.71 32.52 37.05 0.97 14.40 

FIB 2010 10.04 11.74 18.64 32.65 37.10 1.00 15.85 

Variable conditions 

ACI 209 8.92 5.84 17.30 33.09 37.32 0.89 14.76 

Bazant B3 13.54 13.78 21.65 33.89 38.08 0.98 20.93 

GL2000 11.53 10.58 19.41 32.96 37.34 0.95 18.21 

CEB MC90 11.27 7.51 18.00 33.60 37.86 0.84 15.75 

CEB MC99 8.57 5.81 16.87 32.53 37.00 0.88 13.84 

FIB 2010 7.04 4.89 15.97 31.58 36.12 0.91 12.19 

 

Table 9 Statistical indicator for deflection at mid-span in 

continuous beam LCB2 

Model 
RDEXP 

(%) 

RD100p 

(%) 

ωBP 

(%) 

VCEB 

(%) 

FCEB 

(%) 
MCEB 

ωG 

(%) 

Adjusted shrinkage 

ACI 209 18.18 19.40 20.33 23.79 24.99 1.07 19.81 

Bazant B3 19.20 20.11 20.35 23.67 24.90 1.10 21.15 

GL2000 15.97 16.44 17.93 21.59 23.05 1.08 18.21 

CEB MC90 15.33 16.39 18.00 21.62 23.08 1.06 17.25 

CEB MC99 15.65 16.70 18.19 21.75 23.21 1.07 17.73 

FIB 2010 17.15 18.31 19.29 22.31 23.67 1.09 19.37 

Variable conditions 

ACI 209 8.18 5.61 12.42 18.19 19.69 0.94 10.38 

Bazant B3 8.99 7.12 12.26 17.48 19.07 0.96 11.09 

GL2000 8.69 6.57 12.30 17.55 19.21 0.95 10.95 

CEB MC90 14.14 11.59 15.35 20.78 22.14 0.85 15.57 

CEB MC99 8.56 5.93 11.92 17.83 19.47 0.90 9.62 

FIB 2010 9.54 8.56 13.19 17.61 19.20 1.00 12.85 

 

 

close agreement with experimental values for beams LCB1 

and LCB2 and the numerical solution is able to reproduce 

the oscillation pattern of the data. In case of beams LCB3 

and LCB4, the oscillation is also captured, but the results 

are considerably more disperse and differentiated. In most 

situations, the predicted results are on the safe side. 

  In Tables 8-11 are listed the statistical indicators for both 

approaches. In the fitted case, the best result is obtained for 

the B3 model for beam LCB1, meanwhile the GL2000 

model excels for the other three beams. For variable 

environmental conditions, the FIB 2010 outperforms the 

others for beam LCB1, while CEB MC 99 better behaves in 

the case of beam LCB3. Otherwise, models B3 and CEB 

MC 90 better performance for beams LCB2 and LCB4, 

respectively.   

 

4.4 Effect of ultimate tensile strain, environmental 
humidity and temperature 

 

In this section, the ultimate tensile concrete strain 𝜀𝑡𝑢, 
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Table 10 Statistical indicator for deflection at free end of 

continuous beam LCB3 

Model 
RDEXP 

(%) 

RD100p 

(%) 

ωBP 

(%) 

VCEB 

(%) 

FCEB 

(%) 
MCEB 

ωG 

(%) 

Adjusted shrinkage 

ACI 209 27.37 22.37 27.01 31.61 32.57 1.09 32.15 

Bazant B3 16.08 10.54 25.17 29.85 28.72 0.90 26.57 

GL2000 14.57 9.18 24.42 28.18 27.42 0.86 24.71 

CEB MC90 17.07 12.91 25.06 29.07 28.12 0.92 26.59 

CEB MC99 23.57 17.40 27.90 32.66 31.61 1.01 31.57 

FIB 2010 22.17 15.74 25.92 30.40 29.59 1.00 28.71 

Variable conditions 

ACI 209 56.38 62.08 55.08 58.13 59.24 1.34 59.40 

Bazant B3 54.02 58.52 52.64 56.55 57.19 1.27 58.81 

GL2000 32.64 28.12 30.51 37.67 38.33 0.90 36.57 

CEB MC90 29.46 29.20 32.68 34.88 35.06 0.75 36.39 

CEB MC99 28.07 23.44 28.71 34.64 35.47 0.88 36.97 

FIB 2010 30.88 25.94 30.77 37.14 36.56 1.05 36.91 

 

 

which can be considered a measure of tension stiffening, is 

varied to assess its effects on the long-term displacements 

of composite beams B1 and LCB3 from section 4.2 and 4.3, 

respectively, by using the FIB 2010 model. Although 

cracking is possible in simply supported composite beams, 

these beams are preferred because they are subjected to 

negative flexure. Ultimate tensile strains are mainly 

expressed in the range of 10 to 1000 times the cracking 

strain 𝜀𝑐𝑟 as shown in Figs. 18(a), (b) for the long-term 

displacement evolutions of beams B1 and LCB3, 

respectively. It can be seen that values between (20 − 

 

Table 11 Statistical indicator for deflection at free end of 

continuous beam LCB4 

Model 
RDEXP 

(%) 

RD100p 

(%) 

ωBP 

(%) 

VCEB 

(%) 

FCEB 

(%) 
MCEB 

ωG 

(%) 

Adjusted shrinkage 

ACI 209 33.30 28.59 38.43 37.89 46.97 1.17 39.76 

Bazant B3 25.59 20.50 35.13 34.13 38.11 1.04 34.79 

GL2000 22.68 18.66 34.54 31.85 34.45 1.01 32.72 

CEB MC90 24.01 19.87 35.33 32.98 35.81 1.03 34.26 

CEB MC99 29.77 24.80 38.12 37.77 42.17 1.09 40.31 

FIB 2010 28.29 23.63 35.99 35.24 40.75 1.09 37.43 

Variable conditions 

ACI 209 74.06 76.56 62.39 71.12 77.77 1.50 69.93 

Bazant B3 74.94 76.59 61.42 72.17 78.65 1.48 70.52 

GL2000 40.62 39.88 41.98 47.04 50.37 1.21 45.05 

CEB MC90 26.47 20.97 34.70 33.74 35.75 1.03 30.82 

CEB MC99 34.14 32.51 39.43 41.01 44.35 1.15 41.80 

FIB 2010 29.88 23.90 36.84 38.90 42.37 1.12 38.91 

 

 

30) 𝜀𝑐𝑟 acceptable match the experimental response. The 

particular case for 𝜀𝑡𝑢=1.5𝜀𝑐𝑟  can be understood as the 

case in which tension stiffening is ignored, while 𝜀𝑡𝑢= 

1000𝜀𝑐𝑟 means that the beam behaves like a beam with an 

uncracked slab. Thus, the way in which tension stiffening is 

included in the model significantly affects the response. A 

value of 𝜀𝑡𝑢 =10 𝜀𝑐𝑟  excessively overestimates the 

deflection for beam LCB3. 
In Fig. 18(c)-(d) is depicted the effect of the 

environmental humidity and temperature on the mid-span 

deflection of beam B1 for a fixed value of 𝜀𝑡𝑢 = 25𝜀𝑐𝑟. A  

  
(a) LCB1 beam (b) LCB2 beam 

  
(c) LCB3 beam (d) LCB4 beam 

Fig. 16 Experimental values and numerical deflections with adjusted shrinkage. 
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coefficient of variation of 10% has been employed for the 

mean relative humidity of 55% in Fig. 18(c). As the 

environmental humidity increases the long-term deflection 

 

 

decreases because the shrinkage strain is reduced, e.g., the 

slab does not crack for a relative humidity of 60%. 

Conversely, in Fig. 18(d) the deflection slightly increases  

  
(a) LCB1 beam (b) LCB2 beam 

  
(c) LCB3 beam (d) LCB4 beam 

Fig. 17 Experimental values and numerical deflections with variable environmental conditions 

  
(a) Effect of ultimate tensile strain (beam B1) (b) Effect of ultimate tensile strain (beam LCB3) 

  
(c) Effect of environmental humidity (beam B1) (d) Effect of temperature (beam B1) 

Fig. 18 Mid-span and cantilever end displacements for beams B1 and LCB3. 
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with temperature because the drying shrinkage is increased 

as the temperature is raised. The increasing of temperature 

generally reduces the amount of water which can be stored 

in the pore volume of the cement paste, resulting in the 

increase of drying shrinkage. Also, as the shrinkage 

increases, the slab cracks earlier as shown by the nearly 

vertical jump of curve with temperature of 28º.     

 

4.5 Girder bridge studied by Macorini et al. (2006) 
 

The proposed numerical model is used to investigate the 

composite beam studied by Macorini et al. (2006) subjected 

to long-term loading. The structure is a 25 m single span 

girder beam with fixed ends, representing an intermediate 

span of a continuous girder bridge. The geometric 

characteristic of the composite section are depicted in Fig. 

19. The cylindrical compressive strength and the mean 

value of the tensile concrete strength are 35 MPa and 3.05 

MPa, respectively. The relative humidity at which the 

structure is exposed is 75% with a notional member size of 

193.5 mm. The connection system is considered to have a 

 

 

 

shear stiffness per unit length of 3.0 kN/mm2, whereas the 

steel beam and the reinforcing bars have an elastic Young’s 

modulus of 210000 MPa. Creep and shrinkage are 

evaluated according to the FIB 2010 model code, assuming 

that rheological phenomena begin from time of concrete 

hardening. This time is assumed to start 1 day after concrete 

casting, therefore it corresponds to the beginning of the 

time-history analysis. Thereafter, an external load (100 

kN/m) is applied at 28 days and held constant afterwards for 

25550 days (70 years). As generally occurs in bridges, 

unpropped construction is used.  

Since the real concrete composition is unknown, the 

composition parameters are obtained based on a virtual mix 

design that will achieve the given concrete strength. Once 

these parameters are determined, the creep and shrinkage 

functions are defined for each rheological model. The 

displacement history at mid-span is depicted in Fig. 20(a), 

where the pre-loading stage in which shrinkage acts alone 

does not generate any meaningful displacement in the 

unpropped girder. The maximum and minimum long-term 

displacements after 25550 days are 0.97cm and 0.89 cm for 

 
Fig. 19 Geometry of the composite girder (Macorini et al. 2006) 

  
(a)  Displacement at mid-span (b)  Stress distribution at mid-span 

  
(c)  Stress distribution at fixed end (d)Stress distribution in (c) immediately after 28 days 

Fig. 20 History of displacement and stress distribution at the middle fiber of concrete slab 
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the CEB MC99 and ACI models, respectively. Nevertheless, 

retrained shrinkage induces stresses at the middle fiber of 

the concrete slab at the mid-span and fixed end as shown in 

Figs. 20(b)-(c), respectively. These initial tensile stresses 

named “curve 28 d. before”, which stands for 28 days 

before load, are uniform across the dimensionless slab 

width at both sections with an approximately value of 1.0 

MPa. This value almost represents one-third of the concrete 

tensile strength at 28 days (3.05 MPa). Then, it is expected 

that cracking will take place as soon as the external load is 

applied at 28 days. In Fig. 20(d) is shown the effect of the 

cracking strain on the stress distribution at the fixed end, 

immediately after the external load is applied at 28 days 

(curve 28 d. (after)). 

As it may be observed, a value of 𝜀𝑡𝑢= 1000𝜀𝑐𝑟 better 

matches Macorini et al.’s stress distribution, but a value of 

𝜀𝑡𝑢=30𝜀𝑐𝑟 can be also used. It is important to mention that 

the results of the quoted work should be only taken as a 

reference and not as target. It can be inferred that the 

present stress distributions also illustrates the shear-lag 

variation with time.  

 

 
5. Conclusions  
 

In this work, the long-term deflection histories of ten 

steel-concrete composite beams with experimental results 

are analyzed via statistical bias indicators for some classical 

rheological models (ACI, CEB90, CEB99, B3, GL2000, 

and FIB2010). It can be stated that the ACI model better 

performance in case of the simply supported beams of 

section 4.1, but it does not perform well for other examples. 

For the two continuous composite beams of section 4.2, the 

B3 model outperforms the other models in average terms. 

Meanwhile, the GL2000 model better behave for the 

examples with negative and positive flexure of section 4.3 

for the case of fitted ultimate shrinkage strain. However, 

when current variable environmental conditions are 

introduced, there is not a unique model that stands outs. The 

“best” rheological model in a given example does not 

necessarily imply that it succeeded in all statistical indicator 

values. Based on these findings, the following conclusions 

can be drawn. 

• The statistical indicators ωBP, VCEB, FCEB and ωB better 

characterized the long-term prediction of deflections, 

allowing trace meaningful differences among all 

evaluated creep and shrinkage models. Conversely, the 

use of the MCEB indicator hardly permits to distinguish 

between model performances. 

• Input values for each concrete model, e.g., relative 

humidity, temperature and cement type, have been taken 

in order that the predicted shrinkage strain at ultimate 

time be nearly equal to the measure one, giving origin to 

the already mentioned fitting or adjusting procedure. 

Matching this parameter greatly reduces the dispersion 

between numerical and experimental results as shown 

for beams of section 4.3. In case of beams of section 4.1 

and 4.2, this would be the natural approach because no 

information about environmental conditions and 

concrete mix components are provided. Even if the 

shrinkage evolution curve is available as occurs for 

beams of section 4.2, it cannot be strictly reproduced 

due to lack of other data. It is believed that the predicted 

deflections can be improved and corresponding 

statistical bias indicators, if the shrinkage strain could be 

adjusted at various points along time and not only at the 

end. However, this will further complicate the analysis 

because an assumed time-history for environmental 

conditions must be considered. To simplify the problem, 

nearly constant relative humidity and temperature are 

mainly used herein.        

• Another key parameter that significantly influences the 

long-term predictions is the ultimate tensile strain. This 

parameter is problem dependent, but values in the range 

of 𝜀𝑡𝑢 ≅ (20 − 30)𝜀𝑐𝑟 , where 𝜀𝑡𝑢  and 𝜀𝑐𝑟 are the 

ultimate tensile and cracking strains, respectively, are 

found to yield acceptable results with the current tension 

stiffening model. Lower values will characterize 

excessive cracking in the slab, early interrupting the 

numerical convergence of the FE model. Otherwise, 

greater values could not capture the nearly vertical 

jumps exhibit in the experimental time history curves 

for negative flexure as substantiated in section 4.4. 

• The highest errors committed in the prediction of the 

ultimate long-term deflection at mid-span in relation to 

the experimental one are: -2.6% (FIB 2010) and 3.4% 

(GL2000), respectively, for beams B1 and B3 of section 

4.1. These errors are substantially increased up to -

19.9% and -22.6% for beams B2 and B4 (CEB MC90), 

respectively. For the continuous beams of section 4.2, 

the associated maximum errors are 6.4% and 10.8% for 

beams B1 and B2, respectively (ACI 209 model). 

Moreover, the maximum errors associated to mid-span 

deflections of beams LCB1, LCB2, and cantilever end 

displacements of beams LCB3 and LCB4 of section 4.3 

are 14% (FIB2010), 20.2% (ACI 209), 8.3% (ACI 209) 

and 12.9% (ACI 209), respectively. It is thus noted that 

even by adjusting the ultimate shrinkage strain; the error 

can be significant in some cases. 

• Increasing the relative humidity and decreasing the 

ambient temperature can lead to a substantial reduction 

of slab cracking for beams under negative flexure. This 

is because shrinkage strain reduces under both 

situations.  

• The correct inclusion of a pre-loading stage to take 

into account early shrinkage is relevant for the 

installation of initial tensile stresses in the concrete slab 

of a girder bridge as explained in section 4.5. This 

modifies the tension stiffening of the member and its 

cracking performance afterwards. However, for the 

studied experimental beams, the early shrinkage effect is 

considered to be diminished by the propped construction 

sequence and early testing. 
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