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1. Introduction 
 

Over the last several years, the composite materials 

represent a highly strategic research focus for many 

researchers that have become increasing important in 

different fields of engineering, including aeronautics, 

automotive components, submarine structures, civil and 

mechanical engineering structures, but also in the medical 

prosthetic devices and electronic circuit boards and other 

applications. This development resulted from many 

scientific programs with modern computational techniques, 

funded by the most important research laboratories in the 

world. These anisotropic materials are very much preferred, 

since they combine the best mechanical properties of 

various materials resulting from the most up-to-date 

technologies. It also offers a number of key advantages over 

conventional isotropic materials, such as very high strength 

and stiffness coupled with a very low density, resistance to 

chemicals, thermal and electrical insulation properties, 

making composites more attractive. Thus, the rapid growth 

in the use of composite materials in the designing of 

structures and industrial processes has required the 
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development of structure mechanics to model and analyze 

more accurately the static and dynamic behaviours of 

structural components made from composite materials, such 

as laminates or sandwichs beams, plates and shells 

(Rezaiee-Pajand et al. 2012, Sayyad and Ghugal 2014, 

Behera and Kumari 2018, Narwariya et al. 2018).  

In a general sense, a composite material at a 

macroscopic level is formed by the combination of two or 

more constituent materials with significantly different 

physical or chemical properties, without dissolving or 

blending them into each other “but having a high adhesion 

capacity”, which blend to obtain a new material system 

with properties superior to those of the individual 

monolithic constituents, such as steel, aluminum and other 

types of metal. Due to its complexity” i.e., their properties 

are not the same in all directions”and the large-scale 

applications, several researchers of composite materials 

systems have been involved to the development of many 

plate theories and solution procedures based on considering 

the transverse shear deformation effect, and each of them, 

in their own way, contributes to predict correctly the 

bending, buckling and vibration behaviours of sandwichs 

and laminated composite plates. 

The oldest and simplified theory, commonly called 

classical plate theory “CPT” is originally developed for 

homogeneous isotropic structures, based on the famous 

Kirchhoff hypotheses (Kirchhoff 1850), in which the 
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Abstract.  This paper aims to present an analytical model to predict the static analysis of laminated reinforced composite plates 

subjected to sinusoidal and uniform loads by using a simple first-order shear deformation theory (SFSDT). The most important 

aspect of the present theory is that unlike the conventional FSDT, the proposed model contains only four unknown variables. 

This is due to the fact that the inplane displacement field is selected according to an undetermined integral component in order to 

reduce the number of unknowns. The governing differential equations are derived by employing the static version of principle of 

virtual work and solved by applying Navier’s solution procedure. The non-dimensional displacements and stresses of simply 

supported antisymmetric cross-ply and angle-ply laminated plates are presented and compared with the exact 3D solutions and 

those computed using other plate theories to demonstrate the accuracy and efficiency of the present theory. It is found from these 

comparisons that the numerical results provided by the present model are in close agreement with those obtained by using the 

conventional FSDT. 
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normal to the mid-plane of the plate before deformation 

remains straight and normal to the deformed geometric mid-

plane after loading. This means that transverse shear and 

transverse normal strains are ignored with respect to the 

other strains. Several studies have been carried out on 

anisotropic multilayered structures by extension of the CPT 

to the classical laminated plate theory “CLPT” (see, for 

example, Jones 1975, Christensen 1979, Whitney 1987, 

Noor and Burton 1989 and Reddy 2004). Therefore, it has 

been confirmed in the previous studies that this theory is not 

accurate for the mechanical response of moderately thick 

and thick plates, but gives acceptable results only for thin 

plates. Since the transverse shear deformation effects are 

more significant in thick plates, Reissner (1945) and 

Mindlin (1951) have been developed the conventional first-

order shear deformation theory “FSDT” for homogeneous 

and isotropic plates to overcome the shortcoming regarding 

using CPT. According to this theory, the transverse shear 

strain is assumed to be constant in thickness coordinate and 

it needs a shear correction factor to correct for unrealistic 

variation of the shear stress across the thickness. The 

Reissner-Mindlin’s theory has been extended to the case of 

laminated and functionally graded composite plates by 

several authors. Yang et al. (1966) investigated in detail the 

elastic wave propagation in heterogeneous laminates plates 

consisting of an arbitrary number of bonded anisotropic 

layers in a manner suggested by Mindlin (1951) for the 

homogeneous plates, wherein the effects of both transverse 

shear stresses and rotary inertia are taken into account. A 

similar method was used later by Whitney and Pagano 

(1970) for static bending and free vibration analysis of 

symmetric and antisymmetric laminated composite plates in 

which various values of shear correction factors have been 

used to compare the obtained results with the corresponding 

exact solutions. Reddy and Chao (1980) developed finite 

element model based on FSDT for the analysis of single-

layer and two-layer cross-ply, simply supported rectangular 

compositeplates subjected to sinusoidal and uniform 

distributed normal pressure. Fares et al. (2000) have 

presented a refined nonlinear first-order thermal plate 

theory using a modified version of Reissner’s mixed 

variational formula, including thermoelastic effects for the 

bending analysis of cross-ply laminated plates. A refined 

FSDT models, based on new mixed variational formulations 

are developed by Auricchio and Sacco (2003) for the 

bending analysis of composite laminates, introducing 

suitable representation forms of the shear stresses in the 

plate thickness. This approach does not require shear 

correction factors as well as the out-of-plane shear stresses 

can be derived without post-processing procedures. Akavci 

et al. (2007) presented the analytical solutions for bending 

analysis of symmetric cross-ply rectangular thick laminated 

plates resting on elastic foundation by using first-order 

shear deformation theory. To verify the computer program 

of this study, the obtained results have been compared with 

those obtained from the finite element method and a good 

agreement has been found. A generalized differential 

quadrature method has been proposed by Tornabene and 

Viola (2009) using the FSDT to study the free vibration 

analysis of functionally graded thick shells and panels of 

revolution. The numerical results for bending and free 

vibration analysis of functionally graded square plates were 

obtained by Thai and Choi (2013) using a simple FSDT and 

the Hamilton’s principle. Sadoune et al. (2014) studied the 

bending and free vibration responses of simply supported 

laminated composite plates by using a new simple FSDT 

with only four unknown displacement functions and four 

governing differential equations. A simple and accurate 

FSDT which eliminates the use of a shear correction factor 

was proposed by Thai et al. (2014) for bending, buckling 

and free vibration analysis of simply supported functionally 

graded sandwich plates composed of FG face sheets and an 

isotropic homogeneous core “as ceramic”. Heydari et al. 

(2014) presented an exact solution for transverse bending 

analysis of embedded laminated Mindlin plate. Avcar 

(2015) used FSDT to study effects of rotary inertia shear 

deformation and non-homogeneity on frequencies of beam. 

Recently, Mantari and Granados (2015) used an original 

FSDT with four unknowns for the free vibration analysis of 

functionally graded sandwich and single plates, in which 

the material properties of the plates are adopted to vary 

gradually in the thickness direction according to a power 

law distribution or Mori-Tanaka homogenization method in 

terms of the volume fractions of the components. 

In order to avoid the use of shear correction factors and 

satisfying the zero shear strain boundary conditions on the 

top and bottom surfaces of the plate, many studies have 

been carried out using higher-order shear deformation 

theories “HSDTs” for static, buckling and free vibration 

analysis of structures (e.g., Pandit et al. 2010, Xiang et al. 

2011, Mantari et al. 2012, Grover et al. 2013, Swaminathan 

and Fernandes 2013, Zenkour2014, Sayyad and Ghugal 

2014, Sayyad et al. 2016, Draiche et al. 2016, Sarangan and 

Singh 2016, Sahoo et al. 2016, Chikh et al. 2017, Swain et 

al. 2017, Zenkour and Radwan 2018, Bourada et al. 2019, 

Chaabane et al. 2019). 

In the present paper, a novel FSDT recently developed 

by Mantari and Granados (2015) for dynamic analysis of 

functionally graded plates is used to predict the bending 

response of simply supported laminated composite plates 

subjected to sinusoidal and uniform loads. The 

displacement field of the proposed analytical model 

involves an undetermined integral component in order to 

reduce the number of unknowns and governing equations, 

which is greater in the conventional FSDT. This approach 

has some benefits due to its simplicity and low 

computational cost. The governing equations associated 

with the present theory are obtained using the principle of 

virtual work. Navier-type analytical procedure is obtained 

for antisymmetric cross-ply and angle-ply laminated 

composite plates. Numerical results are presented and 

compared with the analytical solution of conventional 

FSDT and those computed using other plate theories. 

Therefore, the capacity of the current first-order shear 

deformation theory is validated. 

 

 

2. Theoretical formulation of the present theory 
 

2.1 Plate under consideration 
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Fig. 1 Coordinate system and geometry of laminated 

composite plate 

 

 

In this investigation, a simply supported laminated 

composite plate made of orthotropic fibrous composite 

material is considered as shown in Fig. 1. The constant 

thickness of the plate is denoted by h while its lateral 

dimensions, along the x and y directions, are denoted by a 

andb, respectively. The plate occupies the region 0≤x≤a, 

0≤y≤b, −h/2≤z≤h/2 in Cartesian coordinate system. The 

downward z-direction is assumed as positive. Let the plate 

be subjected to a mechanical load q(x, y) acting normally at 

the upper surface (z=−h/2).  

 

2.2 Displacement field and constitutive relations 
 

It is evident from the literature that the conventional 

first-order shear deformation theory (FSDT) was developed 

by Whitney and Pagano (1970) for the bending and free 

vibration analysis of anisotropic laminated plates, in which 

the effect of the shear deformation and rotary inertia in the 

same manner as Mindlin's theory for isotropic 

homogeneous plates. The displacement field of the 

conventional FSDT is defined by 
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Where u0(x,y), v0(x,y) and zv0(x,y) denote the unknown 

displacement functions of the middle surface of the 

anisotropic plate, φx(x,y) and φy(x,y) represents the rotations 

about the y and x axes, respectively. In this study, in order to 

reduce the number of unknown variables, the previous 

displacement field is modified by introducing some 

simplifying suppositions and can be rewritten only with 

four unknowns in a simpler form as follows 
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where θ(x,y) is the last unknowns displacement function 

whereas the constants k1 and k2 depends on the geometry. 

The normal and shear strains associated with the 

displacement field are obtained using the relationships of 

the linear theory of elasticity 
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(3) 

so that virtual strains are known in terms of the virtual 

displacements 
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The integrals adopted in the previous relations shall be 

resolved by a Navier solution and can be determined by 
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where 'A and 'B are defined according to the type of 

solution employed, in this case via Navier. Thus, the 

parameters 'A  and 'B are expressed by 
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Each layer in the laminate is assumed to be in a two-

dimensional stress state so that thelinear constitutive 

relations for the kth orthotropic layer are given by 
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Where  k
 and  k

 are the stress and strain vectors, 

respectively. Whereas ijQ are called the transformed 

reduced stiffnesses and they are defined by 
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where θk denotes the orientation of the kth layer with respect 

to the global coordinate system and Qij are the reduced 

stiffness coefficients, which are related to the engineering 

constants as follows 
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where Ei, Gij and vij are the Young’s modulus, shear 

modulus and Poisson’s ratio, respectively. 

 

2.3 Governing equations 
 

In the proposed model of this theory, the governing 

equations and associated boundary conditions are derived 

using static version of principle of virtual work. This 

principle is applied in the following analytical form  
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where δ denotes the variational operator, A is the top 

surface of the plate and q(x,y) is the transverse load. By 

substituting the expressions for virtual strains given in Eq. 

(3) into Eq. (11), the principle of virtual work can be 

rewritten as (Zarga et al. 2019) 
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where N, M and S are the stress resultants acting on the 

cross section of the laminate, defined as follows 
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where K denotes the shear correction factor. By substituting 

the constitutive relations of Eq. (8) into the Eq. (13), the 

stress resultants are obtained in terms of strains as following 

form 
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(14) 

where Aij, Bij, Dij and 
s

ijA  are the plate stiffness 

coefficients given by 

( ) ( )( ) 6,2,1,,,,1,,
1

2
1

== 
=

+

ji   zdzzQDBA
N

k

z

z

k

ijijijij

k

k

 (15a) 

 
=

+

==
N

k

z

z

k

ij

s

ij

k

k

jidzQA
1

)(
1

5,4,    ,  (15b) 

Substituting Eqs. (4) and (8) into Eq. (12) and 

integrating the resulting expressions by parts and collecting 

the coefficients of δu0, δv0, δw0 and δθ, the governing 

differential equations in terms of stress resultants are 

obtained as follows 
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(16) 

 
 
3. Analytical solutions for laminated composite 
plates using Navier solution  

 

Analytical solutions of the governing differential 

equations in Eq. (16) for simply supported laminated 

composite platesare obtained using Navier solution 

procedure. The plate is subjected to transverse mechanical 

loadings q(x,y) acting in the downward z-direction. In this 

study two different types are considered, cross-ply and 

angle-ply laminated plates. For the first type, the following 

stiffness components are identically zero 

0452616662616122616 ========= sADDBBBBAA  (17) 

Based on the Navier procedure, in which the 

displacement components are expanded in a double 

trigonometric series of unknown variables, the boundary 

conditions of simply supported cross-ply laminated plates 

are satisfied by the following forms of the variables u0, v0, 

w0 and θ (Meksi et al. 2019, Boussoula et al. 2019). 
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(18) 

For angle-ply laminated plates, the following stiffness 

components are identically zero 

0452616662212112616 ========= sA DDBBBBAA  (19) 

And the displacement variables which automatically 

satisfy the boundary conditions can be expressed in the 

following forms 
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(20) 

where Umn, Vmn, Wmn and Φmnare unknown coefficients, 

whereas the parameters α and β are already defined in Eq. 

(7). We assume that the transverse load q(x,y) can also be 
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expanded in the double-Fourier sine series as 




=
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=

=
1 1

)sin()sin(),(
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mn y x qyxq   (21) 

where m and n are positive integers and the coefficients qmn 

are given for sinusoidal and uniform loads as follows 

 (22a) 

(22b) 

where q0 is the maximum intensity of the load at the centre 

of a plate. Substitution the solution of Eqs. (18), (20) and 

(21) into the governing equations Eq. (16), the bending 

analysis of simply supported laminated composite plates 

can be obtained from the following matrix form 
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4. Numerical results and discussions 
 

In this study, the validity and effectiveness of the 

proposed theory is proved in predicting the displacements 

and stresses of simply supported antisymmetric cross-ply 

and angle-ply laminated composite plates. Various 

numerical examples are presented and compared with the 

results of exact 3D solutions and those calculated using 

different plate theories. Through all the examples, the value 

of shear correction factor is taken as 5/6 for the proposed 

model and the conventional FSDT. 

The following material properties are used to obtain the 

numerical results (Reddy2004) 

25.0,2.0,5.0,25 122232131221 =====    EG   EGG   EE  (25) 

The following non-dimensional parameters are used for 

the purpose of presenting the numerical results of the 

displacements and stresses 
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Table 1 Comparison of non-dimensional transverse 

displacement w for antisymmetric cross-ply (0°/90°) 

laminated square plate subjected to sinusoidal loads 

Theory 
a/h 

2 5 10 20 100 

Exact 3D (a) 4.9362 1.7287 1.2318 1.1060 1.0742 

TSDT 4.5619 1.6670 1.2161 1.1018 1.0651 

FSDT 5.4059 1.7584 1.2373 1.1070 1.0653 

CLPT 1.0636 1.0636 1.0636 1.0636 1.0636 

Present 5.4059 1.7584 1.2373 1.1070 1.0653 

 

 

Example1: Bending analysis of cross-ply (0°/90°) 

laminated composite plates 

The first example is carried out for the non-dimensional 

transverse displacement of simply supported antisymmetric 

cross-ply (0°/90°) laminated composite square plates 

subjected to sinusoidal loads for different values of side-to-

thickness ratio a/h, ranging from 2 to 100 “corresponding to 

from very thick to thin plates”, as presented in Table 1. 

 

(a) Results taken from reference of Pagano(1970) 

The numerical results are compared with those obtained 

by the exact 3D solutions given by Pagano (1970) and those 

computed using classical laminated plate theory “CLPT”, 

conventional first-order shear deformation theory “FSDT” 

of Mindlin and third-order shear deformation theory 

“TSDT” of Reddy. From the examination of Table 1, it can 

be observed that the numerical results of transverse 

displacements obtained by using the present model are 

exactly matching with the results of the conventional FSDT 

for all side-to-thickness ratios. We also noted that the 

increment in the side-to-thickness ratio leads to the decrease 

in the transverse displacements of antisymmetric cross-ply 

laminated plates. Moreover, the CLPT gives acceptable 

results only for thin square laminated plate (a/h 20) and 

underestimates the results of transverse displacement as 

compared to other theories due to neglect of transverse 

shear strains. 

 

Example 2: Bending analysis of cross-ply (0°/90°)n 

laminated composite plates 

To further assure the accuracy of the present novel 

theory, the next example is checked for bending analysis of 

simply supported multilayered antisymmetric (0°/90°)n 

laminated composite square plates subjected to two 

different loading conditions, i.e., sinusoidal and uniform 

loads. The comparison of non-dimensional transverse 

displacement for different values of side-to-thickness ratio 

(a/h) and numbers of layers is listed in Tables 2 and 3.  

The numerical results generated for this example are 

compared with those computed using CLPT, FSDT and 

TSDT. It can be seen again that the obtained results are in 

excellent agreement with those presented by the 

conventional FSDT with each other for different values of 

thickness ratio and numbers of layers. 

The variations of non-dimensional transverse 

displacement w  with respect to side-to-thickness ratio a/h 

and modulus ratio E1/E2 of two-layer and six-layer  
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Table 2 Comparison of non-dimensional transverse 

displacement w for antisymmetric cross-ply (0°/90°)n 

laminated square plate subjected to sinusoidal loads 

Lay-ups Theory 
a/h 

4 10 20 100 

(0° /90°)1 

TSDT 1.9985 1.2161 1.1018 1.0651 

FSDT 2.1492 1.2373 1.1070 1.0653 

CLPT 1.0636 1.0636 1.0636 1.0636 

Present 2.1492 1.2373 1.1070 1.0653 

(0° /90°)2 

TSDT 1.6093 0.6865 0.5517 0.5083 

FSDT 1.5921 0.6802 0.5500 0.5083 

CLPT 0.5065 0.5065 0.5065 0.5065 

Present 1.5921 0.6802 0.5500 0.5083 

(0° /90°)3 

TSDT 1.5411 0.6382 0.5060 0.4635 

FSDT 1.5473 0.6354 0.5053 0.4635 

CLPT 0.4617 0.4617 0.4617 0.4617 

Present 1.5473 0.6354 0.5052 0.4635 

(0° /90°)4 

TSDT 1.5168 0.6229 0.4918 0.4496 

FSDT 1.5335 0.6216 0.4913 0.4496 

CLPT 0.4479 0.4479 0.4479 0.4479 

Present 1.5335 0.6216 0.4913 0.4496 

 

Table 3 Comparison of non-dimensional transverse 

displacement w for antisymmetric cross-ply (0°/90°)n 

laminated square plate subjected to uniform loads 

Lay-ups Theory 
a/h 

4 10 20 100 

(0° /90°)1 

TSDT 3.0706 1.9173 1.7509 1.6977 

FSDT 3.2709 1.9468 1.7582 1.6980 

CLPT 1.6955 1.6955 1.6955 1.6955 

Present 3.2741 1.9480 1.7586 1.6980 

(0° /90°)2 

TSDT 2.4282 1.0693 0.8737 0.8111 

FSDT 2.3837 1.0596 0.8712 0.8111 

CLPT 0.8085 0.8085 0.8085 0.8085 

Present 2.3872 1.0611 0.8717 0.8111 

(0° /90°)3 

TSDT 2.3243 0.9929 0.8010 0.7397 

FSDT 2.3123 0.9882 0.7998 0.7396 

CLPT 0.7371 0.7371 0.7371 0.7371 

Present 2.3158 0.9897 0.8003 0.7396 

(0° /90°)4 

TSDT 2.2879 0.9686 0.7784 0.7176 

FSDT 2.2902 0.9660 0.7776 0.7175 

CLPT 0.7150 0.7150 0.7150 0.7150 

Present 2.2936 0.9676 0.7782 0.7175 

 

 

antisymmetric cross-ply laminated square plate subjected to 

sinusoidal loads are plotted in Figs. 2 and 3, respectively. 

It can be seen that the variation of transverse 

displacement obtained by present theory are in close 

agreement with those calculated using the conventional 

FSDT. Whereas CLPT underestimates transverse 

displacement of thick laminated plate with a/h20 due to 

neglecting shear deformation effects (see Fig. 2).On the 

other hand, the variations and the associated values of the 

in-plane displacement u , in-plane normal stresses ,x y 

and transverse shear stresses , ,xy xz yz    through the  
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Fig. 2 Variation of non-dimensional transverse displacement

)(w of antisymmetric cross-ply (0°/90°)n laminated square 

plates under sinusoidal loads with respect to side-to-

thickness ratio 
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Fig. 3 Variation of non-dimensional transverse displacement

)(w of antisymmetric cross-ply (0°/90°)n laminated square 

plates under sinusoidal loads with respect tomodulus ratio, 

(a/h=10) 

 

 
Fig. 4 Variation of non-dimensional axial displacement

through the thickness of antisymmetric cross-ply (0°/90°)n 

laminated square plate under sinusoidal loads, (a/h=10) 

 

 

thickness of a moderately thick multilayered antisymmetric 

(0°/90°)n laminated composite plates for the thickness ratio 

(a/h=10) are shown in Figs. 4-9 and presented in Tables 4 

and 5 for sinusoidal and uniform loading conditions, 

respectively. It must be noted again that the present 

computations are in an excellent agreement with the 

conventional FSDT for alllamination schemes. 

( )u
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Fig. 5 Variation of non-dimensional in-plane normal stress

through the thickness of antisymmetric cross-ply 

(0°/90°)n laminated square plates under sinusoidal loads, 

(a/h=10) 

 

 
Fig. 6 Variation of non-dimensional in-plane normal stress

through the thickness of antisymmetric cross-ply 

(0°/90°)n laminated square plates under sinusoidal loads, 

(a/h=10) 

 

 
Fig. 7 Variation of non-dimensional in-plane shear stress

through the thickness of antisymmetric cross-ply 

(0°/90°)n laminated square plates under sinusoidal loads, 

(a/h=10) 
 

 
Fig. 8 Variation of non-dimensional transverse shear stress

through the thickness of antisymmetric cross-ply 

(0°/90°)n laminated square plates under sinusoidal loads, 

(a/h=10) 

 

 
Fig. 9 Variation of non-dimensional transverse shear stress
( )yz through the thickness of antisymmetric cross-ply 

(0°/90°)n laminated square plates under sinusoidal loads, 

(a/h=10) 

 

Table 4 Comparison of non-dimensional stresses for 

antisymmetric cross-ply (0°/90°)n laminated square 

platessubjected to sinusoidal loads, (a/h=10) 

Lay-ups Theory  )2/(hy  ( /2)h
xy

 −  ( / 4)hxz −  

(0° 

/90°)1 

FSDT 0.0843 0.7157 0.0525 0.2728- 

Present 0.0843 0.7157 0.0525 0.2728 

(0° 

/90°)2 

FSDT 0.0357 0.4868 0.0250 0.1091 

Present 0.0357 0.4868 0.0250 0.1091 

(0° 

/90°)3 

FSDT 0.0312 0.4881 0.0228 0.1091 

Present 0.0312 0.4881 0.0228 0.1091 

(0° 

/90°)4 

FSDT 0.0296 0.4950 0.0221 0.2728 

Present 0.0296 0.4950 0.0221 0.2728 

 

 

Example 3: Bending analysis of angle-ply (45°/-45°)n 

laminated composite plates 

The last example is devoted to the analysis of 

multilayered antisymmetric angle-ply (45°/-45°)n laminated 

composite square plates with simply supported boundary 

conditions subjected to sinusoidal and uniform loads. The 

comparison of non-dimensional transverse displacements  
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Table 5 Comparison of non-dimensional stresses for 

antisymmetric cross-ply (0°/90°)n laminated square plates 

subjected to uniform loads, (a/h=10) 

Lay-ups Theory ( / 2)x h  ( / 2)y h  ( / 2)xy h −  ( / 4)xz h −  

(0° /90°)1 
FSDT 0.1264 1.0715 0.0961 0.5772 

Present 0.1268 1.0762 0.0934 0.5770 

(0° /90°)2 
FSDT 0.0536 0.7295 0.0472 0.2315 

Present 0.0541 0.7368 0.0442 0.2308 

(0° /90°)3 
FSDT 0.0468 0.7313 0.0433 0.2315 

Present 0.0473 0.7392 0.0403 0.2308 

(0° /90°)4 
FSDT 0.0444 1.7415 0.0420 0.5787 

Present 0.0449 0.7496 0.0391 0.5770 

 

Table 6 Comparison of non-dimensional transverse 

displacement w for antisymmetric angle-ply (45°/-45°)n 

laminated square plate subjected to sinusoidal loads 

Lay-ups Theory 
a/h 

4 10 20 100 

(45° /-45°)1 

TSDT 1.5497 0.8027 0.6919 0.6562 

FSDT 1.7403 0.8284 0.6981 0.6564 

CLPT 0.6547 0.6547 0.6547 0.6547 

Present 1.7403 0.8284 0.6981 0.6564 

(45° /-45°)4 

TSDT 1.2931 0.4207 0.2900 0.2479 

FSDT 1.3317 0.4198 0.2896 0.2479 

CLPT 0.2462 0.2462 0.2462 0.2462 

Present 1.3317 0.4198 0.2896 0.2479 

 

 

obtained by the present model and other plate theories of 

two-layer and eight-layer antisymmetric angle-ply laminate 

is reported in Tables 6 and 7 for different values of the 

thickness ratio (a/h). From the examination of Table 6, it is 

observed that the present theory is in excellent agreement 

while predicting the transverse displacements w as 

compared to those provided by using the conventional 

FSDT. Moreover, it can be noticed that the increase of the 

thickness ratio and numbers of layers have a significant 

effect on the decrease of the transverse displacement. 

 

 
4. Conclusions 
 

In this work, the static analysis of simply supported 

laminated composite plates subjected to sinusoidal and 

uniform loads is studied based on the novel first-order 

shear deformation theory, in which the displacement field 

contains a smaller number of unknowns with an 

undetermined integral component. The governing equations 

and its boundary conditions are derived by utilizing the 

principle of virtual work and solved using Navier’s solution 

method. The numerical results of the transverse 

displacement and stresses for simply supported 

antisymmetric cross-ply and angle-ply laminated composite 

plates are presented and compared with the solutions 

calculated using different plate theories. Effects of the side-

to-thickness ratio, numbers of layers and lamination scheme 

on the displacements and stresses as well as corresponding 

shapes of the loading conditions are studied. In conclusion, 

Table 7 Comparison of non-dimensional transverse 

displacement w forantisymmetricangle-ply (45°/-45°)n 

laminated square plate subjected to uniform loads 

Lay-ups Theory 
a/h 

4 10 20 100 

(45° /-45°)1 

TSDT 2.3346 1.2421 1.0817 1.0302 

FSDT 2.6034 1.2792 1.0907 1.0305 

CLPT 1.0280 1.0280 1.0280 1.0280 

Present 2.6067 1.2806 1.0912 1.0305 

(45° /-45°)4 

TSDT 1.9197 0.6383 0.4490 0.3883 

FSDT 1.9613 0.6366 0.4483 0.3883 

CLPT 0.3858 0.3858 0.3858 0.3858 

Present 1.9644 0.6384 0.4489 0.3883 

 

 

it can be said that the novel shear deformation theory with 

only four unknowns is not only more accurate but also 

simple than the conventional FSDT in predicting the 

bending response of thick laminated composite plates. An 

improvement of the present study will be considered in the 

future work to consider other type of materials (Benferhat et 

al. 2016, Kolahchi et al. 2016, Daouadji 2017, Eltaher et al. 

2018, Ayat et al. 2018, Natanzi et al. 2018, Panjehpour et 

al. 2018, Bensaid et al. 2018, Selmi and Bisharat2018, 

Karamiet al. 2018, Falehet al. 2018, Bensattalah et al. 2019, 

Medani et al. 2019, Hussain and Naeem2019, Fadoun 2019, 

Hussain et al. 2019, Avcar 2019, Rajabi and 

Mohammadimehr 2019, Draoui et al. 2019, Boutaleb et al. 

2019, Boukhlif et al. 2019, Mahmoudi et al. 2019 

Boulefrakh et al. 2019). 
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