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1. Introduction 
 

Functionally graded materials (FGM) were presented in 

the mid-1980s to be employed as thermal barrier materials 

against high temperatures. FGMs are advanced materials 

made of different constituent materials, such as metals, 

ceramics or polymers, with variable properties in a given 

spatial direction. This makes it possible to customize the 

morphologies and the structured characteristics in this 

specific spatial direction, which improves the mechanical 

behavior of these materials in terms of stiffness, toughness, 

hardness, thermal conductivity and corrosion resistance 

(Sofiyev and Avcar 2010, Bessaim 2013, Naebe and 

Shirvanimoghaddam 2016, Ebrahimi et al. 2017, Zidi et al. 

2017, El-Haina et al. 2017, Avcar and Mohammed 2018, 

Zarga et al. 2019, Karami et al. 2019a, b, Hellal et al. 

2019). In recent years, the trend to use FG plates for use in 

modern structures has grown considerably. There are many 

uses of FG structures in the fields of energy conversion, 

nuclear power engineering, commodities, civil engineering 

and aerospace. As a result, advances in numerical analysis 

of FG structures have attracted a lot of attention. One of the 

most cost-effective ways to advance in numerical 

investigation is the development of accurate structural 

models via refined shear deformation theories. 

In recent years, extensive studies on FG plates have 
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been performed using conventional plate theory (CPT) and 

first order shear deformation plate theory (FSDT). Despite 

its simplicity, the CPT ignores shear deformations and 

rotational inertia, resulting in less accurate results for thick 

and moderately thick structures. The FSDT considers 

transverse shear influences via a shear correction factor and 

is therefore suitable for the investigation of both thin and 

moderately thick structures (Al-Basyouni et al. 2015, 

Bouderba et al. 2016, Avcar 2016, Youcef et al. 2018, 

Draoui et al. 2019). However, the appropriate value of the 

shear correction coefficient depends on the variation of the 

Poisson's ratio depending on plate thickness, geometry, load 

and boundary conditions. Higher order shear deformation 

theories (HSDTs) do not require a shear correction 

coefficient and offer the reliable accuracy against to CPT 

and FSDT. However, these theories lead to a large number 

of equilibrium equations, greatly increasing the complexity 

of the problem. As a result, simple theories with fewer 

unknowns are very attractive. In order to decrease the 

number of variables employed in the equations of motion, 

and to satisfy shear deformation influences on the lower and 

upper faces of the structures without using shear correction 

factor, Shimpi and Patel (2006a) proposed a refined theory 

with only two unknown variables for the study of isotropic 

plates, known as refined plate theory (RPT). Then, different 

validity studies were carried out on the basis of the RPT. 

These include the study of isotropic (Shimpi and Patel 

2006a, Shahsavari and Janghorban 2017), orthotropic 

(Shimpi and Patel 2006b), FGM (Karami et al. 2018a, Zidi 

et al. 2014) and stratified composite plates (Thai and Kim 
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2012). However, until now, various RPT models under the 

effect of different shape functions by dividing the transverse 

displacement into bending and shearing parts have been 

proposed for the study of dynamic (Chaabane et al. 2019, 

Zaoui et al. 2019, Bourada et al. 2019, Abdelaziz et al. 

2017, Mouffoki et al. 2017, Houari et al. 2016, Bellifa et 

al.2016, Attia et al. 2015, Karama et al. 1998), bending 

(Hamidi et al. 2015, Beldjelili et al. 2016, Shahsavari and 

Janghorban 2017, Abdelaziz et al. 2017, Hachemi et al. 

2017, Kar et al. 2017, Bakhadda et al. 2018, Attia et al. 

2018, Younsi et al. 2018, Boussoula et al. 2019, Meksi et 

al. 2019), wave propagation (Boukhari et al. 2016, 

Benadouda et al. 2017, Selmi and Bisharat 2018, Karami et 

al. 2018b, Fourn et al. 2018) and buckling (Karama et al. 

1998, Meziane et al. 2014, Bousahla et al. 2016, Bouderba 

et al. 2016, Sekkal et al. 2017ab, Chikh et al. 2017, 

Menasria et al. 2017, Bellifa et al. 2017a, b, Tounsi et al. 

2019) responses of micro and nano-plate structure. Yahia et 

al. (2015) examined the wave behavior of FG plates using 

RPT with 4-variables in terms of cubic, sinusoidal, 

hyperbolic, and exponential shear strain shape functions. A 

refined theory of trigonometric shear deformation (RTSDT) 

was employed for the thermoelastic bending response of 

sandwich plates made of FGM by Tounsi et al. (2013). 

Recently, the 4-unknown RPT model using polynomial, 

exponential and hyperbolic functions is applied to research 

on shear buckling behavior of nano-plates in a hygro-

thermal environment based on the non-local stress gradient 

theory of Shahsavari et al. (2018a). 

Often, conventional continuum theories (CPT, FSDT, 

and HSDTs) neglect the stretching effect of thickness (i.e,, 

εz=0) because of the assumption of constant transverse 

displacements in the thickness. Recently, the effect of 

thickness stretching (εz) in FG plates using finite element 

approximations was investigated by Carrera et al. (2011) to 

reach accurate results. Recently, the influence of thickness 

stretching in FG plates using finite element approximations 

has been studied by Carrera et al. (2011) to obtain accurate 

results. The thickness stretching influence becomes very 

valuable for the analysis of thick plates and must therefore 

be taken into account. On the joint consideration of shear 

deformation and thickness stretching effects, the many 

quasi 3D theories, based on higher-order distributions 

within the thickness for deflections, have been proposed 

(Thai and Kim 2015). Thai and Kim (2013) have proposed 

a simple quasi-3D sinusoidal shear-deformation model to 

study the flexural behavior of FG plates using five unknown 

variables. Hebali et al. (2014) developed a novel quasi-3D 

model for the analysis of the bending and dynamic of FG 

plates. An efficient quasi-3D theory has been proposed for 

FG plates, by dividing the deflection into flexural, shear and 

stretching components by Belabed et al. (2014). Bousahla et 

al. (2014) presented a new quasi-3D theory based on neutral 

surface position for static study of advanced composite 

plates. Bourada et al. (2015) developed a simple higher-

order shear and normal deformation model for FGM beams. 

Draiche et al. (2016) proposed a quasi-3D shear-

deformation model for “laminated composite plates”. Thai 

et al. (2014) developed a quasi-3D theory for FG plates by 

considering a hyperbolic shape function as well as five 

variables. A sandwich with FGM core and FGM face sheet 

as well as a sandwich with FGM core and homogeneous 

face sheet was examined by a new quasi-3D plate model by 

Bennoun et al. (2016). 

During the process of manufacturing FGMs, micro-

voids are generated during sintering because of the 

difference in solidification temperature of the constituents 

of the material (Zhu et al. 2001, Li et al. 2003). Micro-void 

formation sources (known as porosity) include air bubbles 

entering the matrix during melting or mixing processes and 

formation of water vapor on the surface of the particles in 

the process of solidification (Aqida et al. 2004). Because of 

the importance of this topic, several works have been 

conducted to explore the effects of porosity. For example, 

Yahia et al. (2015) investigated the wave propagation in FG 

plates with porosities using various HSDTs. A HSDT was 

employed for the study on dynamic of beams made of 

porous graded materials by Ait Atmane et al. (2015). Gupta 

and Talha (2017) examined the influence of porosity on free 

vibration behavior of FG plates in the presence of a thermal 

influence using a non-polynomial quasi 3D HSDT. 

Benferhat et al. (2016a) analyzed the bending response of 

FG plate with porosities. Also, Benferhat et al. (2016b) 

studied the effect of porosity on the bending and free 

vibration response of FG plates resting on Winkler-

Pasternak foundations. Benadouda et al. (2017) studied the 

effect of porosities on wave propagation in FG beams using 

an efficient shear deformation theory. Rad et al. (2017) 

analyzed the static response of non-uniform heterogeneous 

circular plate with porous material resting on a gradient 

hybrid foundation involving friction force. Akbaş (2017) 

presented vibration and static analysis of functionally 

graded porous plates. Eltaher et al. (2018) presented a 

modified porosity model in analysis of FG porous nano-

beams. Shahsavari et al. (2018b) studied the effect of 

porosities on free vibration of FG plates resting on elastic 

foundation. Faleh et al. (2018) discussed the vibration 

properties of porous FG nanoshells. Akbaş (2018) studied 

the forced vibration behavior of FG porous deep beams. 

Karami et al. (2018c) investigated the thermal buckling of 

smart porous FG nanobeam rested on Kerr foundation. 

Avcar (2019) examined the dynamic response of imperfect 

sigmoid and power law functionally graded beams. Arshid 

et al. (2019) studied the effect of porosity on free vibration 

of SPFG circular plates resting on visco-Pasternak elastic 

foundation. Batou et al. (2019) studied the wave dispersion 

properties in imperfect sigmoid plates using various 

HSDTs. 

In recent years, the study of integrated structures in 

foundations has attracted a lot of attention. To define the 

interaction between plate and foundation, various 

assumptions of foundation models have been proposed 

(Wanget al. 2005). The simplest and oldest assumption of 

the elastic medium models, which has only one substrate 

reaction coefficient, is known as the Winkler elastic 

foundation (Winkler 1867). Despite the ease of 

implementation, the Winkler model is unable to provide 

continuity in the foundation because of separate springs 

(Kolahchi et al. 2016). This assumption has been improved 

by the Pasternak model (Pasternak 1954) by adding a shear 
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layer above the springs. The Pasternak model comprising a 

two-parameter substrate (spring and shear layer) is widely 

employed to explain the mechanical interactions of flexible 

plates with different distributions of material properties 

(Akhavan et al. 2009, Hsu 2010, Baferani et al. 2011, Lü et 

al. 2009, Bouderba et al. 2013, Bounouara et al. 2016, 

Sobhy 2013). In the Kerr Foundation (Kneifati 1985), there 

are no unconcentrated reactions because of an upper spring 

layer. This means that, in Kerr's model, a shear layer is 

surrounded by upper and lower spring layers. 

In this work, we examine effects of 

Winkler/Pasternak/Kerr foundation and porosity on 

dynamic behavior of imperfect FG plates. For this end, a 

simple quasi-3D hyperbolic shear deformation plate theory 

is employed with considering the axial, bending, shear, and 

thickness stretching effects. Four different patterns of 

porosity variations are considered for describing porosity 

influence in graded material characteristics. The Kerr 

foundation is utilized to describe elastic foundation. The 

proposed model for the FG plates incorporated into the Kerr 

foundation will provide the best explanation of the 

embedded plates compared to that of the Winkler and 

Pasternak foundations. 

 

 

2. Theoretical formulations 
 
2.1 geometry and concept of functionally graded plate 

(P-FGM) 
 

In the present study, consider a functionally graded 

metal-ceramic plates (P-FGM) of length “a”, width “b” and 

thickness “h” in the reference (x×y×z), respectively. The 

material properties of FG-plate such as Young’s modulus 

“E(z)”, mass density “ρ(z)” and Poisson’s ratio “v(z)” are 

assumed to vary continuously through the thickness 

according to the power law distribution as (Tounsi et al. 

2013, Houari et al. 2013, Bousahla et al. 2014, Bourada et 

al. 2015, Fahsi et al. 2017) 

( )
1

( )
2

p

m c m

z
P z P P P

h

 
= + − + 

 
 (1) 

Where Pm and Pc are the metal and ceramic materials 

properties, respectively. p is the material index. 

The metal-ceramic FG-plate is supposed resting on 

elastic foundations (type Winkler, Pasternak and Kerr). The 

illustrative sketches of the three types of elastic foundations 

are presented in Fig. 1. 

 
2.2 Porous functionally graded plates 
 
The imperfection in the functionally graded materials 

can be in the form of the micro voids (porosity) that occur 

during the manufacturing steps of these materials. The 

micro voids are due to the difference of solidification 

temperatures between the two materials that constitute the 

FGM (Zhu et al. 2001). Several formulation models of the 

distribution of the micro voids in functionally graded 

structures have been proposed such as even, uneven, and 

logarithmic-uneven porosities. 

 

 

 

Fig. 1 FG-plates resting on elastic foundations 

 
 
2.2.1 FG-plate with even porosities 
The first model of the porosity distribution was 

developed by Wattanasakulpong and Ungbhakorn (2014) 

where the porosity is constant across the thicknesses of the 

FG-plate (see Fig. 2(a)). The effective materials properties 

of the FG-plate obtained by introducing the even porosities 

can be given as 

1 1
( ) 1

2 2 2 2

p p

c m

z z
P z P P

h h

       
= + − + − + −               

 (2) 

Where ξ is the parameter which takes into account the 

porosity effect. 

By applying the Eq. (2) on the effective properties of the 

FG-plate. The Young’s modulus “E(z)”, mass density “ρ(z)” 

and Poison’s ratio “v(z)” formulations can be expressed as 

(Wattanasakulpong and Ungbhakorn 2014) 

( ) ( )
1

( )
2 2

p

c m m c m

z
E z E E E E E

h

 
= − + + − + 

 
 (3a) 

( ) ( )
1

( )
2 2

p

c m m c m

z
z

h


     

 
= − + + − + 

 
 (3b) 

( ) ( )
1

( )
2 2

p

c m m c m

z
z

h


     

 
= − + + − + 

 
 (3c) 

 

2.2.2 FG-plate with uneven porosities 
The infiltration of the materials in the intermediate zone 

of the plate is very difficult (which increases the risk of 

production of micro-voids). On the other hand, the 

infiltration of the material is easy in the free surfaces (upper 

and lower surfaces) of the plate (the risk of the production  
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Fig. 2 illustration of different patterns of porosity variations 

 

 

of the micro voids is low), on the basis of these cases 

Wattanasakulpong and Ungbhakorn (2014) has developed 

another model of the porosities distribution (porosity varies 

across the thickness). The effectives material properties 

with uneven distribution (see Fig. 2(b)) can be written as 

( ) ( )
21

( ) 1
2 2

p

c m m c m

zz
E z E E E E E

h h

   
= − + + − + −       

 (4a) 
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21

( ) 1
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    

  
= − + + − + −       

 (4b) 

( ) ( )
21

( ) 1
2 2

p

c m m c m

zz
z
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
     

  
= − + + − + −       

 (4c) 

 

2.2.3 FG-plate with logarithmic-uneven porosities 
The third model was proposed by Gupta and Talha 

(2018) where the distribution of the porosity is varying 

according to a logarithmic function through the thickness of 

the plate (see Fig. 2(c)). The effective material properties 

with logarithmic-uneven distribution can be given as 

( ) ( )
21

( ) log 1 1
2 2

p

c m m c m

zz
E z E E E E E

h h

     
= − + + − + + −           

 (5a) 
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2.2.4 FG-plate with mass-density porosities 
In the present investigation, the fourth model of the 

porosity is based on the true and the apparent mass density. 

The formulations of the true and the apparent mass density 

can be written as  

0 ( ) 0 ( ) 0

h h

m z dz at and m z dz at   = = =    
(6) 

With  

( ) ( )
1

( )
2 2

p

c m m c m

z
z

h


     

 
= − + + − + 

 
 (7) 

where “m0” and “m” are the true and the apparent mass 

density. 

By considering that the elasticity modulus depend on the 

density of the material, the expression of the Young 

modulus proposed by Eltaher et al. (2018) can be given as  

( ) ( )0

0

1
( )

2

p

c m m c m

m mz
E z E E E E E

h m

− 
= − + + − + 

 
 (8) 

 

2.3 Displacement field and strains: 
 

By introducing the stretching effect on the higher order 

shear deformation theory (Hebali et al. 2016, Merdaci et al. 

2016, Bourada et al. 201, 2018, Elmossouess et al. 2017, 

AitSidhoum et al. 2017, Besseghier et al. 2017) and keeps 

the same number of unknowns (Four variables) that is 

reduced compared to conventional quasi-3D theory. The 

displacement field of the six unknown quasi-3D theory can 

be given as  

0
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(9b) 
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The present four unknown hyperbolic quasi-3D shear 

deformation theory is assumed in the following form 

(Abualnour et al. 2018, Benchohra et al. 2018, Bouhadra et 

al. 2018, Boukhlif et al. 2019, Boulefrakh et al. 2019, 

Bouanati et al. 2019, Khiloun et al. 2019, Bendaho et al. 

2019) 

0
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With 

23 1 3
( ) sech tanh

2 2 2

z
f z z h

h

     
= − +    

      

and 
z

zf
zg




=

)(

15

2
 )(  

(11) 

Where the terms (u0;v0;w0 and θ) are four unknown 

displacements of the mid-plane of the plate and the 

coefficient “k1” and “k2” depends on the geometry.  

Based on the kinematic of Eq. (10), the strain-

displacement expressions can be obtained as  
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where the coefficients “A′” and “B′” are defined according 

to the type of method used. In this case using Navier 

solution, the terms A′, B′, k1 and k2 are obtained as follows 
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where α and β are defined in expression 41. 

For functionally graded material, the linear constitution 

relations (stress-strain) can be written as 
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where “σ and τ” are the normal and shear stresses and “ε 

and γ” are the strain components. The elastic constants 

expressions Cij in terms of engineering are given below 

(Hebali et al. 2014, Benahmed et al. 2017, Shahsavari et al. 

2018b, Ait Sidhoum et al. 2018): 

• If the stretching effect is negligible “εz=0”, the 2D 

elastic constants “Cij” can be defined as 
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• If the stretching effect is considered “εz≠0”, the 3D 

elastic constants “Cij” can be expressed as 

11 22 33

1 ( )
( ),

( )

v z
C C C z

z




−
= = =  (20) 

12 13 23 ( ),C C C z= = =  (21) 

44 55 66 ( ),C C C z= = =  (22) 

With 

( ) ( )
( )

(1 2 ( )) (1 ( ))

v z E z
z

v z v z
 =

− +
 

And 
))(1(2

)(
)()(

z

zE
zGz




+
==  

(23) 

where μ(z) Lamé’s coefficients. 

 
2.4 Equations of motion 
 

The equations of motion of the free vibration analysis of 

simply supported FG-plate resting on elastic foundation can 

be derived by employing the Hamilton’s energy principle 

(HEP). The analytical form of the principle (HEP) can be 

expressed as follow (Mahi et al. 2015, Bennai et al. 2015, 

Zemri et al. 2015) 
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where δU, δUF and δK are the virtual strain energy, the 

strain energy induced by elastic foundations and the 

variation of kinetic energy, respectively. 

The variation of the virtual strain energy (δU) of the FG-

plate can be rewritten as 
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Where A is the top surface and “N,M,S and Q” are the 

stress resultants, with 
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The elastic foundation models employed in the present 

investigation are illustrated in the Fig. 1. The strain energy 

induced by the elastic foundations (Winkler, Pasternak and 

Kerr) can be defined as 
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In the case of the present four unknown’s quasi-3D plate 

theory, the distributed load cited in the Eq. (27) can be 

defined by: 

 
Winkler model 
This model contains a single parameter (which 

represents independent springs) and can be expressed as 

0wKq wWinkler =  (28) 

Where Kw is the constant transverse stiffness coefficient 

of the elastic medium (so-called spring constant). 

 

Pasternak model 
This model contains two elastic parameters, the first is 

the same of the Winkler (springs) and the second is a shear 

layer parameter (shear action) which depicts the interaction 

between the spring parts (Shahsavari et al. 2018b), and the 

Pasternak reaction can be defined as 
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Where Gp is the shear stiffness and 2  represent the 

rectangular Cartesian coordinates, the Laplace differential 

operator is defined as 
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To obtain the Winkler foundation model from the 

Pasternak model just put Gp=0 in Eq. (29). 

 
Kerr model 
This model is composed of three elastic layers, 

independent upper and lower layers modeled by springs 

(with stiffness’s Ku and Kl, respectively) and an 

intermediate shear layer with stiffness Ks (Shahsavari et al. 

2018b). The distributed reaction of this last model (Kerr 

foundation) is defined as  
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This type of Kerr foundation is taken into account for 

the first time for the present displacement field of quasi-3D 

plate theories with only four unknowns. 

The expression of the variation of kinetic energy of the 

FG-plate can be written as (Belkorissat et al. 2015, Larbi 

Chaht et al. 2015, Belabed et al. 2018, Bouafia et al. 2018) 
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(32) 

where (Ii, Ji and Ki) are mass inertias of the FG-plate and 

dot-superscript convention indicate the differentiation with 

respect to the time variable t. 
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By substituting the virtual strain energy (Eq. (25)), The 

strain energy induced by elastic foundations (Eq. (27)) and 

the variation of kinetic energy (Eq. (32)) into expression of 
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Hamilton energy principle (Eq. (24)), integrating by part 

and separate the terms of displacement (δu0; δv0; δw0 and 

δθ). The equations of motion can be obtained as follow 
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(34) 

Substituting Eq. (12) into Eq. (16) and the obtained 

results into Eq. (26), the stress resultants N,M,Q and S are 

obtained in terms of strains ε, kb, ks and γ as follow 
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and stiffness components A, B, D, Bs, Ds, Hs, Fs, Xs and As 

are given as 
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By substituting Eqs. (35) into Eq. (34), the equation of 

motion can be expressed in terms of displacements (u0, v0, 

w0, θ) and the appropriate equations are obtained as 
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Where the following differential operators (dij, dijl and 

dijlm) are given as 
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2.5 Closed-form solutions 
 

In this investigation, Navier solution method is 

employed to solve the equation of motion of Eq. (38) and 

assured the boundary conditions (simply supported). The 

Navier method can be expressed in double trigonometric 

functions as follow  
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where ω is the frequency of free vibration of the FG-plate, 

1i = − the imaginary unit with 

/m a =  and bn / =

 

(41) 

Substituting Eq. (40) into Eq. (38), the following 

equation is obtained 
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Table 1 Non-dimensional fundamental frequency “ŵ ” of 

isotropic square plate (a=10, v=0.3, h/a=0.1, E=30×106) 

Model Var. 
Mode (m, n) 

(1, 1) (1, 2) (2, 2) (2, 3) (3, 3) (2, 4) (1, 5) 

Zhou et al. (2002) - 0.0932 0.2226 0.3421 0.5239 0.6889 0.7511 0.9268 

Jha et al. (2013) 10 0.0932 0.2226 0.3421 0.5240 0.6892 0.7515 0.9275 

Akavci and 
Tanrikulu (2015) 

6 0.0932 0.2227 0.3424 0.5247 0.6902 0.7526 0.9290 

Benahmed 

et al. (2017) 
5 0.0932 0.2229 0.3425 0.5248 0.6904 0.7528 0.9294 

Farzam-Rad 

et al. (2017) 
5 0.0932 0.2227 0.3423 0.5243 0.6896 0.7520 0.9284 

Shahsavari 
et al. (2018b) 

5 0.0932 0.2226 0.3421 0.5240 0.6892 0.7514 0.9274 

Present 4 0.0934 0.2234 0.3436 0.5264 0.6924 0.7548 0.9318 

 

 

3. Numerical results and discussion 
 

 In this part, the dynamic behavior analysis of simply 

supported FG-plate reposed on elastic foundations 

(Winkler/Pasternak/Kerr) is investigated. Several numerical 

results of frequency parameters for isotropic perfect and 

imperfect FG plate are presented in explicit tables and 

graphs.  

 

For comparison, the following non-dimensional 

foundation parameters and fundamental natural frequencies 

are employed (Benahmed et al. 2017, Wattanasakulpong 

and Ungbhakorn 2014) 

Frequency parameters: 
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3.1 Isotropic plate  
 
The Table 1, shows the non-dimensional fundamental 

frequency “ ̂ ” of simply supported isotropic square plate 

with (h/a=0.1 and E=30.106). The obtained results are  

 

 
 

 

Table 2 Non-dimensional fundamental frequency “𝜔̃” of FG-plates 

h/a Model 
b/a=1 b/a=2 

p=0 p=1 p=2 p=0 p=1 p=2 

0.1 

Jin et al. (2014) 0.1135 0.0870 0.0789 0.0719 0.0550 0.0499 

Mantari et al. (2014) 0.1135 0.0882 0.0806 0.0718 0.0557 0.0510 

Farzam-Rad et al. (2017) 0.1136 0.0882 0.0806 0.0719 0.0558 0.0510 

Shahsavari et al. (2018b) 0.1135 0.0882 0.0806 0.0718 0.0557 0.0510 

Present 0.1138 0.0884 0.0807 0.0720 0.0558 0.0510 

0.2 

Jin et al. (2014) 0.4169 0.3222 0.2905 0.2713 0.2088 0.1888 

Mantari et al. (2014) 0.4168 0.3260 0.2961 0.2712 0.2115 0.1926 

Farzam-Rad et al. (2017) 0.4170 0.3262 0.2961 0.2714 0.2116 0.1926 

Shahsavari et al. (2018b) 0.4168 0.3260 0.2961 0.2720 0.2115 0.1926 

Present 0.4185 0.3272 0.2966 0.2724 0.2124 0.1929 

0.5 

Jin et al. (2014) 1.8470 1.4687 1.3095 0.9570 0.7937 0.7149 

Mantari et al. (2014) 1.8505 1.4774 1.3219 1.3040 1.0346 0.9293 

Farzam-Rad et al. (2017) 1.8528 1.4788 1.3226 0.9570 0.7961 0.7193 

Shahsavari et al. (2018b) 1.8503 1.4772 1.3218 1.3039 1.0345 0.9293 

Present 1.8588 1.4836 1.3254 1.3110 1.0400 0.9318 

Table 3 Non-dimensional fundamental frequencies “  ” of square FG-plates resting on Winkler-Pasternak 

foundations (p=2.3, Ec/Em=10, h/a=0.1) 

pG
 Model εz Var. 

wK  

0 10 100 1000 

0 

Lü et al. (2009) ≠0 - 5.1295 5.1520 5.3498 7.0281 

Benahmed et al. (2017) ≠0 5 5.1638 5.1871 5.3923 7.1262 

Thai and Choi (2011) =0 4 5.2385 5.2605 5.4548 7.1116 

Shahsavari et al. (2018b) ≠0 5 5.1556 5.1791 5.3855 7.1285 

Present ≠0 4 5.1637 5.1870 5.3920 7.1250 

10 

Lü et al. (2009) ≠0 - 5.5560 5.5767 5.7600 7.3450 

Benahmed et al. (2017) ≠0 5 5.6059 5.6274 5.8171 7.4527 

Thai and Choi (2011) =0 4 5.6576 5.6780 5.8584 7.4257 

Shahsavari et al. (2018b) ≠0 5 5.6004 5.6220 5.8127 7.4565 

Present ≠0 4 5.6055 5.6269 5.8165 7.4514 

25 

Lü et al. (2009) ≠0 - 6.1404 6.1591 6.3255 7.7962 

Benahmed et al. (2017) ≠0 5 6.2103 6.2297 6.4015 7.9172 

Thai and Choi (2011) =0 4 6.2336 6.2521 6.4164 7.8734 

Shahsavari et al. (2018b) ≠0 5 6.2080 6.2275 6.4002 7.9230 

Present ≠0 4 6.2095 6.2289 6.4006 7.9157 
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compared with those given by exact 3D solution developed 

by Zhou et al. (2002) and the existing quasi-3D theories in 

the literature such as ten variables quasi-3D theory 

published by Jha et al. (2013), six variables quasi-3D theory 

developed by Akavci and Tanrikulu (2015), and five 

variables quasi-3D theories of (Benahmed et al. 2017, 

Farzam-Rad et al. 2017, Shahsavari et al. 2018b). From the 

table, it can be seen that the present theory with only four 

unknown is in good agreement with exact 3D solution and 

 

 

others Quasi-3D theories. 

 

3.2 Functionally graded plate (FGM) 
 
The second part of the results is reserved for 

functionally graded plate. The properties of materials used 

in the FG-plate are the alumina Al2O3 (ceramic) with 

Young’s modulus Ec=380 GPa and density Ec=3800 kg/m3 

and the second material is aluminum Al with Young’s  

Table 4 Non-dimensional fundamental frequencies “𝜔̃” of square isotropic and FG-plates resting on Winkler-

Pasternak foundations 

wK  pG  h/a Model 
p 

0 0.5 1 2 5 

0 0 

0.05 

Benahmed et al. (2017) 0.0291 - 0.0226 0.0207 - 

Baferani et al. (2011) 0.0290 0.0249 0.0227 0.0209 0.0197 

Shahsavari et al. (2018b) 0.0291 0.0248 0.0226 0.0206 0.0195 

Present 0.0291 0.0248 0.0226 0.0207 0.0195 

0.1 

Benahmed et al. (2017) 0.1136 - 0.0883 0.0807 - 

Baferani et al. (2011) 0.1134 0.0975 0.0891 0.0819 0.0767 

Shahsavari et al. (2018b) 0.1135 0.0970 0.0882 0.0806 0.0755 

Present 0.1137 0.0973 0.0883 0.0806 0.0756 

0.15 

Benahmed et al. (2017) 0.2461 - 0.1918 0.1748 - 

Baferani et al. (2011) 0.2454 0.2121 0.1939 0.1778 0.1648 

Shahsavari et al. (2018b) 0.2459 0.2109 0.1916 0.1746 0.1622 

Present 0.2466 0.2116 0.1921 0.1748 0.1624 

0.2 

Benahmed et al. (2017) 0.4174 - 0.3264 0.2965 - 

Baferani et al. (2011) 0.4154 0.3606 0.3299 0.3016 0.2765 

Shahsavari et al. (2018b) 0.4168 0.3586 0.3260 0.2961 0.2722 

Present 0.4184 0.3602 0.3272 0.2966 0.2726 

100 0 

0.05 

Benahmed et al. (2017) 0.0298 - 0.0236 0.0218 - 

Baferani et al. (2011) 0.0298 0.0258 0.0238 0.0221 0.0210 

Shahsavari et al. (2018b) 0.0298 0.0257 0.0236 0.0218 0.0208 

Present 0.0298 0.0257 0.0236 0.0218 0.0208 

0.1 

Benahmed et al. (2017) 0.1164 - 0.0924 0.0854 - 

Baferani et al. (2011) 0.1162 0.1012 0.0933 0.0867 0.0821 

Shahsavari et al. (2018b) 0.1163 0.1006 0.0923 0.0853 0.0809 

Present 0.1165 0.1008 0.0924 0.0854 0.0809 

0.15 

Benahmed et al. (2017) 0.2524 - 0.2011 0.1855 - 

Baferani et al. (2011) 0.2519 0.2204 0.2036 0.1889 0.1775 

Shahsavari et al. (2018b) 0.2522 0.2190 0.2010 0.1855 0.1745 

Present 0.2528 0.2196 0.2014 0.1856 0.1746 

0.2 

Benahmed et al. (2017) 0.4286 - 0.3431 0.3158 - 

Baferani et al. (2011) 0.4273 0.3758 0.3476 0.3219 0.2999 

Shahsavari et al. (2018b) 0.4284 0.3734 0.3431 0.3159 0.2950 

Present 0.4298 0.3748 0.3438 0.3158 0.2948 

100 100 

0.05 

Benahmed et al. (2017) 0.0411 - 0.0386 0.0383 - 

Baferani et al. (2011) 0.0411 0.0395 0.0388 0.0386 0.0388 

Shahsavari et al. (2018b) 0.0411 0.0393 0.0386 0.0383 0.0385 

Present 0.0411 0.0393 0.0386 0.0383 0.0385 

0.1 

Benahmed et al. (2017) 0.1614 - 0.1521 0.1509 - 

Baferani et al. (2011) 0.1619 0.1563 0.1542 0.1535 0.1543 

Shahsavari et al. (2018b) 0.1616 0.1551 0.1525 0.1512 0.1521 

Present 0.1615 0.1550 0.1523 0.1510 0.1516 

0.15 

Benahmed et al. (2017) 0.3537 - 0.3349 0.3323 - 

Baferani et al. (2011) 0.3560 0.3460 0.3422 0.3412 0.3427 

Shahsavari et al. (2018b) 0.3551 0.3421 0.3367 0.3342 0.3358 

Present 0.3544 0.3414 0.3358 0.3328 0.3336 

0.2 

Benahmed et al. (2017) 0.6089 - 0.5794 0.5752 - 

Baferani et al. (2011) 0.6162 0.6026 0.5978 0.5970 0.5993 

Shahsavari et al. (2018b) 0.6137 0.5940 0.5856 0.5815 0.5843 

Present 0.6118 0.5920 0.5828 0.5776 0.5784 
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modulus Em=70 GPa and density ρm=2702 Kg/m3 and the 

poison’s ratio’s is v=0.3 for the both materials (ceramic and 

metal). 

 

3.2.1 Perfect simply supported FG-plate  
The Table 2 illustrates the variation of the non-

dimensional frequency parameter “𝜔̃” of simply supported 

square “b/a=1” and rectangular “b/a=2” FG-plate as 

function of the geometry ratio “h/a” and material index “p”. 

The current results computed using with present four 

variables quasi-3D theory are compared with those obtained 

by quasi-3D theories of (Mantari et al. 2014, Farzam-Rad et 

al. 2017, Shahsavari et al. 2018b) and the exact 3D solution 

developed by Jin et al. (2014). It can be observed from the 

Table that a good agreement is confirmed between the 

present results and those obtained by the other quasi-3D and 

exact 3D theories and this for moderately thick “h/a=0.1”, 

thick “h/a=0.2” and very thick “h/a=0.5” square FG-plate. 

A small difference is noticed between the current results 

and those obtained via exact 3D solution and quasi 3D 

theory of Farzam-Rad et al. (2017) for a very thick 

rectangular FG-plate. It can also be remarkable that the non-

dimensional frequency parameter “𝜔̃” is in direct 

correlation relation with the geometry ratio “h/a” and in 

 

 

inverse relation with material index “p”. 

 
3.2.2 Perfect FG-plates resting on elastic foundation 

(Winkler-Pasternak- Kerr) 
The Table 3 presents the values of the non-dimensional 

fundamental frequencies   of FG square plates resting on 

Winkler-Pasternak foundations with (p=2.3, Ec/Em=10 and 

h/a=0.1). The computed frequencies using the current 

model are compared with those given by a quasi-3D 

theories with five unknowns proposed by Benahmed et al. 

(2017) and Shahsavari et al. (2018b), refined plate theory 

developed by Thai and Choi (2011) and the exact solution 

of Lü et al. (2009). From the obtained results it can be 

observed that the current model gives almost the same 

results as the five variables quasi-3D theories and exact 3D 

solution. It is obvious also that the increase in the values of 

spring constant “ wK ” and shear layer parameter “ pG ” 

leads to an increase in the non-dimensional fundamental 

frequencies, so we can conclude that the presence of the 

foundation makes the plate stiffer.  

The Table 4 illustrates the variations of the non-

dimensional fundamental frequencies “𝜔̃” of FG square 

plates versus the geometry ratios “h/a”, material index “p”  

Table 5 Non-dimensional fundamental frequencies “𝜔̃” of square isotropic and FG-plates resting on Kerr 

foundation ( 100lK = ) 

uK  sK  h/a Model 
Isotropic plate FG plate 

Ceramic Metal P=0.5 P=1.0 P=2.0 P=5.0 

100 0 

0.05 
Shahsavari et al. (2018b) 0.0294 0.0157 0.0253 0.0231 0.0212 0.0202 

Present 0.0295 0.0158 0.0253 0.0231 0.0213 0.0202 

0.1 
Shahsavari et al. (2018b) 0.1149 0.0615 0.0988 0.0903 0.0830 0.0783 

Present 0.1151 0.0616 0.0991 0.0904 0.0831 0.0783 

0.15 
Shahsavari et al. (2018b) 0.2491 0.1337 0.2149 0.1964 0.1801 0.1685 

Present 0.2498 0.1340 0.2156 0.1969 0.1803 0.1686 

0.2 
Shahsavari et al. (2018b) 0.4226 0.2278 0.3661 0.3347 0.3061 0.2838 

Present 0.4242 0.2282 0.3676 0.3356 0.3064 0.2840 

100 100 

0.05 
Shahsavari et al. (2018b) 0.0356 0.0285 0.0329 0.0316 0.0308 0.0305 

Present 0.0356 0.0284 0.0329 0.0316 0.0308 0.0305 

0.1 
Shahsavari et al. (2018b) 0.1396 0.1125 0.1294 0.1245 0.1212 0.1201 

Present 0.1397 0.1123 0.1294 0.1245 0.1210 0.1198 

0.15 
Shahsavari et al. (2018b) 0.3054 0.2487 0.2824 0.2740 0.2666 0.2637 

Present 0.3054 0.2476 0.2840 0.2736 0.2658 0.2624 

0.2 
Shahsavari et al. (2018b) 0.5246 0.4332 0.4906 0.4739 0.4615 0.4560 

Present 0.5242 0.4306 0.4900 0.4726 0.4592 0.4522 

200 100 

0.05 
Shahsavari et al. (2018b) 0.0375 0.0317 0.0351 0.0341 0.0335 0.0334 

Present 0.0375 0.0317 0.0351 0.0341 0.0334 0.0334 

0.1 
Shahsavari et al. (2018b) 0.1473 0.1255 0.1385 0.1345 0.1320 0.1316 

Present 0.1473 0.1252 0.1385 0.1344 0.1318 0.1313 

0.15 
Shahsavari et al. (2018) 0.3228 0.2779 0.3047 0.2964 0.2909 0.2897 

Present 0.3226 0.2766 0.3044 0.2958 0.2898 0.2882 

0.2 
Shahsavari et al. (2018b) 0.5559 0.4850 0.5273 0.5139 0.5047 0.5024 

Present 0.5550 0.4816 0.5262 0.5120 0.5018 0.4978 

200 200 

0.05 
Shahsavari et al. (2018b) 0.0440 0.0419 0.0427 0.0423 0.0422 0.0426 

Present 0.0440 0.0419 0.0427 0.0422 0.0422 0.0426 

0.1 
Shahsavari et al. (2018b) 0.1735 0.1660 0.1687 0.1670 0.1668 0.1684 

Present 0.1733 0.1655 0.1685 0.1667 0.1664 0.1679 

0.15 
Shahsavari et al. (2018b) 0.3819 0.3686 0.3728 0.3694 0.3689 0.3725 

Present 0.3810 0.3664 0.3718 0.3682 0.3672 0.3700 

0.2 
Shahsavari et al. (2018b) 0.6617 0.5511 0.6484 0.6436 0.6431 0.6494 

Present 0.6590 0.5510 0.6454 0.6404 0.6386 0.6424 
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and stiffness parameters of Winkler-Pasternak foundation 
( wK , pG ). The current results are compared with those 

presented by Benahmed et al. (2017), Baferani et al. (2011) 

and Shahsavari et al. (2018b). It can be seen from the table 

that a good agreement is confirmed between the present 

results and those of the models existing in the literature. It 

can be also remarkable that the non-dimensional 

fundamental frequencies “𝜔̃” are in direct correlation 

relation with the geometry ratios “h/a”. It is noticed also 

 

 

that the power index “p” has a slight influence on the 

fundamental frequencies “𝜔̃”. It is confirmed from the 

results that the presence of the elastic foundation leads to an 

increase in the frequency parameter “𝜔̃”. 

The Table 5 shows the effect of Kerr foundation on the 

non-dimensional fundamental frequencies “𝜔̃” of isotropic 

(all ceramic and all metallic) and FG square plates for 

various values of power index “p”, thickness ratios “h/a”, 

upper spring and shear layer parameters ( , )u sK K . The  

Table 6 Variations of frequency parameters “  ” of perfect and imperfect FG-square plates versus the Winkler-

Pasternak foundation stiffness (p=1) 

( wK , pG ) h/a ξ Even porosity Uneven porosity Logarithmic-uneven porosity Mass-density porosity Perfect 

(0,0) 

0.05 

0.05 8.8888 9.0368 9.0368 8.6248 

9.030 
0.1 8.7352 9.0456 9.0456 8.1224 

0.15 8.5656 9.0552 9.0544 7.4713 

0.2 8.3728 9.0656 9.0640 6.5652 

0.1 

0.05 8.6992 8.8408 8.8402 8.4432 

8.836 
0.1 8.5520 8.8464 8.8458 7.9568 

0.15 8.3898 8.8532 8.8526 7.3262 

0.2 8.2058 8.8606 8.8594 6.4470 

0.15 

0.05 8.4131 8.5429 8.5426 8.1670 

8.541 
0.1 8.2761 8.5456 8.5456 7.7040 

0.15 8.1248 8.5494 8.5492 7.1036 

0.2 7.9539 8.5542 8.5534 6.2656 

0.2 

0.05 8.0635 8.1795 8.1795 7.8280 

8.180 
0.1 7.9385 8.1800 8.1800 7.3930 

0.15 7.8015 8.1815 8.1810 6.8285 

0.2 7.6450 8.1835 8.1830 6.0395 

(100,0) 

0.05 

0.05 9.3248 9.4560 9.4560 9.0736 

9.439 
0.1 9.2032 9.4752 9.4744 8.6240 

0.15 9.0696 9.4960 9.4936 8.0440 

0.2 8.9192 9.5176 9.5136 7.2491 

0.1 

0.05 9.1372 9.2608 9.2602 8.8936 

9.246 
0.1 9.0216 9.2770 9.2764 8.4588 

0.15 8.8948 9.2950 9.2932 7.8990 

0.2 8.7532 9.3142 9.3106 7.1298 

0.15 

0.05 8.8538 8.9654 8.9654 8.6202 

8.954 
0.1 8.7480 8.9797 8.9788 8.2082 

0.15 8.6328 8.9939 8.9930 7.6783 

0.2 8.5037 9.0108 9.0072 6.9482 

0.2 

0.05 8.5095 8.6080 8.6080 8.2865 

8.598 
0.1 8.4160 8.6195 8.6190 7.9025 

0.15 8.3140 8.6320 8.6305 7.4075 

0.2 8.1995 8.6455 8.6430 6.7240 

(100,100) 

0.05 

0.05 15.6210 15.5700 15.5680 15.4710 

15.435 
0.1 15.8270 15.7100 15.7030 15.4960 

0.15 16.0580 15.8570 15.8410 15.4990 

0.2 16.3140 16.0100 15.9810 15.4610 

0.1 

0.05 15.4150 15.3570 15.3560 15.2690 

15.226 
0.1 15.6250 15.4950 15.4880 15.3030 

0.15 15.8600 15.6390 15.6230 15.3160 

0.2 16.1210 15.7900 15.7610 15.2900 

0.15 

0.05 15.1180 15.0520 15.0500 14.9780 

14.924 
0.1 15.3340 15.1860 15.1800 15.0240 

0.15 15.5730 15.3260 15.3100 15.0520 

0.2 15.8380 15.4730 15.4450 15.0390 

0.2 

0.05 14.7730 14.6990 14.6980 14.6420 

14.574 
0.1 14.9930 14.8300 14.8230 14.7020 

0.15 15.2360 14.9660 14.9510 14.7430 

0.2 15.5060 15.1080 15.0820 14.7430 
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results computed using the current four variable quasi-3D 

theory are almost identical to those given via quasi-3D 

theory (with five unknown) of Shahsavari et al. (2018b). 

It can be seen from the table that the non-dimensional 

fundamental frequencies “𝜔̃” increase with increasing of 

upper spring and shear layer parameters ( , )u sK K . It can 

also be noted that the presence of the upper spring “ uK ” in 

the foundation of Kerr makes the plate stiffer, we can also 

confirm that the power-law index “p” has a slight influence 

 

 
on the results. The biggest values of the non-dimensional 
frequency are obtained for fully ceramic plate and this is 
due to the high rigidity of ceramic. 

 
3.2.3 Perfect and imperfect FG-plates resting on 

Winkler-Pasternak-Kerr elastic foundation  
In this section, the presence of the porosity in the 

material that makes up the FG-plate is considered. Four 
model of distribution of the micro-voids is examined and 
presented in the following. 

Table 7 Variations of frequency parameters “ ” of perfect and imperfect FG-square plates versus the Kerr 

foundation stiffness (p=1, 100lK = ) 

( uK , sK ) h/a ξ Even porosity Uneven porosity Logarithmic-uneven porosity Mass-density porosity Perfect 

(100,0) 

0.05 

0.05 9.1096 9.2488 9.2488 8.8520 

9.2368 
0.1 8.9720 9.2632 9.2624 8.3768 

0.15 8.8208 9.2784 9.2768 7.7630 

0.2 8.6504 9.2944 9.2912 6.9156 

0.1 

0.05 8.9210 9.0532 9.0526 8.6712 

9.0434 
0.1 8.7898 9.0644 9.0638 8.2114 

0.15 8.6464 9.0770 9.0750 7.6182 

0.2 8.4842 9.0906 9.0874 6.7974 

0.15 

0.05 8.6365 8.7568 8.7568 8.3968 

8.7496 
0.1 8.5152 8.7651 8.7648 7.9602 

0.15 8.3827 8.7748 8.7737 7.3966 

0.2 8.2333 8.7855 8.7833 6.6157 

0.2 

0.05 8.2895 8.3965 8.3965 8.0605 

8.3915 
0.1 8.1810 8.4025 8.4020 7.6520 

0.15 8.0620 8.4100 8.4090 7.1240 

0.2 7.9270 8.4175 8.4160 6.3910 

(100,100) 

0.05 

0.05 12.7090 12.7300 12.7290 12.5250 

12.645 
0.1 12.7830 12.8180 12.8140 12.3710 

0.15 12.8690 12.9120 12.9020 12.1660 

0.2 12.9660 13.0100 12.9910 11.8780 

0.1 

0.05 12.5160 12.5310 12.5290 12.3380 

12.449 
0.1 12.5960 12.6170 12.6130 12.1960 

0.15 12.6880 12.7080 12.6980 12.0060 

0.2 12.7920 12.8030 12.7850 11.7340 

0.15 

0.05 12.2340 12.2380 12.2370 12.0640 

12.159 
0.1 12.3210 12.3220 12.3180 11.9400 

0.15 12.4210 12.4100 12.4000 11.7700 

0.2 12.5330 12.5020 12.4850 11.5220 

0.2 

0.05 11.9020 11.8960 11.8940 11.7410 

11.818 
0.1 11.9980 11.9760 11.9720 11.6380 

0.15 12.1060 12.0620 12.0520 11.4920 

0.2 12.2260 12.1510 12.1340 11.2700 

(200,100) 

0.05 

0.05 13.7480 13.7420 13.7410 13.5780 

13.639 
0.1 13.8720 13.8500 13.8440 13.4940 

0.15 14.0130 13.9620 13.9500 13.3700 

0.2 14.1700 14.0820 14.0580 13.1810 

0.1 

0.05 13.5510 13.5380 13.5370 13.3870 

13.438 
0.1 13.6810 13.6440 13.6380 13.3130 

0.15 13.8260 13.7550 13.7420 13.2020 

0.2 13.9890 13.8700 13.8480 13.0280 

0.15 

0.05 13.2650 13.2430 13.2420 13.1080 

13.146 
0.1 13.4010 13.3450 13.3410 13.0490 

0.15 13.5530 13.4530 13.4410 12.9570 

0.2 13.7240 13.5660 13.5440 12.8030 

0.2 

0.05 12.9300 12.8980 12.8970 12.7820 

12.804 
0.1 13.0720 12.9980 12.9920 12.7410 

0.15 13.2320 13.1020 13.0900 12.6690 

0.2 13.4090 13.2110 13.1900 12.5360 
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The Table 6 presents the effects of the imperfection 

(porosity) and the Winkler-Pasternak foundation on the 

frequency parameters “  “ of the thin, moderately thick and 

thick square FG-plates with “ 1p = “. It can be observed 

from the tabulated results that the increase in volume 

fraction porosity of the uneven and logarithmic-uneven 

porosities model has a slight effect on the values of 

frequency parameters “ “ but the mass-density porosities 

model has a significant influence when the parameter of 

porosity “ “ increases.  

It can also be noted from the table that the frequency 

parameter   is in relation inverse with the porosity 

volume fraction “ξ” of even and mass-density porosities 

models but in the case of uneven and logarithmic-uneven 

porosities the frequency parameter   increase with 

increasing of “ξ” even it exceeds the frequency parameter 

of the perfect plate. It is concluded again that the higher 

values of the frequency   is obtained for the plates 

resting on elastic foundation with , 100)( pwK G = . 

The variations of the frequency parameters   of 

perfect and imperfect FG square plates as function of the 

Kerr foundation stiffness is presented in the Table 7. The 

power law index is considered equal one “p=1”, and the 

lower spring stiffness “ 100lK = ”.  

The current results are computed with various 

distributions of the porosities through the thickness of the 

plate (even, uneven, logarithmic uneven and mass density 

porosities). It can be noted from the obtained results that the 

increase in the Kerr foundation stiffness ( ,u sK K ) leads to 

an increase in the frequency  . For the even and masse 

density models, it is confirmed that the frequency parameter 

 decreases with increasing of the porosity volume fraction 

“ξ” but for uneven and logarithmic models this is reversed. 

Fig. 3 illustrates the variation of the non-dimensional 

frequency “  ” of the perfect and imperfect FG-plates 

resting on the elastic foundation versus the thickness ratio 

“a/h” and the spring constant “ wK ” with

( 10 0.05)pG and= = . It can be seen from the plotted 
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Fig. 3 The variation of the non-dimensional frequency “  ” 

of the perfect and imperfect FG-plates versus the thickness 

ratio “a/h” and the spring constant “ wK ” with

( 10 , 1 0.05)pG p and= = =  

 

 

graphs that the non-dimensional frequency “ ” increase 

with increasing of the geometry ratio “a/h” and values of 

the Winkler constant “ wK ”. 

It is clear in the graphs that the existence of the porosity 

(mass density model) leads to a decrease in the values of the 

non-dimensional frequency “ ”. 

The effect of the shear layer parameters “ pG ” and the 

geometry ratio “a/h”  on the non-dimensional frequency “

 ” of perfect and imperfect FG-plates is plotted in the Fig. 

4. The value of the spring constant is considered “

100wK = ”. The plotted curves of imperfect FG-plate are 

computed via mass density model with “ξ=0.05”. From the 

graphs it can be noted that the increase of the shear layer 

parameters “ pG ” leads to an increase in the values of non-

dimensional frequency “ ”. For the great values of “ pG ”, 

it is remarkable that the frequency results of the perfect and 

imperfect plate converge.  

Table 7 Continued 

( uK , sK ) h/a ξ Even porosity Uneven porosity Logarithmic-uneven porosity Mass-density porosity Perfect 

(200,200) 

0.05 

0.05 17.138 17.0540 17.0520 17.0020 

16.895 
0.1 17.406 17.2190 17.2100 17.1050 

0.15 17.703 17.3910 17.3730 17.1980 

0.2 18.033 17.5720 17.5380 17.2640 

0.1 

0.05 16.922 16.8320 16.8300 16.7890 

16.677 
0.1 17.195 16.9950 16.9870 16.9000 

0.15 17.495 17.1650 17.1460 17.0010 

0.2 17.828 17.3420 17.3080 17.0770 

0.15 

0.05 16.614 16.5170 16.5140 16.4860 

16.365 
0.1 16.889 16.6750 16.6670 16.6070 

0.15 17.193 16.8400 16.8220 16.7190 

0.2 17.53 17.0140 16.9800 16.8050 

0.2 

0.05 16.259 16.1540 16.1520 16.1380 

16.006 
0.1 16.537 16.3080 16.3010 16.2700 

0.15 16.843 16.4700 16.4520 16.3920 

0.2 17.18 16.6380 16.6060 16.4820 
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Fig. 4 The effect of the shear layer parameters “ pG ” and 

the geometry ratio “a/h” on the non-dimensional frequency 

“  ” of perfect and imperfect FG-plates with 

( 100 1)wK and p= =  
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Fig. 5 The variation of the non-dimensional frequency “  ” 

of perfect and imperfect plate versus the power index p and 

the spring constant “ wK ” with ( 10pG = , a/h=10 and 

ξ=0.1) 

 

 

The variation of the non-dimensional frequency “ ” of 

perfect and imperfect plate versus the power index p and the 

spring constant “ wK ” is presented in Fig. 5. The shear layer 

parameters is taken “ 10pG = ” and porosity volume 

fraction “ξ=0.1”. It can be seen from the obtained curves 

that the values of the non-dimensional frequency “  ” 

decrease with the increase of the power index “p”. The 

greater values of the frequency parameter are obtained for 

the FG-plate resting on elastic foundation with  

( 400, 10 )w pK G= = . 

Fig. 6 shows the effect of the power index “p” and shear 

layer parameters “ pG ” on the non-dimensional frequency “

 ” of perfect and imperfect FG-plates with ( 100wK = and 

ξ=0.1). From the plotted graphs it can be concluded that the 

non-dimensional frequency “  ” is in direct correlation 

relation with the shear layer parameters “ pG ” and in  
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Fig. 6 The effect of the power index “p” and shear layer 

parameters “ pG ” on the non-dimensional frequency “ ” 

of perfect and imperfect FG-plates with ( 100wK = , a/h=10 

and ξ=0.1) 
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Fig. 7 The effect of the elastic foundation and the porosity 

index “ξ” on the frequency parameter “ ” with (a/h=10 

and p=1) 

 

 

inverse relation with power index “p”. 

Fig. 7 illustrates the effect of the elastic foundation and 

the porosity index “ξ” on the frequency parameter “ ”. 

From the figure it can be seen that the elastic foundation has 

a significant effect on the frequency” ”. It is clear also 

that the presence of the upper spring in the elastic 

foundation (Kerr foundation) gives the greater values of 

frequency “ ” and this is due that the rigidity of the FG-

plate increase. We can also conclude that the frequency “

” decrease with increasing of the porosity volume fraction 

“ξ”. 

 

 

4. Conclusions  
 

In this paper, a hyperbolic four variables quasi-3D 

theory has been presented for dynamic behavior analysis of 

perfect and imperfect FG-plate resting on Winkler-

Pasternak-Kerr elastic foundation. Four different models of 
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porosity distributions are considered for describing porosity 

effect in graded material characteristics. The equations of 

motion of the present problem are derived using the 

Hamilton’s energy principle and solved via Navier 

solutions. The accuracy and efficiency of the present model 

are ascertained by comparing it with other theories, and 

excellent agreement was observed in all examples. We can 

finally conclude that the presence of the micro voids in the 

material has a significant effect on the frequency parameter 

of simply supported FG-plate. An improvement of the 

present formulation will be considered in the future work to 

consider other type of materials (Daouadji 2017, Klouche et 

al. 2017, Yeghnem et al. 2017, Karami et al. 2017, Khetir et 

al. 2017, Panjehpour et al. 2018, Behera and Kumari 2018, 

Shahadat et al. 2018, Karami et al. 2018d, Ayat et al. 2018, 

Kaci et al. 2018, Kadari et al. 2018, Cherif et al. 2018, 

Bouadi et al. 2018, Karami et al. 2018e, f, Yazid et al. 2018, 

Zine et al. 2018, Bensaid et al. 2018, Mokhtar et al. 2018, 

Hussain and Naeem 2019, Draiche et al. 2019, Rajabi and 

Mohammadimehr 2019, Fadoun2019, Benmansour et al. 

2019, Bensattalah et al. 2019, Berghouti et al. 2019, 

Medani et al. 2019, Boutaleb et al. 2019, Karami et al. 

2019c, Hussain et al. 2019). 
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