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1. Introduction 
 

The design of concrete structures involves a wide range 

of parameters and constraints, and a correct answer must be 

able to satisfy all of these constraints. In conventional 

design methods, using some of the parameters as problem 

inputs, the other parameters are calculated. if the answer 

satisfies all the constraints, it can be chosen as the correct 

answer, Otherwise, the input values will be improved and 

this process continues until the user can achieve an answer 

satisfying all constraints. Although the answer to the set of 

solutions is acceptable, the answer may not be optimal. 

Achieving optimal solution with trial and error requires a 

long time and high user experience (Sarma and Adeli 1998). 

To overcome this problem and to achieve real optimal 

solution in the least time, many methods and studies have 

been done. 

In recent decades, many optimization techniques have 

been used to optimize structures. Most of these methods are 

divided into two sections of gradient-based methods and 

random methods (Dizangian and Ghasemi 2015). These 

optimization techniques are used for optimal design 

purposes for structures such as RC frames (Megros 2018, 

Guerra and Kiousis 2006, Tapao and Cheerarot 2017, 

Kaveh and Sabzi 2011), RC beams and columns (Amir and 

Shakour 2018, Sánchez-Olivares and Tomás 2017), RC 

retaining walls (Ghandomi et al. 2017), truss structures 

(Kanno 2019), and estimating the failure probability of 
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structures (Nobahari et al. 2017, Arab and Ghasemi 2015) 

Some of these studies in the field of optimization of 

continuous reinforced concrete beams, are continuously 

described below: 

Friel (1974) studied the singly reinforced flexural 

members with ultimate strength method. He obtained an 

equation to determine the optimal steel-to-concrete ratio. In 

this method, for the purpose of designing a flexural 

member, the optimal ratio of steel to concrete is used as a 

starting point to find the residual dimensions of the member. 

Chou (1977) uses the Lagrange multiplier method to 

determine the depth and the cross section of flexural steel in 

a singly reinforced T- beam based on ACI code. Kirsch 

(1983) uses a three-step iterative method to optimize the 

rectangular continuous RC-beam. So that in the first level 

optimizes the value of reinforcements based on cross-

sectional dimensions and design moment. on the second 

level, it was designed to optimize the sectional dimensions 

based on design moment, and at the third level to optimize 

the design moment based on elastic analysis results. This 

iterative process begins with the assumption of the initial 

dimensions of the section and the determination of the 

moment under the ultimate loads by the elastic analysis 

method and is reversed from the third to the first level. 

Parakesh et al. (1988) uses Lagrangian and simplex 

methods to optimize singly and doubly RC beams, slabs, T-

shaped RC beams, and columns with different strengths of 

steel and concrete according to requirements of Indian code. 

Karihaloo (1991) has used sequential linear programming 

and sequential convex programming techniques for 

optimizing single and multi-span RC beams and RC 

columns. Chakabarty (1992) has used geometric 
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programming and Newton-Rapson methods to optimize the 

RC rectangular beams. 

Coello et al. (1997) has used a simplified genetic 

algorithm to optimize the singly reinforced rectangular 

beam. The results obtained from this method were 

compared with the results of geometric programming 

method. Koumousis and Arsenis (1998) have been 

developed a genetic algorithm to optimize members of 

multi-storey RC buildings. Leps (2003) uses a combination 

of genetic algorithm and simulated annealing to optimize 

the RC beam according to the EC2. Govindaraj and 

Ramasamy (2007) used a genetic algorithm for optimizing 

the cross-sectional dimensions and reinforcement detailing 

in the T-shaped RC beam with regard to the serviceability, 

strength and ductility constraints, according to Indian 

regulations. The area of steel is defined as a set of 

longitudinal bars with a given number and diameter in a 

database. Barros et al. (2005) has optimized the rectangular 

RC sections according to EC2 and compared its results to 

the ultimate strength design based on the ACI. Fedghouche 

and Tiliouine (2012) used a gradient reduction method to 

optimize the T-shaped RC beams under ultimate design 

loads according to EC2. due to the impact of the beam 

weight on the long spans on the ultimate bending moment 

capacity, in the objective function and related constraints, it 

is considered variable as well (Fedghouche 2012). Jahjouh 

et al. (2013) uses an improved artificial bee colony 

algorithm to optimize the RC rectangular beam based on 

ACI. The dimensions of the beam are assumed to be the 

same at all spans. Sharafi et al. (2012) has optimized the 

multi-span RC beams under the dynamic response using the 

Ant colony algorithm. Ozturk et al. (2012) has optimized 

the cost of an RC beam with Simple supports using the bee 

colony algorithm. 

The present study, using a new method, attempts to 

achieve the best solution by satisfying all resistance, 

exploitation, and other constraints related to the RC 

continuous beam according to ACI318-14 (2014). On the 

longitudinal reinforcement detailing design of the RC beam, 

the area of steel is completely dependent on the dimensions 

of the cross section of the beam in each span. Regarding 

this, in this study, a two-stage process has been used to 

optimize the details of longitudinal bars of continuous RC 

beams. The dimensions of the cross section of the RC beam 

in each span are the input parameters of stage one. In the 

second step by using a catalog list, a precise answer is given 

to the longitudinal reinforcement details in each span.  
The optimization of shear bars is one of the complicated 

problems of concrete structural members (Prera and Vique 
2009). In recent studies (Govindaraj and Ramasamy 2005, 
Jahjouh et al. 2013), the design process of the shear 
reinforcement details along the RC beam has been 

continuously applied in each span in the usual manner 
based on codes. In this study, by minimizing gradient-based 
methods, the equation is related to the total number of shear 
bars during each of the spans optimized and the least weight 
of the shear reinforcement is obtained. 

Among the methods of random optimization, we can 

refer to a variety of meta-heuristic methods (Munk et al. 

2015). PSO (Hanoon et al. 2017), GA (Senouci and Al-

Ansari 2009, Pérez et al. 2012), ABC (Tapao and Cheerarot 

2017), HS (Akin and Saka 2015) and SA (Paya-Zaforteza et 

al. 2009) algorithms are well-known and widely used 

algorithms for the optimization of concrete structures. All 

these methods are based on a search in a random space. The 

TLBO-based algorithm is an emerging and population-

based algorithm that was presented by Rao et al. (2011). 

This algorithm is inspired by the teacher's influence on 

student learning in the classroom and is based on two 

phases: Teacher and students (Rao et al. 2012). This 

algorithm has been considered in many engineering 

sciences, including mechanics (Rao and More 2015), 

structural engineering (Farshchin et al. 2016, Cheng and 

Prayego 2017) and has proved its ability to solve complex 

engineering problems. Further, the steps for each section are 

explained in detail and are fully discussed. 

 

 

2. Optimal detail designing of reinforcement 
 

The optimum detail design of longitudinal 
reinforcement is possible in a continuous RC beam, in a 
multi-stage process and in accordance with specific design 
criteria. For a RC beam with specified dimensions and 
loading in each span, the maximum bending moment and 
shear force at each point of the continuous beam is 
determined. In the first step, the required area of the 
longitudinal steel at each point of the length of the beam is 
determined. In the second step, using a catalog list 
containing all longitudinal reinforcement patterns, based on 
the results of the step one, the pattern with the least 
longitudinal steel weight is chosen as the optimal pattern of 
the longitudinal reinforcement of the span. 

   

2.1 Catalog list production process 
 

In order to ensure the operational structure of the 

required area of steel in the RC beam, it should be 

expressed as a set of bars with a specific number and 

diameter. In previous studies (Govindaraj and Ramasamy 

2005), a separate database was created for each width of the 

beam but, in the present study, before the start of the 

optimization process, all the possible patterns for 

longitudinal reinforcement can be determined by changing 

the number and diameter of the bars, and stored as a general 

database. This database is called at each stage of optimal 

details design of longitudinal reinforcement. This process 

will accelerate the optimization process and select the best 

available mode according to the rules mentioned in the 

code. Each section of the beam is considered as a singly 

reinforced layer and longitudinal compressive bars are not 

included in the calculations. The area of required 

longitudinal steel consists of four groups of bars with a 

different number and diameter. This leads to the optimal 

possible range, based on the area of required longitudinal 

steel in each section of the beam. In this study, for the 

production of the catalog list, the minimum and maximum 

number of longitudinal bars in the RC beam is considered to 

be 2 and 8 respectively. 

According to Fig. 1, 𝑛𝑖 and Ф𝑖 are the number and 

diameter of the longitudinal bars of each group, 

respectively. The minimum values of 𝑆 and 𝐶 are based  
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Fig. 1 cross-sectional longitudinal reinforcement detail 

pattern 

 

 

on the ACI318-14, with the largest values of  25 mm 𝑑𝑏, 

1.33𝑑𝑎𝑔𝑔 , and 40 mm respectively. 𝑑𝑏  is the largest 

diameters of longitudinal bars and 𝑑𝑎𝑔𝑔  is the largest  

 

 

diameter of aggregate in concrete. in order to consider all 

modes, 12, 14, 16, 18, 19, 20, 22, 24, 25, 26, 28 and 30 

standard diameters are used for longitudinal bars. Each 

pattern is created by changing the diameter and the number 

of bars. If longitudinal bars with different diameters are 

used in a longitudinal reinforcing bar placement pattern, the 

effective depth of section is calculated considering the 

largest diameter of the longitudinal bar used in the given 

pattern. However, the method used in this study has no 

limitations in the number and diameter of longitudinal bars. 

Taking into consideration the above conditions, all possible 

states of the diameters and the numbers of longitudinal bars 

are produced. What the strength point of this approach is 

that, unlike recent studies (Govindaraj and Ramasamy 

2005) in which, patterns with the same longitudinal steel are 

removed from the set, in this approach, compounds with the 

same longitudinal steel due to the effect the diameter of the 

bar in determining the development length are retained. In 

the production of the catalog list, the 𝑏𝑚𝑖𝑛  parameter is  

 

Table 1 Part of the catalog list produced in this study 

𝑏𝑚𝑖𝑛(mm) 𝐴𝑠(mm2) Ф30 Ф28 Ф26 Ф25 Ф24 Ф22 Ф20 Ф19 Ф18 Ф16 Ф14 Ф12 Patt no 

number of patterns with 2 bar=12 

149 226.19 0 0 0 0 0 0 0 0 0 0 0 2 1 

153 307.87 0 0 0 0 0 0 0 0 0 0 2 0 2 

157 402.12 0 0 0 0 0 0 0 0 0 2 0 0 3 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

190 1413.70 2 0 0 0 0 0 0 0 0 0 0 0 12 

number of patterns with 3 bar=144 

186 339.29 0 0 0 0 0 0 0 0 0 0 0 3 13 

188 380.13 0 0  0 0 0 0 0 0 0 1 2 14 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

250 21206 3 0 0 0 0 0 0 0 0 0 0 0 156 

number of patterns with 4 bar=78 

223 452.38 0 0 0 0 0 0 0 0 0 0 0 4 157 

227 534.07 0 0 0 0 0 0 0 0 0 0 2 2 158 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

310 2827.4 4 0 0 0 0 0 0 0 0 0 0 0 234 

number of patterns with 5 bar=936 

260 565.48 0 0 0 0 0 0 0 0 0 0 0 5 235 

262 606.32 0 0 0 0 0 0 0 0 0 0 1 4 236 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

370 3534.3 5 0 0 0 0 0 0 0 0 0 0 0 1170 

number of patterns with 6 bar=364 

297 678.58 0 0 0 0 0 0 0 0 0 0 0 6 1171 

301 760.26 0 0 0 0 0 0 0 0 0 0 2 4 1172 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

430 4241.2 6 0 0 0 0 0 0 0 0 0 0 0 1534 

number of patterns with 7 bar=4368 

334 791.68 0 0 0 0 0 0 0 0 0 0 0 7 1535 

336 832.52 0 0 0 0 0 0 0 0 0 0 1 6 1536 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

490 4948.00 7 0 0 0 0 0 0 0 0 0 0 0 5902 

number of patterns with 8 bar=1365 

371 904.77 0 0 0 0 0 0 0 0 0 0 0 8 5903 

375 986.46 0 0 0 0 0 0 0 0 0 0 2 6 5904 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

550 5654.90 8 0 0 0 0 0 0 0 0 0 0 0 7267 
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calculated and stored. This parameter represents the 

minimum possible value for the width of the RC beam. 

Table 1 shows part of the catalog list produced in this study. 

 

2.2 How to choose the optimal longitudinal 
reinforcement pattern 
 

Due to the optimal design and weight reduction of the 

consumption steel in a continuous RC beam, the pattern of 

cutting longitudinal bars by the critical areas of bending 

moments along the beam is used (Akin and Saka 2015, 

Jahjouh et al. 2013). Therefore, the longitudinal bars in the 

beam can be divided into the longitudinal continuous bars 

and longitudinal additional bars (Extra bars). Choosing the 

best longitudinal reinforcement pattern is divided into two 

sections of the selection of continuous bars and the 

selection of additional bars. With regard to the different 

nature of the selection of continuous longitudinal bars and 

additional longitudinal bars in different areas of the RC 

beam, each section is explained and addressed separately.  

 

2.2.1 Selection of continuous longitudinal bar    
For continuous RC beams, the process of selecting 

continuous longitudinal bars for the positive and negative 

bending moment is the same. the process by applying 

limiting conditions to the catalog list produced in the 

previous sections begins. based on the ACI (22-3-1-1) the 

required area of the longitudinal steel in each section of the 

beam is determined by using the Eq. (1). 

(1)    𝐴𝑠 = 0.85𝑑𝑏
𝑓𝑐

′

𝑓𝑦

+ √(0.85𝑑𝑏
𝑓𝑐

′

𝑓𝑦

)2 −
1.7𝑓𝑐

′𝑏𝑀𝑢

∅𝑓𝑦
2

 

In Eq. (1), ∅ is the resistance reduction coefficient that 

is equal to 0.9, 𝑀𝑢  is the maximum bending moment 

produced by the analysis, 𝐴𝑠 is the required area of tensile 

longitudinal steel, 𝑓𝑦 is the yielding resistance of the steel, 

𝑑 is the effective depth of the cross section, 𝑏 is the width 

of the beam and 𝑓𝑐
′  is the compressive strength of the 

concrete. The minimum and maximum required area of the 

longitudinal steel in the beam are calculated based on the 

ACI (9-6-1-2) and ACI (9-3-3-1), respectively. 

After determining the above values, using the set of 

effective conditions, the unauthorized patterns are 

eliminated from the list and only the patterns that can be 

applied in all of the advanced conditions are maintained in 

the set. The limiting conditions of the catalog list at this 

stage are as follows:  

• Patterns with longitudinal steel area larger than the 

permitted amount of rules are deleted. 

(𝐴𝑠,𝑝𝑎𝑡𝑡 > 𝐴𝑠,𝑚𝑎𝑥,𝑎𝑙𝑙) 

𝐴𝑠,𝑝𝑎𝑡𝑡  is the longitudinal steel area of each of the 

patterns in the catalog list. 

𝐴𝑠,𝑝𝑎𝑡𝑡 − 𝑚𝑎𝑥(𝐴𝑠,𝑚𝑎𝑥,𝑠𝑝𝑎𝑛𝑖
) > 𝜀  , 𝑖 = 1, … , 𝑁𝑠𝑝𝑎𝑛  

• Patterns with a longitudinal steel area larger than the 

maximum longitudinal steel area in all the spans will be 

emitted. The closest longitudinal steel area to the maximum 

required area of longitudinal steel in all of the spans is 

maintained in the catalog list. 

𝐴𝑠,𝑚𝑎𝑥,𝑠𝑝𝑎𝑛  is the maximum required area of 

longitudinal steel in each span, 𝑁𝑠𝑝𝑎𝑛 is the total number of 

spans, and ε is defined as the difference between the 

maximum required area of longitudinal steel in all spans 

with the closest longitudinal steel area larger than that. 

𝐴𝑠,𝑝𝑎𝑡𝑡 < 𝑚𝑎𝑥(𝐴𝑠,𝑚𝑖𝑛,𝑠𝑝𝑎𝑛𝑖
) , 𝑖 = 1, … , 𝑁𝑠𝑝𝑎𝑛 

• After limiting the area of the longitudinal steel in each 

span, based on the minimum permissible values in the code, 

patterns with longitudinal steel area smaller than the largest 

minimum area of longitudinal steel in all the spans are 

totally emitted. 

𝐴𝑠,𝑚𝑖𝑛,𝑠𝑝𝑎𝑛  is the minimum required area of 

longitudinal steel in each span. 

𝑏𝑠𝑝𝑎𝑛 > 𝑏𝑚𝑖𝑛 

• Patterns with larger 𝑏𝑚𝑖𝑛   than the width of the beams 

are deleted. 

𝑏𝑠𝑝𝑎𝑛 is the width of the beam in each span.  

After applying all the above conditions, the numbers of 

patterns allowed for continuous longitudinal bars are 

significantly reduced. At this stage, the remaining patterns 

are tested for additional longitudinal bars. 

 

2.2.2 Selection of additional longitudinal bars 
Selection of additional longitudinal bars is a process that 

is completely dependent on longitudinal bars. Therefore, at 

each stage of the testing process of the continuous 

longitudinal bars is repeated. For this purpose, the RC beam 

is continuously divided into different regions. The number 

of these zones for the longitudinal bars of the positive and 

negative bending moment is 𝑁𝑠𝑝𝑎𝑛  and 𝑁𝑠𝑝𝑎𝑛 − 1 

respectively. Additional longitudinal bars are positioned at 

the bottom for the positive bending moment of the beam, in 

the middle of the span and for the negative bending moment 

above the beam, in the supports. Every zone of the 

continuous beam is Separately examined and the best 

longitudinal reinforcement pattern for it, is determined as 

well. The limiting conditions of the catalog list for the 

selection of additional longitudinal bars are as follows:  

• Patterns that do not include continuous longitudinal 

bars of the preceding stage will be deleted.  

• Patterns with a greater longitudinal steel area than the 

maximum permitted in the code, are eliminated.  

(𝐴𝑠,𝑝𝑎𝑡𝑡 > 𝐴𝑠,𝑚𝑎𝑥,𝑎𝑙𝑙) 

• Patterns with a smaller longitudinal steel area than the 

maximum longitudinal steel area in each area are 

eliminated. 

𝐴𝑠,𝑝𝑎𝑡𝑡 < 𝐴𝑠,𝑚𝑎𝑥,𝑠𝑝𝑎𝑛𝑖
  , 𝑖 = 1, … , 𝑁𝑠𝑝𝑎𝑛 

• Patterns with larger 𝑏𝑚𝑖𝑛  than the width of the beams 

are deleted.  

𝑏𝑠𝑝𝑎𝑛 > 𝑏𝑚𝑖𝑛 

• Based on the ACI (9-5-1-1), patterns with a design 

bending strength less than the maximum flexural strength of 

the analysis in each area are eliminated.  

∅𝑀𝑛,𝑝𝑎𝑡𝑡 < 𝑀𝑢,𝑚𝑎𝑥,𝑠𝑝𝑎𝑛𝑖   , 𝑖 = 1, … , 𝑁𝑠𝑝𝑎𝑛 
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𝑀𝑢,𝑚𝑎𝑥,𝑠𝑝𝑎𝑛𝑖    is the maximum bending moment 

produced by the analysis in each span and ∅𝑀𝑛,𝑝𝑎𝑡𝑡  is the 

design bending strength based on the dimensions of cross-

section at each span for each pattern. 

• Based on ACI (9-7-3-8-2), patterns in which have 

longitudinal attachments larger than 4 times the number of 

continuous longitudinal bars in the previous step are 

eliminated.  

(2) 

     𝐿𝑑 = (
𝑓𝑦

1.1𝜆√𝑓𝑐
′

𝛹𝑡𝛹𝑒𝛹𝑠

(
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
)

) 𝑑𝑏 ≥ 300 𝑚𝑚 , 

𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏

≤ 2.5 

After applying the above conditions, the number of 

patterns allowed for additional longitudinal bars in each 

area decreases significantly. Based on the ACI clause (9-7-

3-2), according to the flexural moment diagram, the 

theoretical cutoff points in each region are determined to 

control the length of the extra longitudinal bars. The 

development length for each of the rebar patterns is 

determined based on the largest diameter in the pattern, 

according to ACI (25-4-2-3) and Eq. (2).   

In Eq. (2), 𝛹𝑡 , 𝛹𝑒 , 𝛹𝑠   are development length 

coefficients and are calculated using the ACI (25-4-2-4)  . 𝑑𝑏 

is the largest existing diameter in the rebar reinforcement 

pattern, 𝑐𝑏 is the smallest distance from the center of the 

rebar to the concrete surface and half the distance from the 

center to the center of the bars, 𝜆 is the modification factor 

of concrete, that is used for concrete with a normal weight 

of 1, and 𝐾𝑡𝑟 is the transverse reinforcement index, which 

is calculated by Eq. (3). 

(3) 𝐾𝑡𝑟 =
40𝐴𝑣

𝑆𝑣𝑛
 

In the Eq. (3), 𝐴𝑣 is the area of the cross-section of the 

shear bars, 𝑆𝑣 is the distance between the shear bars, which 

based on ACI(9-7-6-2-2) due to considering the most 

stringent condition is equal to d/2 and 𝑛, is the number of 

extra longitudinal bars that are developed. Fig. 3 shows how 

to determine the length of the extra longitudinal bars based 

on the distance from the critical points c and the theoretical 

points of the x in the spans with an identical and non-

identical height.  

In the following, for all allowed patterns at the same 

time, the development length values are calculated and, 

according to the ACI clause (9-7-3-2), the length of the 

additional longitudinal bars is determined. Then, the 

additional longitudinal reinforcement pattern with the 

 

 

lowest weight for each zone is selected as the optimal 

solution of that zone. This process is repeated individually 

for all positive and negative flexural moment zones and the 

best longitudinal cross bars for each continuous longitudinal 

reinforcement pattern are selected. The least weight pattern 

is stored as the optimal solution. The best solution of the 

longitudinal bar in the continuous beam is the sum of the 

best response to the longitudinal bars of the positive 

moment and the longitudinal bar of negative bending 

moment. 

It is worth noting that other criteria of the code, 

including the length of the lap splices, the length of the 

bend and the straight extension of rebar, are based on the 

ACI (9-5-7-7), (25-3-1) and (25-5-2-1) in order to 

determine the optimal solution.  

 

2.3 Optimal shear reinforcement selection 
 

The optimal shear reinforcement process can be done 

simultaneously with the process of determining the optimal 

longitudinal rebar. The shear reinforcement in this study is 

done as a vertical stirrup along the openings of the RC 

beam. For this purpose, the maximum shear force input on 

the beam is calculated based on the shear force diagram of 

the various loading components and is limited to the 

distance d from the support, according to the clause (9-4-

2-3) of the ACI. The nominal shear strength of an RC beam 

section is defined in accordance with the ACI (22-5-1-1) as 

defined in Eq. (4) in which 

(4) ∅𝑉𝑛 = ∅(𝑉𝑐 + 𝑉𝑠) 

In Eq. (4), 𝑉𝑐 is the nominal shear strength of concrete, 

𝑉𝑠 is the nominal shear strength of the shear steel, and ∅ is 

the strength reduction coefficient which is 0.75 based on 

The ACI (21-2-1). The nominal shear resistance of concrete 

is determined according to the ACI clause (22-5-5-1). The 

nominal shear strength of steel is calculated based on ACI 

(22-5-10-5-3) using Eq. (5).  

(5) 𝑉𝑠 =
𝐴𝑣𝑓𝑦𝑑

𝑆𝑣

 

In continuous beams, shear force near the support is 

greater than the shear force in the middle of the crater. 

Based on the ACI (22-5-1-10), for selecting the optimum 

shear reinforcement rebar, each span can be divided into 

several zones based on the shear value. In this study, each 

span of the continuous RC beam is divided into three zones. 

These three zones include the internal zone, the middle zone 

and the terminal zone. The spacing of shear rebar in the 

internal and the terminal zones are calculated and controlled  

 

Fig. 2 Determination of the length of additional longitudinal bars in the spans 
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Fig. 3 Segmentation of the span to different zones for 

shearing reinforcement 

 

 

based on shear force at distance d from the support using 

the Eq. (4)-(5), ACI(9-6-3-3) and ACI(9-7-6-2-2) with the 

permitted values of the code. The length of the internal and 

the terminal zones and the distance between the shear bars 

in the middle zone are the design variables at this stage. Fig. 

3 Shows how to divide each span according to the method 

described. 

The optimization equation is calculated as the total 

number of shear bars in three zones. Since the objective 

function is to reduce the weight of the shear bars, the 

problem of optimization is minimized and is defined as Eq. 

(6). 

(6) 

𝑀𝑖𝑛 𝑍𝑖 = 𝑛𝑣1,𝑖 + 𝑛𝑣2,𝑖 + 𝑛𝑣3,𝑖    , 𝑖 = 1, … , 𝑁𝑠𝑝𝑎𝑛 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑆𝑣,𝑖,𝑗 ≥ 𝑆𝑣,𝑎𝑙𝑙    , 𝑗 = 1,2,3 

𝑆𝑣,𝑖,𝑗 , 𝐿𝑖,𝑗
′ ≥ 0 

In the Eq. (6), Sv,i,j is the shear rebar spacing in every 

one of the zones and  𝐿1,𝑖
′ + 𝑑, 𝐿2,𝑖

′ + 𝑑 and 𝐿3,𝑖
′ = 𝐿1,𝑖

′′ +

𝐿2,𝑖
′′  are the length of the internal, terminal and middle 

zones respectively. 𝑛𝑣1,𝑖, 𝑛𝑣2,𝑖 and  𝑛𝑣3,𝑖 ,are the number 

of shear bars in the internal, terminal and middle zones in 

every single span respectively, which are determined as 

follows: 

   𝑛𝑣1,𝑖 = [
𝐿𝑖,1

′ + 𝑑 − 𝑆1

𝑆𝑣,𝑖,1

] + 1  , 𝑛𝑣2,𝑖 

= [
𝐿𝑖,2

′ + 𝑑 − 𝑆1

𝑆𝑣,𝑖,2

] + 1  , 𝑛𝑣3,𝑖 = [
𝐿𝑖,3

′

𝑆𝑣,𝑖,3

] − 1 

𝑆1, the distance between the first rebar of the edge of the 

support is 50 mm. Also, the values 𝐿1,𝑖
′′  and 𝐿2,𝑖

′′  are 

assumed to be the same. After solving Eq. (6) based on the 

derivatives, the lengths of the internal, middle, and terminal 

zones are determined, and subsequently the number of shear 

bars in each zone is obtained as well. Then the Eq. (7) is 

used to calculate the weights of the shear bars in the 

reinforced concrete beam. 

(7) 𝑊𝑣 = ( ∑ ∑
𝜋

4

3

𝑗=1

𝑑𝑘
2

𝑁𝑠𝑝𝑎𝑛

𝑖=1

× 𝑛𝑣,𝑖,𝑗 × 𝐿𝑣,𝑖) × 𝛾𝑠 

In Eq. (7),  𝑊𝑣  is the weights of shear bars in the 

continuous beam, 𝑑𝑘 the diameter of the shearing rebar, 

𝑛𝑣,𝑖,𝑗 is the Number of shear bars in every existing zones 

for each span, 𝐿𝑣,𝑖  is the length of the shearing rebar in 

each span and 𝛾𝑠 is the specific weight of the steel. In this 

study, shear reinforcement with the same area and 10, 12 

and 14 diameters are used in the whole RC beam. The 

number, spacing and diameter of the shear reinforcements 

relative to the lowest weight of the shear bars are stored as 

the optimal solution and their weight is added to the total 

weight of the steel consumed in the beam.  

It is worth noting that prior to the beginning of the 

process of reinforcement optimizing, according to the ACI 

(22-5-1-2), if the maximum shear force in the continuous 

beam exceeds the permitted value of the ACI code, the 

dimensions are not accountable and the cross section is 

rejected. The related flowchart for selecting the optimal 

longitudinal and shear reinforcement for the specified 

dimensions of the beam is shown in Fig. 4. 

 

 

3. Formulation of the optimal design problem in a RC 
beam 

 

An optimal design problem involving objective 

function, design variables, boundaries related to design 

variables and constraints is discussed below. The optimal 

solution in the optimization process is the solution that, in 

addition to minimizing or maximizing the objective 

function, satisfies the corresponding constraints. The 

various sections of the optimal design problem for RC beam 

are defined as follows:  

 
3.1 The objective function 

 

Optimization of concrete structures is done in order to 

reduce the cost of concrete, steel, and casting. Therefore, 

the objective function is used to minimize the total cost of 

the above items. objective function can be expressed as Eq. 

(8).  

(8) 𝐹 = 𝑉𝑐𝑜𝑛𝐶𝑐𝑜𝑛 + 𝑊𝑠𝑡𝐶𝑠𝑡 + 𝐴𝑓𝐶𝑓 

𝑉𝑐𝑜𝑛  is consumed concrete volume in beam, 𝑊𝑠𝑡  is 

consumed concrete weight in beam, 𝐴𝑓  is the molding 

area, 𝐶𝑐𝑜𝑛 is concrete unit cost, 𝐶𝑠𝑡 is steel unit cost, and 

𝐶𝑓 is molding unit cost. The value of 𝑊𝑠𝑡 is calculated in 

the previous step and the values of 𝑉𝑐𝑜𝑛  and 𝐴𝑓  are 

calculated using Eqs. (9)- (10). 

(9) 
      𝑉𝑐𝑜𝑛 = ∑ 𝑏 ℎ𝑖𝐿𝑐𝑖

𝑁𝑠𝑝𝑎𝑛

𝑖=1

+ ∑
𝑤

2

𝑁𝑠𝑝𝑎𝑛

𝑖=2

 𝑏 

|ℎ𝑖−1 − ℎ𝑖| +
𝑤

2
𝑏(ℎ1 + ℎ𝑁𝑠𝑝𝑎𝑛

) 

(10) 

𝐴𝑓 = ∑ 𝑏 𝐿𝑖

𝑁𝑠𝑝𝑎𝑛

𝑖=1

+ ∑ 2 ℎ𝑖𝐿𝑐𝑖

𝑁𝑠𝑝𝑎𝑛

𝑖=1

 

+ ∑ 𝑤

𝑁𝑠𝑝𝑎𝑛

𝑖=2

|ℎ𝑖−1 − ℎ𝑖| + 𝑤(ℎ1 + ℎ𝑁𝑠𝑝𝑎𝑛
) 
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𝑏 is concrete beam width,  ℎ𝑖 is the height of the beam 

per opening, 𝐿𝑖 net length of each span, 𝐿𝑐𝑖  the the center 

to center length of the support in each span, and 𝑤 is the 

width of the support. 

 

3.2 Design variables  
 

In this study, optimization of the continuous RC beam is 

divided into two separate sections. For this purpose, the 

design variables required to start the algorithm are limited 

to the dimensions of the RC beam at each span. This will 

simplify the process of optimization and reduce the 

computational volume. Since generally, the width of the 

beam is considered to be the same in all spans (Govindaraj 

 

 

and Ramasamy 2005, Jahjouh el al. 2013), so in this study, 

the beam width is assumed to be the same and only the 

beam height is considered different in each span. The 

number of variables in terms of the number of spans is 

expressed as 𝑁𝑠𝑝𝑎𝑛 + 1. 

 

3.3 Constraints 
 

Due to the nature of the concrete structures construction, 

a series of restrictions are always applied to the design 

process, the optimization of concrete structures, including 

continuous RC beams. whole these restrictions are applied 

to optimization problems as constraints. 

• At each span, the effective depth ratio to the width of 

 

Fig. 4 Optimization method flowchart for longitudinal and shear bars used in this study 
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the beam should be within the range defined by the user. 

This study limits this value between 1 and 2, thus:  

(11) 1 ≤
𝑑𝑖

𝑏
≤ 2  , 𝑖 = 1, … , 𝑁𝑠𝑝𝑎𝑛 

• Based on the ACI (9-5-1-1), at every node of the beam, 

the value of the design flexural and shear strength should be 

greater than the flexural and shear strength obtained from 

the analysis at that node, respectively.  

(12) 𝑀𝑟 = ∅𝑀𝑛 ≥ 𝑀𝑢 ,  𝑉𝑟 = ∅𝑉𝑛 ≥ 𝑉𝑢  

• The longitudinal steel area at each cross section of the 

continuous beam should be smaller than the maximum 

required longitudinal steel area calculated value based on 

clause (9-3-3-1) of ACI. 

(13)     𝐴𝑠 ≤ 𝐴𝑠,𝑚𝑎𝑥,𝑎𝑙𝑙  

• according to the ACI (9-6-1-2), longitudinal steel area 

at each section of the beam should be greater than the 

minimum required area longitudinal steel according to the 

code.  

(14) 𝐴𝑠 ≥ 𝐴𝑠,𝑚𝑖𝑛,𝑎𝑙𝑙  

• according to ACI (25-2-1), the minimum net distance 

between the longitudinal reinforcements at each section of 

the beam should be greater than the maximum value of 

25 mm  , 𝑑𝑏,𝑚𝑎𝑥  and 1.33𝑑𝑎𝑔𝑔. 𝑑𝑏  is the largest diameters 

of longitudinal bars and 𝑑𝑎𝑔𝑔 is the largest diameter of 

aggregate in concrete. 

• Based on ACI (9-7-3-8-2), at least one quarter of the 

longitudinal bars in the beam should extend over the beam 

to the support.  

• Based on the ACI (9-6-3-3), the ratio of the shearing 

bar area to the distance between stirrups should be greater 

than the minimum value specified by the code.  

(15)        (
𝐴𝑣

𝑆𝑣

)𝑟𝑒𝑞 ≥ (
𝐴𝑣

𝑆𝑣

)𝑚𝑖𝑛,𝑎𝑙𝑙 

• Based on clause (9-7-6-2-2) of the ACI, the distance 

between the shear bars 𝑆𝑣, in every section of the beam, 

must be less than the maximum value of code . 

• The height of the beam in each span must be lower 

than the allowable maximum permitted by the code. The 

minimum allowed height per spans for continuous one way 

spans, to L/18.5 and for continuous two way spans to L/21 

are limited. L is the net length of the span. 

 

 

4.Optimization algorithm  
 

The TLBO-based algorithm is inspired by the impact of 

a teacher on students in the classroom, as well as the impact 

of interaction between students on their learning. In this 

algorithm, every solution is considered as a single student 

and design variables are defined as student’s marks. 

Student’s grades distributions in a class follows the normal 

distribution function. one strength point of the TLBO 

algorithm is that this algorithm, unlike other meta-heuristic 

methods, such as PSO, GA and etc., only consists of control 

parameters of population and maximum iteration (Rao and 

Vakharia 2012). This algorithm consists of two main 

phases, which are as follows:  

 

4.1 Teacher phase 
 

In this phase, the teacher, as the person with the highest 

level of knowledge in the classroom, is using his abilities to 

bring the class level to a level equal to itself. The class level 

is measured based on the average grades of students in that 

class. The education process can be defined mathematically 

as follows 

(16)      𝐷𝑖𝑓𝑓𝑟𝑒𝑛𝑐𝑒_𝑀𝑒𝑎𝑛𝑖 = 𝑟𝑖(𝑋𝑇 − 𝑇𝐹𝑀𝑖)   , 𝑖 = 1, … , 𝑁𝑖𝑡𝑒𝑟 

𝑋𝑇  is Teacher's position as the best answer in each 

iteration, 𝑀𝑖 is average scores of all students per iteration, 

𝑁𝑖𝑡𝑒𝑟  is the Number of algorithm repetitions, and 𝑇𝐹  is the 

teaching factor that varies between 1 and 2 , and finally 𝑟𝑖 

is a random number between zero and 1. After this step, the 

new position for each solution is determined based on Eq. 

(17). 

(17)   𝑋𝑛𝑒𝑤,𝑖 = 𝑋𝑜𝑙𝑑,𝑖 + 𝐷𝑖𝑓𝑓𝑟𝑒𝑛𝑐𝑒_𝑀𝑒𝑎𝑛𝑖  

If the new solution has a better fit than the previous one, 

it will replace the previous answer.  

   
4.2 Student phase 

 

In a class, students, in addition to learning from the 

teacher, improve and exceed their knowledge and 

information by interacting each other. In this phase, one 

student is randomly selected based on one single student 

(these two answers must not necessarily be the same) and 

then the interaction between two students takes place based 

on Eq. (18)  

(18) 
   𝑋𝑛𝑒𝑤,𝑖 = 𝑋𝑜𝑙𝑑,𝑖 + 𝑟𝑖(𝑋𝑖 − 𝑋𝑗)    𝑖𝑓   𝑓(𝑋𝑖) < 𝑓(𝑋𝑗) 

   𝑋𝑛𝑒𝑤,𝑖 = 𝑋𝑜𝑙𝑑,𝑖 + 𝑟𝑖(𝑋𝑗 − 𝑋𝑖)    𝑖𝑓   𝑓(𝑋𝑗) < 𝑓(𝑋𝑖) 

This process is repeated for each student, and if the new 

solution has a better fit than the previous solution, it 

replaces the previous answer. In Fig. 5 The steps of the 

TLBO algorithm are displayed.  

The TLBO algorithm, as well as the optimal design 

process for longitudinal and shear bars, has been developed 

using the Microsoft Windows 10, 64 Bit, and 8 GB RAM 

and Intel Corei7 2.2 GHz CPUs in the MATLAB R2014a 

software environment. 

 

 

5. Constraints handling method 
 

On a problem of minimization, the optimal answer is the 

answer that, in addition to minimizing the objective 

function, considers all of the constraints. If an answer has a 

violation of the limits specified in the problem in the search 

space, it should be addressed. The method of penalty 

function is one of the traditional and the usual methods for 

dealing with constraints (Mezura-Montes et al. 2011). In 

this study, unlike recent studies, the Deb constrains 

handling method (Deb 2000) has been used, which is one of 

the suitable methods for dealing with constraints for the 

algorithms such as GA and TLBO. The basis of this method  
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is the use of a tournament selection operator between the 

two available solution. The value of the violation of 

solutions are determined according to the type of inequality 

as follows 

(19) 

then:  𝑔𝑖(𝑥) = 𝐶𝑖,𝑎𝑙𝑙(𝑥) − 𝐶𝑖(𝑥) 

≥ 0 , 𝑖 = 1, … , 𝑁𝑐𝑜𝑛𝑠 
if  𝐶𝑖(𝑥) ≤ 𝐶𝑖,𝑎𝑙𝑙(𝑥) ; 

then:  𝑔𝑖(𝑥) = 𝐶𝑖(𝑥) − 𝐶𝑖,𝑎𝑙𝑙(𝑥) 

≥ 0 , 𝑖 = 1, … , 𝑁𝑐𝑜𝑛𝑠 
elseif 𝐶𝑖(𝑥) ≥ 𝐶𝑖,𝑎𝑙𝑙(𝑥) ; 

𝐶(𝑥) is the value of design variables in the problem, 

𝐶𝑎𝑙𝑙(𝑥)  is the allowable value assigned to the design 

variable by the user, 𝑔(𝑥) is an inequality constraint in the 

problem that should always be greater than zero, and 𝑁𝑐𝑜𝑛𝑠  

is the number of problem constraints. The suitability value 

of every single response is calculated based on the amount 

of the violation according to Eq. (20). 

 

 

(20) 𝐹(𝑥) = {

𝑓(𝑥)                 if 𝑔𝑖(𝑥) ≥ 0 , 𝑖 = 1, … , 𝑁𝑐𝑜𝑛𝑠

𝑓𝑚𝑎𝑥 + ∑ |𝑔𝑖(𝑥)|          otherwise             

𝑁𝑐𝑜𝑛𝑠

𝑖=1

 

In Eq. (20), 𝐹(𝑥) is the fitness of answers, 𝑓(𝑥) is the 

objective function in the problem, 𝑓𝑚𝑎𝑥 is the worst fitness 

of the solutions in the possible region of Problem (solutions 

that do not exceed the constraints),  𝑔(𝑥)  is unequal 

constraints and 𝑁𝑐𝑜𝑛𝑠 are the total number of constraints in 

the problem. If all solutions have violations of constraints at 

each iteration of the optimization algorithm, 𝑓𝑚𝑎𝑥 will be 

zero. Accordingly, the set of commands for the selection of 

the competitor is defined as follows:  

• If two answers do not violate, then, the more suitable 

answer is chosen.  

• If one answer has no constraint violation and the other  

 

Fig. 5 TLBO algorithm Flowchart 
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has, then the answer to which the violation is not 

constrained is selected.  

• If both answers contain violations of the constraint, 

then the answer which has the least violations of the 

constraint, is chosen.  

This operator is used at the end of the two phases of the 

TLBO algorithm. Using this method, in addition to having a 

proper look up with solutions, does not require any control 

parameters and results in non-violent solutions.  

 

 

6. Design examples  
 

In order to evaluate the efficiency of the method 

described in this study to optimize continuous RC beam, 

three examples of RC continuous beams are provided. In all 

cases, based on ACI (5-3-1), in order to achieve the most 

critical live load condition, maximum positive bending 

moment in the middle of the span and the maximum 

negative bending moment in the support of the various 

combiners of loading of the load are considered as follows:  

1. The live load on all spans is alternative.  

2. live loads on the adjacent spans are applied fully and 

on other spans are used alternatively.  

Then, the design was based on the maximum positive 

bending moment, the maximum negative bending moment, 

and the maximum shear force obtained from the analysis. 

Loading components are defined as follows according to 

ACI (ACI318 2014).  

(21) 
𝑈 = 1.4 𝐷𝐿 

𝑈 = 1.2𝐷𝐿 + 1.6𝐿𝐿 

𝐷𝐿 is a uniform dead load applied on each span and 𝐿𝐿 

is uniform live loading on each span. The beam weight is 

variable based on the dimensions and is calculated in every 

single analysis and then is added to the dead load on each 

span. based on ACI318-14, in order to consider the effect of 

cracking, the moment inertia of the beam cross section is 

calculated as 𝐼𝐵𝑒𝑎𝑚 = 0.35𝐼𝑔  .where 𝐼𝑔  is the gross 

moment of inertia of the beam cross section. 

The continuous beam with determined length and cross- 

 

 

 

sectional dimension is modeled, analyzed and verified in 

the ETABS software, then results are obtained with the 

first-order analysis using coding in the same mathematical 

environment. 

 

6.1 First example, two-span continuous beam 
 

In this case, a two-span beam has a simple support. the 

lengths of spans, details about the loading and other 

constraints are considered as Jahjouh et al.’s (2013) 

numerical example. Details are shown in Fig. 6. The 

lengths of spans from the left are 4 m  and 7 m . the 

width of all supports are 200 mm. Concrete compressive 

strength, 𝑓𝑐
′  equals to 20 MPa   and 𝑓𝑦 , steel yielding 

tension, equals to 420 MPa. Concrete specific weight and 

its unit costs are 25 kN/m3 and 100  USD/m3 

respectively. the specific weight of steel and the cost per 

unit of steel consumption are respectively 78.5 kN/m3 

and 87  USD/kN  also the molding unit cost equals to 

5  USD/m2. The width and height of the beam in both spans 

are fixed and the maximum and minimum values of the 

depth and width of the beam in each opening are 500 to 

1000 mm and 300 to 700 mm, with a step of 50 mm.  

All the development length coefficients are considered 

as Jahjouh et al.’s (2013) article. Jahjouh et al. (2013) 

considered 6𝑁𝑠𝑝𝑎𝑛 + 3 design variables for the 

optimization algorithm, While, at the presented approach in 

this study, only depth and width of cross section are 

variables of the optimization algorithm. The maximum 

iteration in the TLBO algorithm is equal to 50 and the 

population size 10 is used to examine the presented 

approach and the optimization method. The criterion of 

termination is determined by maximum iteration of the 

algorithm or non-changing of the objective function in 3 

successive sequences. The details of the longitudinal rebar 

reinforcement of the beam are shown in Table 2. For an 

optimal solution of 300 mm width and 600 mm height, total 

number of possible patterns for continuous longitudinal bars 

of the negative and the positive flexural moment after the 

constraints apply and remove unauthorized are 448 and 407 

of total 7267 respectively. For additional longitudinal bars,  

 

Fig. 6 Details of loading and length of spans in first problem 

Table 2 Optimal design details of the longitudinal bar for the first example 

Top reinforcement Bottom reinforcement 
Height 

(mm) 

Width 

(mm) 
Method Span Volume 

(m3) 
Add bar 

(right) 

Add bar 

(left) 
Cont. Volume (m3) Add bar Cont. 

9.189×10-3 
4Ф22 ---- 

3Ф12 13.21×10-3 
---- 5Ф12 

600 300 

Jahjouh 

et al. 

(2013) 

1 

---- 4Ф22 3Ф20 3Ф20 2 

8.64×10-3 
4Ф22 ---- 

2Ф12 11.79×10-3 
---- 

2Ф19 600 300 
Present 

Study 

1 

---- 3Ф24 2Ф16 +1Ф28 2 
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Table 3 The values of concrete, steel, and the formwork for 

the first example 

Cost of components Quantity 
Method Steel 

(USD) 
Formwork 

(USD) 
Concrete 

(USD) 

Steel 

(kN) 
Formwork 

(m2) 
Concrete 

(m3) 

N. A N. A N. A N. A N. A N. A 
Jahjouh et 

al. (2013) 

178.78 81.9 198.9498 2.055 16.38 1.989 
Present 

Study 

Number of 

Analyze 
Iteration no Optimum Cost (USD)  

58640 723 461.758 
Jahjouh et 

al. (2013) 

90 4 459.69 
Present 

Study 

 

 

2641 longitudinal reinforcement patterns for a negative 

bending moment region and totally 10279 patterns for both 

areas of the positive bending moment have been 

investigated simultaneously. the intervals, the location of 

the cuttings and the length of the longitudinal bars are 

simplified to multiples of 5 in order to perform the structure 

properly. With regarding to the different values of the 

number and diameter of bars used for the continuous 

longitudinal bottom reinforcement in the presented method 

by Jahjouh et al. (2013), the presented approach by this 

study achieved to smaller than the amount of consumption 

steel. 

The cost of concrete, steel, and the molding of the 

optimal design, are totally mentioned in Table 3. it should 

be noted that the columns named “Iteration no” gives the 

iteration number at which the optimum has been achieved. 

Number of beam analyzed at the optimization process are 

shown in Table 3, Too. It should be mentioned that the 

TLBO algorithm archives the optimal solution in less than 

two minutes with an iteration number of 4 with 90 analyzes. 

The details of the shear reinforcement in the spans are 

displayed in Table 4 and Fig. 7. In Table 4 The distance 

between the shear bars and the number of stirrups is shown 

in the internal, middle and terminal zones. Straight  

 

 

extension and total length of stirrups in each span are shown 

in Table 4, too. 

The total number of shear bars is calculated from the 

sum of N values in the three corresponding zones. In order 

to calculate the length of the shear bars, related angle and 

the length of the bending are considered based on ACI318-

14 with 135-degree hook.  

 

6.2 Second example, continuous three-span beam  
 

In this case, a three-span beam with a simple support is 

examined. The side and lateral spans have the same length 

and dimensions of the whole cross section is assumed to be 

the same at all spans. details of loading and length of 

openings are shown in Fig. 8. in this problem alike the 

previous one, a symmetric continuous beam is evaluated for 

optimal design consideration. the length of both lateral 

spans is 6 m, the middle span is 4 m and the width of all the 

supports is equal to 300 mm. In this case concrete 

compressive strength, 𝑓𝑐
′ equals to 30 MPa  and 𝑓𝑦, steel 

yielding tension, equals to 400 MPa. 

Concrete specific weight and its unit costs are 

25 kN/m3 and 100  USD/m3  respectively. the specific 

weight of steel and the cost per unit of steel consumption 

are respectively 78.5 kN/m3  and 87 USD/kN  also the 

molding unit cost equals to 5  USD/m2. The width and 

height of the beam in both spans are fixed and the 

maximum and minimum values of the depth and width of 

the beam in each opening are 225 to 900 mm and 225 to 

700 mm, with a step of 25 mm. all the parameters of the 

optimization algorithm are same as the previous example.  
The problem is considered to be two-variable due to the 

uniformity of the width and height of the section in all 
spans. The TLBO algorithm achieves the optimal solution 
in less than two minutes with an iteration number of 4 and 
110 analyzes. The total number of examined patterns for 
optimal solution is equal to total 3078. during the 
optimization process, every specific set of patterns of 
additional bars at each analyze are simultaneously 
examined. 

 
 

 

 Table 4 Optimal shear design details for the first example  

 𝐿𝑒𝑥𝑡 

(mm) 

Stirrups Length 

(mm) 

Terminal Zone Middle Zone Initial Zone 
Span 

 

 N 𝑆𝑣 (mm) Length (m) N 𝑆𝑣 (mm) Length (m) N 𝑆𝑣 (mm) Length (m)  

 75 1625.62 9 265 2.17 4 265 1.315 2 265 0.315 1  

 75 1625.62 5 265 1.11 12 265 3.36 13 190 2.33 2  

 optimum diameter of stirrups=10 mm  

   

 

 

 

 Fig. 7 Results of the optimal design in continuous double-span beam in the first example  
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Table 5 Optimal design details of longitudinal bar for the 

second example 

Top reinforcement 
Bottom 

reinforcement Height 

(mm) 
Width 

(mm) 
Span 

Add bar 

(right) 
Add bar 

(left) 
Cont. Add bar Cont. 

2Ф28 ----  2Ф26   275 1 

2Ф28 2Ф28 2Ф12 ---- 2Ф20 500  2 

---- 2Ф28  2Ф26    3 

 

Table 6 Optimal shear design details for the second example 

𝐿𝑒𝑥𝑡 

 

(mm) 

Stirrups 

Length 

(mm) 

Terminal Zone Middle Zone Initial Zone 
Span 

N 
𝑆𝑣 

(mm) 
Length 

(m) 
N 

𝑆𝑣 
(mm) 

Length 

(m) 
N 

𝑆𝑣 
(mm) 

Length 

(m) 

75 1375.6 13 175 2.15 12 215 2.275 6 215 1.125 1 

75 1375.6 11 215 2.2 3 215 0.675 6 215 1.125 2 

75 1375.6 6 215 1.125 12 215 2.275 13 175 2.15 3 

optimum diameter of stirrups=10 mm 

 

 

For continuous longitudinal rebar reinforcement of the 

negative flexural moment and positive flexural moment 

after applying the constraints and eliminating patterns, 181 

and 218 patterns from 7267 templates remain respectively. 

Details of the optimal design of longitudinal rebar and the 

optimal design details of the shear rebar reinforcement are 

shown in Tables 5-6. Straight extension and total length of 

stirrups with 135-degree hook in each span are shown in 

Table 6, too. Results from Tables 5-6 are drawn in Fig. 9. 

Because of the symmetry existing in the beam and the 

uniformity of the cross section dimensions in all spans, the 

number and length of the longitudinal and shear bars 

relative to the middle span center are symmetrical. The cost 

of concrete, steel, and the molding of the optimal design are 

 

Table 7 The values of concrete, steel, and the formwork for 

the second example 

Optimum 

Cost 

(USD) 

Cost of components Quantity 

Steel 

(USD) 

Formwork 

(USD) 

Concrete 

(USD) 
Steel 

(kN) 

Formwork 

(m2) 

Concrete 

(m3) 

641.524 305.865 103.6375 232.16 3.5157 20.7275 2.3216 

 

 

shown in Table 7. 

As the optimization algorithm in the first and second 

problem has only two variables of designing height and 

width of the reinforced concrete continuous beam at two 

and three spans, the minimum, mean, and maximum values 

of the objective function are thus equal and the standard 

deviation is zero. 

 

8.3 third example, four-span continuous beam  
 

In this case, the optimization of a continuous four-span 

beam is considered. Contrary to the previous two examples, 

in order to better evaluate the method studied in this study, 

the height of the beam in each span is assumed variable and 

the width of the cross section of the beam is assumed to be 

constant at all spans. Therefore, using the TLBO algorithm, 

the 5-variable problem is optimized. Details of loading and 

length of spans has been shown in Fig. 10. 

In this case, the support width, the compressive strength 

of the concrete, 𝑓𝑐
′  , steel yielding stress, 𝑓𝑦 , specific 

weight of concrete, unit cost of concrete, specific weight of 

steel and the cost of steel consumption plus cost of 

formwork unit  and the maximum and minimum values for 

the depth and width of the beam Are considered as the 

second problem.  

Considering the cross-sectional dimensions for all 

variables in the problem optimization algorithm, the search  

 

Fig. 8 Details of the loading and length of spans in the second example 

 

Fig. 9 Optimal design results for double-span beam in the second problem 

 

 
Fig. 10 Details of loading and dimensions of the four-span beam in the third example 
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Table 8 Results for four span beam in third example 

Number of 

Population 

Maximum 

optimum 

Cost (USD) 

Average 

optimum 

Cost (USD) 

Minimum 

optimum 

Cost (USD) 

Standard 

Deviation 

Iteration 

Number 

at 

optimum 

Cost 

50 1309.8901 1309.8901 1309.8901 0.00 17 

40 1309.8901 1309.8901 1309.8901 0.00 21 

30 1309.8901 1309.8901 1309.8901 0.00 22 

20 1334.1006 1322.2166 1317.3351 5.13 27 

10 1358.4187 1333.5701 1325.0541 8.94 39 

 

 

Fig. 11 Convergence diagram of the third example 

 

 

space is equal to   107. In order to investigate the efficiency 

of the TLBO algorithm in solving RC continuous beam 

problems in finding optimal solution, the control parameters 

of the TLBO algorithm have been studied. Since this 

algorithm has only two control parameters: maximum 

iteration and population size, so using the number of 

Different populations size in a number of different iterations 

this algorithm has been evaluated. Minimum, average, 

maximum, and standard deviation values of the objective 

function for 10 run that have been made separately for each 

number of population with maximum iteration equal to 100 

are presented in Table 8. 

Fig. 11 shows the convergence chart for each of the 

population of 10,20,30,40 and 50. It is observed that for all 

convergence charts after the 40th repetition, no change 

occurs in the value of the objective function. However, this 

stability has not occurred in the optimal objective function 

for the convergence diagram of the population of 10 and 20, 

indicating that the algorithm is enclosed in the local 

optimum.  

In this situation, due to the low population of members 

and the nature of the algorithm, that moves in the teacher's 

phase towards the best solution as a teacher, it is enclosed in 

an optimal localization and it is not possible to achieve the 

optimal overall solution. 

This is despite the fact that the population of 30,40 and 

50, can achieve optimal solution in less than 25 iterations, 

based on Fig. 11. What can be distinguished in the members 

of the population in order to achieve the optimal solution, is 

the number of facial analyzes Taken to get the optimal 

solution. Given that the increase in the number of analyzes 

leads to the application of computational cost and an  

Table 9 Optimal design details of longitudinal bar for the 

third problem 

Top einforcement 
Bottom 

reinforcement Height 

(mm) 
Width 

(mm) 
Span 

Add bar  

(right) 
Add bar 

(left) 
Cont. Add bar Cont. 

1Ф19
+ 2Ф26 

---- 

2Ф24 

---- 

2Ф16 

675  1 

3Ф25 
1Ф19
+ 2Ф26 

2Ф25
+  1Ф26 

700 325 2 

1Ф19 3Ф25 
1Ф12
+ 2Ф14 

700  3 

---- 1Ф19 
1Ф12
+ 2Ф14 

450  4 

 

Table 10 Optimal shear design details for the third example 

𝐿𝑒𝑥𝑡 

(mm) 

Stirrups 

Length 

(mm) 

Terminal Zone Middle Zone Initial Zone 

Span 
N 

𝑆𝑣 
(mm) 

Length 

(m) 
N 

𝑆𝑣 
(mm) 

Length 

(m) 
N 

𝑆𝑣 
(mm) 

Length 

(m) 

75 1825.6 9 305 2.49 2 305 0.85 3 305 0.66 1 

75 1875.6 22 190 4.04 6 315 2.11 20 200 3.85 2 

75 1875.6 8 345 2.25 4 315 1.275 13 285 3.47 3 

75 1375.6 6 190 1 5 190 1.05 11 190 1.95 4 

optimum diameter of stirrups=10 mm 

 

 

increase in the duration of the optimal solution, therefore, 

the number of members in the population 30 can be used to 

optimize the continuous RC beam problems, as well as the 

maximum number of iteration in population 40 is to ensure 

optimal solution. Table 9 shows the optimal design results 

for the present problem.  

In order to have the optimal solution to this problem, 

due to consideration of the minimum conditions and the 

maximum cross-sectional length of the longitudinal steel in 

all spans, and the determination of the best possible 

condition, the number of patterns examined from the 

catalog list for continuous longitudinal bars of the positive 

and negative bending moment, is 909 And 750 from 7267, 

respectively. Also for extra longitudinal bars, all of the 

openings for the negative and positive bending moments are 

1606 and 27478, respectively. On the positive bending 

moment, because the first span from the left does not 

require any additional reinforcements in the end, in this way 

all possible patters of the catalog list are compared 

simultaneously at every stage. Due to the simultaneous 

comparison of all the states, this does not significantly 

increase the volume of the problem calculation. 

The results of the shearing reinforcement in every one of 

internal, middle, and terminal zones in each span are shown 

in Table 10. Straight extension and total length of stirrups in 

each span are shown in Table 10, too. In order to calculate 

the length of the shear bars, related angle and the length of 

the bending are considered based on ACI318-14 with 135-

degree hook. as well as all the results of Table 10 are shown 

in Fig. 12 executable. 

It is worth noting that interrupting the longitudinal 

continuous bars in the supports position are based on Fig. 2. 

The bending length and cover patch for the positive flexural 

moment are 500 mm and 350 mm on the support, and for 

the negative bending moment, are 650 mm and 850 mm  
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Table 11 The values of concrete, steel, and the formwork for 

the third example 

Optimum 

Cost 

(USD) 

Cost of components Quantity 

Steel 

(USD) 

Formwork 

(USD) 

Concrete 

(USD) 
Steel 

(kN) 

Formwork 

(m2) 

Concrete 

(m3) 

1309.8901 539.043 214.3 556.59 6.1959 42.86 5.5659 

 

 

respectively. The cost of concrete, steel, and the cost of the 

third problem molding, are given in Table 11. 

 

 

9. Conclusions 
 

This study presents a new method for optimal details 

design for continuous RC beam design. In the optimization 

process, the TLBO optimization algorithm was used and 

design constraints were applied based on the ACI318-14 

code. The method uses a two-step process in which reduces 

the design variables of the optimization algorithm and also 

reduces the volume of assumption steel and the number of 

analyzes needed to achieve optimal solution to other similar 

articles studied in this study. During the optimization 

process, a catalog list, including all possible states for 

longitudinal beam framing has been used, which has a 

significant role in reducing the computational volume in the 

method used. In the production of the catalog list, four types 

of bars were used with different diameters. However, this 

method has no limitations on the number and dimensions, 

and the reduction of the number of the mentioned cases 

leads to the reduction of possible patterns and, 

consequently, the faster convergence of the algorithm to the 

optimal solution based on patterns produced. In the case of 

two-spans and three spans continuous beams, the ability of 

the proposed method was presented, and in the third 

problem, we examined the optimal control parameters of 

the TLBO algorithm. The results of the investigated 

problems show that the method has succeeded in finding the 

optimal solution based on the constraints and reducing the 

computational volume of continuous RC structures, and it 

can also be considered and used as a practical approach for 

designing and optimizing multi-span continuous beams. 

The authors propose the use of the above mentioned method 

to optimize RC concrete frames and reinforced concrete 

bridges. 
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