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1. Introduction 
 

Fire is a destructive force in nature. Unlike other loading 

conditions, i.e., wind, earthquake, blast etc., fire can 

damage structures on two fronts. In the first, high 

temperatures can trigger micro-structure transformation 

within construction materials, leading to material softening 

and weakening (Khoury 2000). In the second front, fire 

effects may also alter geometrical features of structures (or 

structural members for the matter). In this scenario, the 

adverse effects of fire, either directly (i.e., through flames 

and combustion) or indirectly (e.g., fire-induced 

phenomenon etc.), can damage structural integrity and/or 

load bearing capabilities via reduction in member’s 

effective cross section (as in charring of wood members, 

buckling of steel members or spalling in concrete members) 

(Naser 2011). The latter is the focal point of this work. 

Concrete is an inert material and a poor heat conductor 

which makes it attractive for fire engineering applications 

(Erdem 2017, Ibrahimbegovic et al. 2010, Naser and 

Chehab 2018). As a result, concrete structures rarely require 

external fire proofing. In fact, building codes and standards 

lists standardized fire resistance ratings for various 

concrete-based structural members (BSI and European 

Committee for Standardization 2004). These ratings often 

associate a given fire resistance time (i.e., duration of 2 

hours to fire exposure) with member’s cross-sectional 
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dimensions (e.g., width or depth and/or concrete cover to 

interior steel reinforcement). Hence, fire designers may 

simply pick a suitable memberal configuration to satisfy fire 

codal provisions. While this practice has been well-

documented and proven effective, this has also been shown 

to underestimate available fire resistance in concrete 

structural members and been criticized as a result of 

numerous fire incidents and their post-fire investigations 

(Meacham et al. 2009, Peris-Sayol et al. 2017). 

It is worth noting that such criticism primarily stems 

from the fact that standardized fire ratings were developed 

as a result of comprehensive testing programs carried out 

few decades ago. Such tests were conducted on concrete 

materials available in the 1960-70s which, quite frankly, 

share little resemblance to modern concretes given the 

tremendous advancement in material sciences nowadays. 

Traditional concretes are made of a mixture of sand, 

cement, aggregates, and water. Thus, these concretes have 

simple micro-structure, relatively high porosity and are 

hence often referred to as traditional concretes (i.e., normal 

strength concrete (NSC)). On the other hand, modern 

concretes comprise of above components, together with 

advanced admixtures, fillers, and additives, all of which 

complicate mixture homogeneity as well as alter key 

chemical and physical characteristics of concrete (Phan and 

Carino 2000). Some of the modern types of concrete 

include high strength concrete (HSC), high performance 

concrete (HPC), fiber reinforced concrete (FRC) etc. A key 

point to remember is that modern concretes are essentially 

designed to outperform and replace traditional concretes 

and hence are specifically tailored to have high strength 

(dense micro-structure) and durability features (i.e., low 

permeability to mitigate corrosion of steel reinforcement) 
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(Kodur 2018). 

While such properties are ideal for ambient working 

conditions (viz. high-rise buildings/marine and 

transportation infrastructures), the same properties are 

unfavored once concrete is exposed to elevated 

temperatures. This is due to the fact that the dense nature of 

modern concretes, when combined with its low 

permeability, tend to trap water moisture within concrete for 

prolong periods of time. Under fire conditions, generated 

heat evaporates this moisture which then turns into water 

vapor. Vapor accumulates within capillary voids/pores and 

once vapor pressure exceeds a threshold (i.e., tensile 

strength of concrete), concrete spalls (Klingsch 2014). This 

phenomenon occurs under fire conditions, and as such 

measures to mitigate fire-induced spalling are seldom put 

into place due to the fact the building codes continue to 

recognize fire as a primary loading effect. As such, fire 

rarely governs the design of a structure as opposed to other 

loading effects such as wind or earthquake loading etc. 

(CEN 2002).  

A number of researchers examined fire-induced spalling 

phenomenon through classical means i.e., experimentations 

(Boström et al. 2018, Kalifa et al. 2001, Zhang et al. 2016), 

numerical simulations (Dwaikat and Kodur 2009), 

analytical works (Bažant and Thonguthai 1979) etc. A close 

look into these works shows that they tend to involve a 

tedious procedure and been only verified against few tests. 

Hence, the applicability of traditional methods to evaluate 

concrete’s tendency to spall under fire conditions might not 

be viable nor easily applied. In order to overcome some of 

the challenges and limitations associated with previously 

developed methodologies, this study explores the potential 

of utilizing artificial intelligence (AI) into comprehending 

the process of fire-induced spalling in concrete structures. 

In recent years, AI has become an attractive and promising 

technique to solve complex and seemingly random 

engineering phenomena (Boussabaine 1996, Cobaner, et al. 

2009, Kisi and Çobaner 2009, Lee et al. 2004, Seitllari et al. 

2019, Naser et al. 2012, Naser 2018, Seitllari 2014, Seitllari 

and Kutay 2018). A major advantage of AI is its capability 

to learn from observations and patterns and ability to 

produce predictive models; potentially waving the necessity 

for expensive and cumbersome experimental works. In the 

context of concrete materials and structures, AI has been 

employed in a multitude of perspectives as documented in 

recent studies (Ashteyat and Ismeik 2018, Asteris and 

Kolovos 2017, Bilgehan and Kurtoğlu 2016, Eredm et al. 

2013, Hodhod et al. 2018, Lingam and Karthikeyan 2014, 

Mansouri et al. 2018, Mansouri and Kisi 2015, Naser et al. 

2012, Naser and Seitllari 2019, Saha and Kumar 2017, 

Yavuz 2019). 
In this work, the application of traditional analysis (viz. 

multilinear regression (MLR)), and AI computing 
techniques namely: artificial neural network (ANN), 
adaptive neuro-fuzzy interface system (ANFIS), and genetic 
algorithm (GA), are implemented to develop predictive 
models for fire-induced spalling in concrete structural 
members. The proposed models take into account geometric 
(cross sectional dimensions and thickness of concrete 
cover), material (concrete type and compressive strength) as 
well as loading features (i.e., concentric or eccentric  

 

Fig. 1 Typical response of RC columns under fire 

conditions 

 

 

loading) when evaluating fire-induced spalling of reinforced 

concrete (RC) columns. Furthermore, these models 

implicitly account for high temperature material properties 

of constituent materials, and as such do not require input of 

such properties nor special solution framework. The validity 

of these models was examined against actual fire-tested RC 

columns collected from various fire tests. 

 

 

2. Fire-Induced explosive spalling in concrete 
columns – An overview 

 

Before introducing the developed AI methodology, a 

concise review on fire behavior of RC columns is beneficial 

to understand the complexity of fire-induced explosive 

spalling in such members. When fire breaks out, cross-

sectional temperature in surrounding structural members 

(say a RC column) starts to slowly rise. This slow rise in 

temperature is due to the inherently low thermal 

conductivity and high specific heat of concrete as well as 

presence of moisture (in concrete micro-structure). As a 

result, a significant amount of heat is required to raise 

temperature in concrete. Thus, in the initial stage of fire, a 

thermal gradient develops in which the temperature at the 

exposed surface of concrete is much higher than that at the 

inner layers of concrete1 (see Fig. 1(a)). At this stage, the 

fire-exposed RC column typically expands, under higher 

load it will only contract as shown in Fig. 1(b). Later on, 

and due to the rise in cross-sectional temperature and 

associated degradation in strength properties, the column 

starts to weaken. This corresponds to a contraction stage in 

which the axial deformation of the column decreases and 

shifts from an expansion-controlled (noted in the positive 

side of Fig. 1(b) into a contraction-controlled (noted in the 

negative side of the same figure). 

With the continuous rise in sectional temperature, the 

strength and Young’s modulus properties of both concrete 

 
1 While steel reinforcement has much higher thermal 

conductivity and lower specific heat than concrete, the 

temperature in steel can still be assumed to be similar to 

that of the surrounding concrete (as the area of 

reinforcement is very small as compared to that of concrete 

cross-section). 
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and steel reinforcement starts to degrade. This degradation 

is slow as it reflects the reliance on concrete material under 

elevated temperatures. Still, the degradation in strength and 

Young’s modulus properties could be accelerated by fire-

induced effects such as spalling of concrete. Spalling can be 

broadly grouped under two classes; explosive spalling and 

corner spalling (Khoury 2000). Explosive spalling tends to 

occur violently and during the early stages of fire exposure 

and this type of spalling is primarily governed by the 

development of pore pressure facilitated by moisture 

migration as well as the development of thermal gradients; 

once temperature in concrete layers reaches 220-280°C (Liu 

et al. 2018). On the other hand, corner spalling mainly 

occurs gradually and along the edges of members due to 

unrestrained thermal expansion in the transverse direction. 

In either case, once spalling occurs, a reduction in cross-

sectional mass of concrete column is expected and with the 

increase of fire exposure duration and further losses in 

mechanical properties of concrete and reinforcing steel, the 

column eventually fails. In general, a RC column 

undergoing spalling is prone to fail before a similar column 

that does not undergo spalling (given that both are subjected 

to similar loading and fire conditions). 

 

 
3. Data collection 
 

In order to feed the developed AI-based models, a 

literature review was first carried out to collect studies and 

data points from fire tests associated with fire-induced 

spalling. In this process, notable works were identified and 

then reviewed (Hass 1986, Kodurand McGrath 2003, Kodur 

et al. 2001, Kodur et al. 2000, Lie and Woollerton 1988, 

Myllymaki and Lie 1991, Rodrigues et al. 2010). From 

these studies, critical factors were extracted including 

geometrical, material, loading and spalling features of fire-

tested RC columns. For example, the National Research 

Council of Canada (NRCC) carried out a number of 

research programs to examine the behavior of RC columns 

made of normal strength, high strength, and high-

performance concretes under fire. In one study, Lie and 

Woollerton (Lie and Woollerton 1988) tested 41 RC 

columns under standard fire conditions while varying shape 

(square, rectangular, and circular), cross-sectional size 

(203×203 mm2–406×406 mm2), ratio of longitudinal steel 

rebars (2.19–3.97%), type of aggregate (carbonate, siliceous 

and lightweight), compressive strength of concrete (34-42 

MPa), load magnitude (0–90%). 
In a separate testing program, Kodur et al. (Kodurand 

McGrath 2003, Kodur et al. 2001, 2000) carried out fire 
tests on high strength and high-performance RC columns 
and noted the tendency of these columns to fire-induced 
spalling. In their tests, Kodur et al. (Kodurand McGrat, 
2003, Kodur et al. 2001, 2000) varied a number of features 
such as spacing of ties, as well as loading configuration 
(i.e., eccentricity). More recently, Shah and Sharma (Shah 
and Sharma 2017) conducted fire resistance experiments on 
8 RC columns, 6 that were made of normal strength 
concrete and 2 comprising of high strength concrete. These 
8 columns were longitudinally reinforced with eight steel 
rebars each of 16 mm diameter and were embedded behind 

40 mm concrete cover. Other fire tests were also carried out 
by Myllymi and Lie (1991), Rodrigues et al. (2010). It 
should be noted that a complete list of the 89 selected 
columns is provided in Table A in the Appendix. 

 

 
4. Methodology and rationale 
 

This section summarizes both mathematical and 
computational aspects of the traditional analysis procedure 
and AI computing techniques. Four techniques, namely: 
multilinear regression (MLR), adaptive neuro-fuzzy 
interface system (ANFIS), artificial neural network (ANN) 
and genetic algorithm (GA) were used to develop predictive 
models for fire-induced spalling in concrete. Detailed 
descriptions of these modeling approaches are provided 
herein. 

 

4.1 Multi-Linear Regression (MLR) 
 
The multi-linear regression method attempts to establish 

a relation between two (or more independent variables) and 

one dependent variable by means of fitting a linear equation 

into experimental (measured) data points. For example, 

consider y to be the response (dependent variable), and a1, 

a2…, az to be predictor variables, thus the MLR equation 

can be defined using Eq. (1) 

where ξ0 is the intercept regression coefficient, ξ1, ξ2…, ξz 

are the regression parameters projected using the least-

square error between the estimated and experimental 

response (Chapra and Raymond 2010). 

Before the MLR model is developed, the input 

arguments are selected based on the principal analysis 

concept (Bro and Smilde 2014). The main idea of this 

concept is to investigate the influence of each input variable 

on the response (dependent variable) and then only select 

the most influential input variables for further 

consideration. Thus, the available experimental data points 

were randomly separated into two groups including a 

training set and a testing set. The training set (≈80% of the 

data points) comprised of the model regression coefficient 

determination of MLR. The predictive strength of the MLR 

generated model was then validated using the testing set 

(≈20% of the data points). According to the resultant 

sensitivity analysis, a potential correlation was 

distinguished among the following input combinations: 

compressive strength of concrete (fc), the width of RC 

column (Brc), the magnitude of loading eccentricity (e), and 

magnitude of applied loading (P). As such these parameters 

were chosen to be input variables.  

 

4.2 Artificial Neural Networks (ANNs) 
 

The conceptual design of an artificial neural network 

(ANN) mimics the biological neural network of the brain. 

This technique is known for its ability to break down and 

solve very complex and/or nonlinear problems using simple 

mathematical operations (Kisi and Çobaner 2009). In ANN, 

artificial neurons act as processing hubs and use 

𝑦 =  𝜉0 +  𝜉1𝑎1 +  𝜉2𝑎2+ . . . . + 𝜉𝑧𝑎𝑧 (1) 

273



 

A. Seitllari and M.Z. Naser 

 

mathematical functions to determine the behavior of 

received inputs/data points. This study applied a commonly 

used type of ANNs known as multi-layer feed-forward 

neural network. This ANN is structured by interconnected 

neurons, grouped in layers with each layer fully connected 

to the successive layer (see Fig. 2). It is worth noting that 

recent studies have reported that ANN can be a promising 

technique for understanding the nature of complex 

phenomena and hence is its potential is examined herein 

(Boussabaine 1996, Lee et al. 2004, Naji et al. 2016, Naser 

et al. 2012, Seitllari 2014, Seitllari and Kutay 2018) 

Once input into the first layer, input data flows only 

from the input layer towards hidden and output layers. 

Every neuron processes the received input vector and relays 

the information to the following layer through specific 

connections. The process of forward flowing of data is 

known as the feed-forward network. The model 

development consists of two main processing phases: 

training and testing. For a given set of data, the training 

phase of multi-layer feed-forward neural network befits in 

arranging various weights to acceptable limits. This process 

continues for a pre-defined number of iterations and/or as 

long as a pre-specified error tolerance is achieved between 

experimental and ANN-predicted output. After the training 

process is finalized, it is expected that the retrieved results 

to be very similar to the data provided for the training 

phase. Usually, the network training process is performed 

using back-propagation algorithm by minimizing the error 

between the input and output layers and adjust the weights 

in reverse direction after each iteration cycle (Kisi and 

Çobaner 2009). The most commonly used optimization 

method is Leveberg-Marquard which, evaluates the error in 

terms of Mean Squared Error (MSE). In this method, if z is 

the experimental dataset, then MSE can be calculated using 

Eq. (2). 

where, z=the total number of datasets, ei=the error for each 

input set, mi=the measured output, and pi=the estimated 

output. 

There are three steps used for determining an optimal 

ANN topology and these steps include: (i) determining the 

preliminary structure, (ii) training the network and (iii) 

testing the network. The ANN can be characterized by a 

number of layers wherein each layer serves as a set of 

parallel nodes. In this study, a three-layer ANN structure, 

with only one intermediate layer, is used (see Fig. 2). By 

using neurons in the hidden layer, the network can learn and 

recognize the relevant data patterns and approximate  

 

 

 

Fig. 2 ANN structure used in this study 

complex nonlinear mapping (transformation) between the 

input and output datasets. 

The activated transfer function processes the data and 

then the hidden layer passes the results (i.e., final values) to 

the output layer. The abbreviations are shown in Fig. 2, WH 

and WO, represent the interconnection weights for the 

hidden layer and output layer, respectively. Likewise, bH 

and bO are the biases for hidden layer and output layers, 

respectively. The ANN developed herein employed a trial 

and error procedure to determine the best network 

design/topology. Logistic (a.k.atansig: aH=2/(1+exp(-2*p))-

1)) and linear (aO=purelin (aH)) transfer functions were 

observed to perform more accurately for hidden layer and 

output layer, respectively (Cobaner et al. 2009). The best-

fitting model was statistically evaluated in terms of MSE as 

well as coefficient of determination (R2) and mean absolute 

relative error (MARE) (see Eqs. (3)-(4) below). The 

predictive capability of the ANN model was evaluated on 

the same training and testing data sets used for MLR model 

development. 

where, pavg=the average estimate output. 

 

4.3 Adaptive Neuro-Fuzzy Interface System (ANFIS) 
 

Adaptive Neuro-Fuzzy Interface System (ANFIS) is a 

multilayer adaptive network-based fuzzy inference system 

that was introduced by Jang et al. (1997). This technique is 

known for its capability to implement hybrid learning 

procedure thus, enabling neural network to mimic the 

linguistic approach of expert knowledge systems (i.e., if-

then rules) without precise quantitative analysis. The 

structure of this fuzzy inference system consists of a 

number of nodes which are connected through directional 

links. Each node is identified by a function with a fixed or 

adjustable parameter. The learning stage of fuzzy systems 

uses error minimization techniques to match the parameter 

values with the pre-determined training data set. The most 

common learning algorithm is the back-propagation 

learning algorithm which allows the fuzzy system to adjust 

the relations between layers by minimizing the sum of 

squared differences using the training data set (Daldaban, et 

al. 2006). 

Besides numerical variables, the fuzzy method also 

applies verbal/logical labels. The “if-then” rules (or fuzzy 

conditional statements) are employed to capture the 

imprecise cognizance between the fuzzy variables. The 

initial concept and basic principles of fuzzy systems were 

first introduced by Zadeh (1995) as to be applied in 

scenarios where vague linguistic statements are often used 

to drive uncertainties in different control mechanism. 

According to Zadeh (1995), while experts thinking cannot 

be correlated to certain (quantitative) values, this can still be 

conveyed through levels of fuzzy sets. This procedure 

utilizes an “if-then” rule system. For example, this process  

𝑀𝑆𝐸 =
1

𝑧
∑(𝑒𝑖)

2

𝑧

𝑖=0

=
1

𝑧
∑(𝑚𝑖 − 𝑝𝑖)2

𝑧

𝑖=0

 (2) 

R2 =
Σ(𝑚𝑖 − 𝑝𝑖)

2

Σ(𝑝𝑖 − 𝑝𝑎𝑣𝑔)2
 (3) 

MARE =
1

𝑧
∑ |

𝑚𝑖 − 𝑝𝑖

𝑚𝑖

| ×  100

𝑧

𝑖=1

 (4) 
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Fig. 3 The first order Tagaki-Sugeno fuzzy model with two 

rules and two inputs 

 

 

involves mapping of a certain set to a fuzzy set interval. 

This so called mapping is enabled through the membership 

functions which are used to numerically define the partial 

belonging of a statement by assigning values between 0 and 

1. Thus, in the case of uncertainty, the variable is known to 

be fuzzy and is approximated on a compact set through a 

membership function. Typically, the membership function is 

imparted in linear form for computational simplicity (Zadeh 

1995). It is noteworthy that the fuzzy inference system 

alone has significant adaptation difficulties with changing 

external environment. However, the association of neural 

networks with the fuzzy inference system was intended to 

overcome this issue by introducing the new concept called 

adaptive neuro-fuzzy inference approach. 

This study applied the first order Tagaki-Sugeno model 

due to its compactness and computational efficiency 

(Cobaner 2011). This fuzzy reasoning system comprises of 

two inputs x and y. The first order Tagaki-Sugeno fuzzy 

model is set with two “if-then” rules, as can be shown by 

the following formulations 

where x, y = input arguments, A, B = the linguistic labels, a, 

b, r=output function parameters.  

The schematic demonstration of this approach is 

visually illustrated in Fig. 3. The resulting output is the so-

called crisp value which is the weighted average of each 

output rule. 

An illustrative example of a typical fuzzy inference 

system prototype for two inputs (x and y) is illustrated in 

Fig. 4. As illustrated in Fig. 4, a fuzzy inference system 

contains five layers mainly; fuzzification layer (Layer 1), 

rule inference layer (Layer 2), normalization layer (Layer 

3), defuzzification layer (Layer 4) and the final output layer 

(Layer 5) briefly explained as follows: 

Layer 1: every node i in this layer is an adaptive node 

characterized by bell function, e.g. 

µ𝑖(𝑥) =
1

1 + |
𝑥− 𝛿1

𝛼1
|2𝛽1

 (7) 

where µi(x)=ith resultant of 1st layer, x=node input, α1, β1, 

δ1=parameter set. Parameters of the first layer are usually 

 

Fig. 4 Equivalent ANFIS architecture 

 

 

denoted as the premise set. The resultants of the first layer 

are the membership values of the premise part.  

Layer 2: this layer comprises nodes that multiply 

incoming signals and send the product of this multiplication 

to the next layer. The output of each node indicates thefiring 

strength of a given rule.  

where 𝑊𝑖  =2nd layer ith output, µ𝑘𝑖(𝑥) , µ𝑙𝑖(𝑦)  = signals 

coming from the 1st layer. 

Layer 3: this layer encompasses nodes which compute 

the ratio of the ith rule’s firing strength to the summed value 

of all rules’ firing strengths. The resultant of this layer is 

known as the normalized firing strength 

Layer 4: this layer’s nodes are adaptive with node 

functions. 

where �̅�𝑖=3rd layer ith output, 𝑎𝑖 , 𝑏𝑖,𝑐𝑖 =parameter set.  

Layer 5: this layer’s single node computes the final 

output as described in Eq. (11) the summation of all 

incoming signals.   

Further description of ANFIS can be found in Jang 

(Jang et al. 1997). 

Various ANFIS structures for the selected input 

parameters (i.e., Brc, fc, e, P) were input into the program 

code including fuzzy toolbox developed in MATLAB. The 

generated ANFIS structures; especially the topology that 

gave the highest R2 and minimum MSE and MARE were 

selected. Two Gaussian membership functions to the NF 

models were found enough for modeling fire-induced 

spalling. The necessary details of the selected model are 

also provided in the next section. 

 

4.4 Genetic Algorithm (GA) 
 

Genetic algorithm is an evolutionary technique that was 

introduced by Koza (1992) and utilizes supervised 

programs to solve a given phenomenon through principles  

𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑓1 

= 𝑎1 𝑥 +  𝑏1 𝑦 + 𝑟1 
(5) 

𝑅𝑢𝑙𝑒 2: 𝐼𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑓2 

= 𝑎2 𝑥 +  𝑏2 𝑦 + 𝑟2 
(6) 

𝑊𝑖 = µ𝑘𝑖(𝑥)µ𝑙𝑖(𝑦), i =  1, 2, … (8) 

�̅�i =
𝑊i

𝑊1 + 𝑊2 + 𝑊3 + 𝑊4

, i =  1, 2, … (9) 

�̅�𝑖𝑓𝑖 = �̅�𝑖(𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑟𝑖), i =  1, 2, … (10) 

𝑓 = ∑ 𝑊𝑖𝑓𝑖

𝑛

𝑖=1

 (11) 
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Fig. 5 Typical tree representation for √(x+(9/y)) in GA 

 

 

of Darwinian selection. In this soft computing technique, 

predefined algorithms search a program space instead of a 

data space to arrive at mathematical representations. In GA, 

a random population of individuals often referred to as 

“trees” is created to house a number of possible solutions 

through the structural ordering of mathematical symbols. 

Thus, a possible solution in GA is a ranked tree consisting 

of functions and terminals. For example, a function (F) may 

contains basic mathematical operations (addition “+”, 

multiplication “×” etc.), power functions (logarithm “log”, 

exponential “exp”), conditional functions (Greater than “>”, 

less than “<” etc.), Logic functions (“AND”, “OR”, “NOR”, 

“NAND” etc.), among others. On the other hand, the 

terminal (T) comprises of arguments as well as numerical 

constants and/or variables, etc. Both functions and terminals 

are first randomly generated and then joined together to 

make a model. Hence, a developed model has a tree-like 

formation (configuration) in which branches can extend 

from a function and end in a terminal as shown in Fig. 5. 

Once a set of models is arrived at, the GA evaluates the 

fitness (accuracy) of each model for reproduction. The 

fitness of a model is defined as a value that best reflects 

how good the model’s predicted results are from that 

observed in experiments. The fittest models are then 

selected and manipulated by a number of operations i.e., 

reproduction, crossover and mutation (Koza 1992). While 

the reproduction operation gives a higher probability of 

selection to more successful models, the crossover 

operation ensures the exchange of genetic material between 

the evolved models. In the mutation operation, the GA 

randomly selects a function (or terminal) from a model to 

mutate. For example, if a mutation is carried out on a tree, 

then a new function node is chosen and the original node 

together with its relative sub-tree is replaced by a new 

randomly created sub-tree. Finally, the fitness for all of the 

processed models is calculated and is terminated once a 

convergence condition is met. 

 

 
5. Results and discussion 

 

In the current study, concrete strength (fc), width of RC 

column (Brc), magnitude of eccentricity (e) and loading (P) 

were used as input parameters to multi-linear regression  

Table 1 Data statistics for training and testing 

 Training Phase 

Input x * sx csx xmin xmax 

Concrete strength, fc 59.4 31.0 1.09 24 138 

RC column width, Brc (mm) 316.4 47.3 0.71 203 406 

Magnitude of eccentricity, 

e (mm) 
36.8 38.4 2 0 40 

Applied loading, P (kN) 1647 1187 1.41 0 4981 

 Testing Phase 

Input x  sx csx xmin xmax 

Concrete strength, fc 66.2 38.3 0.73 28 138 

RC column width, Brc (mm) 337.6 49.8 0.77 300 406 

Magnitude of eccentricity, 

e (mm) 
5.9 11.4 1.64 0 40 

Applied loading, P (kN) 2152 1605 0.83 0 5373 

* x : overall mean; sx: standard deviation; csx: skewness coefficient; 

xmin: minimum; xmax: maximum 

 

 

(MLR), artificial neural network (ANN), adaptive neuro-

fuzzy system (ANFIS) and genetic algorithm (GA) to 

evaluate occurrence of fire-induced explosive spalling in 

RC columns. In order to assess the capability of the applied 

techniques, the testing and training data sets were fixed 

hence; each technique was fed with the same input data set 

values. The data set selection process for both the training 

set and testing set was statistically evaluated as presented in 

Table 1.  

It can be seen that the magnitude of eccentricity (e) 

shows the highest skewed distribution (2.0 for the training 

set and 1.64 for the testing set), followed by the load (P). 

This table also shows that the presented values confirm 

strong statistical correlations of the selected data points. 

The developed models’ statistical evaluation was 

determined using mean-squared error (MSE), mean 

absolute relative error (MARE), and coefficient of 

determination (R2). It is noteworthy that R2 indicates the 

degree at which the predicted and measured values are 

linearly related. The higher R2 is, the better the prediction 

for the developed model. Whereas, MSE and MARE values 

are more useful for providing information on the predictive 

performance of the developed model. In contrary to R2, the 

smaller MSE and MARE, represent high precision and 

accuracy for a given model. 

Table 2 shows the statistical criteria of different models 

developed based on the above-mentioned computing 

methods. The high value of R2 indicates that there is a good 

correlation between the measured values and predicted 

values estimated by the computing methods in the training 

phase. This table shows that the GA performs with the 

highest precision with R2=0.95 in the training phase and 

R2=0.80 in the testing phase, thus outperforming the other 

methods and closely followed by ANN, ANFIS, and MLR. 

Similarly, the same ranking is observed for the other two 

statistical parameters, however, with ANN having the 

lowest MSE and MARE and as expected MLR having the 

highest MSE. Interestingly, GA’s MARE value was 

observed to be the highest. According to the obtained 

results, it can be said that the ANN and GA methods 

demonstrate better simulation efficiency as compared to  

 

276



 

Leveraging artificial intelligence to assess explosive spalling in fire-exposed RC columns 

 

 

developed ANFIS and MLR models. From the obtained 
statistics, it can be inferred that the MLR and ANFIS 
approaches did not yield accurate prediction. It was also 
clear that the proposed GA model could generalize better 
than the preceding two methods followed by ANN model 
which, demonstrated satisfying performance in estimating 
the complex phenomena of spalling occurrence in RC 
columns. 

Fig. 6 illustrates the predicted spalling phenomenon by 

the four computing methods against the experimental 

results for the training dataset and testing dataset, 

respectively. The results were evaluated considering the 

model response as follows; 1-spalling occurred, and 2-no  

 

 
 

Table 2 MSE, MARE and R2 statistics the developed models 

Method 
Training Phase 

MSE MARE R2 

MLR 29.57 0.17 0.30 

ANN 16.77 0.10 0.61 

ANFIS 25.71 0.15 0.39 

GA 0.01 0.23 0.95 

Method 
Testing Phase 

MSE MARE R2 

MLR 22.17 0.13 0.49 

ANN 12.27 0.06 0.78 

ANFIS 21.06 0.12 0.53 

GA 0.06 0.89 0.80 

 

  

 

 

  

 

(a) Training 

 

  

 

 

  

 

(b) Testing 

Fig. 6 Performance of applied AI techniques in (a) training and (b) testing 
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spalling occurred2. It can be inferred from these figures that 

the prediction of spalling phenomena using GA and ANN 

methods are closer to the actual observations as compared 

to the other developed methods in both training phase and 

testing phase. Moreover, MLR and ANFIS have the largest 

difference between the observed and predicted occurrences. 

Fig. 7 shows error prediction for each method observed 

in both the training phase and the testing phase. Overall, the 

results clearly support the applicability of GA and ANN to 

predict the complex nature of fire-induced spalling in RC 

columns with high precision. This can be attributed to the 

nature of these techniques in which they can better 

comprehend complex phenomenon than that of traditional 

MLR. Surprisingly, predictions obtained from ANFIS are 

much poorer than that from ANN and GA, even though this 

technique acts in a similar form to ANN. This could be 

related to the different nature of this computing technique 

and the limited number of input data points (i.e., 89 fire 

tests) used to analyze this phenomenon. 

In practice, engineers can apply the models presented in 

this research and listed in Table 3 (as well as companion 

 
2Except in the case of GA, where this model was developed 

to yield 0 for No spalling, and 1 for Spalling 

 

 

 

works (Naser 2019, Naser and Seitllari 2019)) to evaluate 

the tendency of concrete columns to spall under fire. These 

models comprehend the vulnerability of RC columns to 

fire-induced spalling and may provide an easy tool to 

researchers and engineers given that there is a serious lack 

of methods/approaches that can be used to predict the 

occurrence of fire-induced spalling. In fact, current fire 

codes and standards still do not provide any assessment 

methods/approaches to evaluate fire-induced spalling in 

concrete. The developed expressions can serve as a 

benchmark (i.e., first generation) to realize such 

methods/approaches. We are confident that the 

methodology carried out herein can be utilized to refine the 

developed models upon the availability of new datasets 

measured in fire tests. While this section delivered a picture 

of statistically influencing factors that govern the 

occurrence of fire-induced spalling in concrete structures, it 

is worth noting that a more comprehensive review on other 

influencing parameters such as mix proportion (e.g., cement 

type, degree of moisture content, fibers, admixtures, etc.), 

grade, size and type (FRP vs. steel) of internal 

reinforcement, restraint conditions, maximum temperature 

reached, cooling phase, etc.) should also be used to 

investigate spalling behavior of concrete structures. 

  

Fig. 7 The error performance of AI-based techniques 

Table 3 The computed model expressions to be used for evaluating the spalling occurrence on RC columns 

Technique Model details 

F
ir

e-
in

d
u

ce
d

 s
p

al
li

n
g
 

MLR 𝑆𝑝𝑎𝑙𝑙𝑖𝑛𝑔 = 2.213 − 11.39 × 10−3𝑓𝑐 − 71 × 10−5𝐵𝑟𝑐 − 10−7𝑒 − 99 × 10−6𝑃 

ANN+ 

 Weight matrix for the hidden layer (WH) 
Bias vector 

for the 

hidden layer 

(bH) 

Weight 

vector of the 

output layer 

(W0) 

Bias for 

the output 

layer (b0) 

Element/n

euron no. 

in each 

layer 

1 2 3 4 

1 -2.84 4.9 -5.74 -1.04 -0.97 -1.55 -0.6 

2 -1.51 -11.1 1.04 0.23 5.65 -2.65  
3 -0.28 -5.6 -4.12 -0.97 6.06 0.64  
4 -5.23 1.2 3.76 -0.42 0.91 1.4  
5 -1.53 -8.83 1.16 0.97 3.33 1.71   

ANFIS 

Epoch 

number 
Number of membership functions Membership functions type Fuzzy type 

5 2-2-2-2 Gaussian Sugeno 
 

GA* 
𝑆𝑝𝑎𝑙𝑙𝑖𝑛𝑔 = 

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (473.3 −
248191.5 sin(𝐵𝑟𝑐) − 112.76𝑒 sin(−8.286𝑒 − 8.286𝑃) − 112.8𝑃𝑠𝑖𝑛(−8.286𝑒 − 8.286𝑃)

146 − 𝑒 − 𝑃
− 6.89𝑓𝑐 − 97.3 sin (

3.38𝑒 + 3.38𝑃

𝑓𝑐
)) 

+ When the ANN tabulated data are used to feed the ANN structure, one must follow Figure 2 details 

*GA: this model was developed to yield 0 for Spalling, and 1 for No spalling and the logistic function used is 𝟏/(𝟏 + 𝒆−𝒙). This 

equation is also provided in a spreadsheet that is accompanying this work 
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6. Conclusions 
 

This study explores the merit of utilizing various 

artificial intelligence (AI) techniques to develop high 

precision procedures (models) with the ability to predict the 

occurrence of fire-induced explosive spalling in RC 

columns. These models are easy-to-implement and 

implicitly account for temperature-dependent material 

degradation. Other conclusions, as obtained from this work, 

are listed herein: 

• Integrating AI-based methodologies seems to be 

effective in evaluating the response of structural 

members under fire conditions. These methodologies are 

particularly useful to identify the vulnerability of RC 

columns to fire-induced spalling.   

• Both genetic algorithms and neural networks capture 

the tendency of RC columns to spall under fire 

conditions with high precision; outperforming ANFIS 

and MLR techniques.  

• A proper AI analysis requires the availability of wealth 

of data points and/or observations obtained from fire 

tests. To this day, few works reported the outcome of 

fire tests, with special consideration to fire-induced 

spalling or examining various geometric, material and 

loading features that may directly affect the occurrence 

of spalling. 
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Reference 
Considered inputs 

Observation 
Applied modeling technique 

fc (MPa) Brc (mm) e (mm)* P (kN) MLR ANN ANFIS GA 

(Rodrigues 

et al. 2010) 

23.8 250 0 686 No spalling No spalling No spalling No spalling No spalling 

25.1 250 0 686 No spalling No spalling No spalling No spalling No spalling 

27 250 0 686 No spalling No spalling No spalling No spalling No spalling 

29.4 250 0 686 Spalling No spalling No spalling No spalling Spalling 

(Buch and 

Sharma 

2019) 

27 300 20.03 544 Spalling No spalling Spalling No spalling Spalling 

28 300 0 544 Spalling No spalling Spalling No spalling Spalling 

28 300 20.03 532 Spalling No spalling Spalling No spalling Spalling 

31 300 39.84 567 Spalling No spalling Spalling Spalling Spalling 

31 300 39.84 567 Spalling No spalling Spalling Spalling Spalling 

32 300 20.03 579 Spalling No spalling Spalling No spalling Spalling 

58 300 20.03 892 Spalling Spalling Spalling Spalling Spalling 

60 300 39.84 892 Spalling Spalling Spalling Spalling Spalling 

67 300 20.03 996 Spalling Spalling Spalling Spalling Spalling 

69 300 0 1008 Spalling Spalling Spalling Spalling Spalling 

69 300 20.03 973 Spalling Spalling Spalling Spalling Spalling 

(Shah and 

Sharma 

2017) 

34 300 0 1170 No spalling No spalling No spalling No spalling No spalling 

34 300 0 1170 No spalling No spalling Spalling No spalling No spalling 

34 300 0 1170 No spalling No spalling Spalling No spalling No spalling 

34 300 0 1170 No spalling Spalling Spalling Spalling No spalling 

34 300 0 1170 Spalling No spalling Spalling No spalling No spalling 

34 300 0 1170 Spalling No spalling Spalling No spalling No spalling 

63 300 0 1858 Spalling Spalling Spalling Spalling Spalling 

63 300 0 1858 Spalling Spalling Spalling Spalling Spalling 

(Lie and 

Woollerton 

1988) 

34.2 305 0 0 No spalling No spalling No spalling No spalling No spalling 

34.8 305 0 1778 No spalling No spalling No spalling No spalling No spalling 

36.9 305 0 1333 No spalling No spalling No spalling No spalling No spalling 

37.6 305 0 1067 Spalling Spalling Spalling Spalling Spalling 

37.9 305 24.97 1178 No spalling No spalling No spalling No spalling No spalling 

38.3 305 0 1333 No spalling No spalling No spalling No spalling No spalling 

39.3 305 0 1000 No spalling Spalling Spalling Spalling No spalling 

39.9 305 0 1778 No spalling No spalling No spalling No spalling No spalling 

41.6 305 0 342 Spalling No spalling No spalling No spalling Spalling 

42.1 203 0 756 No spalling No spalling No spalling No spalling No spalling 

42.5 305 0 947 No spalling No spalling No spalling No spalling No spalling 

43.6 305 0 1044 No spalling No spalling No spalling No spalling No spalling 

46.6 305 0 1076 No spalling No spalling No spalling No spalling No spalling 

34.2 305 0 800 No spalling No spalling No spalling No spalling No spalling 

35.4 305 0 916 No spalling No spalling No spalling No spalling No spalling 

40.9 305 0 800 No spalling No spalling No spalling No spalling No spalling 

42.5 305 0 1413 No spalling Spalling Spalling Spalling No spalling 

35.1 305 0 711 No spalling No spalling No spalling No spalling No spalling 

36.9 305 0 1067 No spalling No spalling No spalling No spalling No spalling 

42.6 305 0 978 No spalling No spalling No spalling No spalling No spalling 

52.9 305 0 1178 No spalling No spalling No spalling No spalling No spalling 

37.1 305 0 1333 No spalling Spalling Spalling Spalling No spalling 

39.9 305 24.97 1000 No spalling No spalling No spalling No spalling No spalling 

40.7 406 0 0 No spalling No spalling No spalling No spalling No spalling 

49.5 305 0 1067 No spalling No spalling No spalling No spalling No spalling 

38.8 406 0 2418 No spalling No spalling No spalling No spalling No spalling 

42.3 203 0 169 No spalling No spalling No spalling No spalling No spalling 

36.1 305 0 1067 No spalling No spalling No spalling No spalling No spalling 

38.4 406 0 2795 No spalling No spalling No spalling No spalling No spalling 

39.6 305 0 800 No spalling No spalling No spalling No spalling No spalling 

46.2 406 0 2978 No spalling No spalling No spalling No spalling No spalling 
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Reference 
Considered inputs 

Observation 
Applied modeling technique 

fc (MPa) Brc (mm) e (mm)* P (kN) MLR ANN ANFIS GA 

(Myllymaki 

and Lie 

1991) 

37.8 300 0 1400 Spalling No spalling Spalling No spalling Spalling 

(Kodur 

et al. 2000) 

86 406 0 2406 Spalling Spalling Spalling Spalling Spalling 

89.6 406 0 2934 Spalling Spalling Spalling Spalling Spalling 

96 406 0 4919 Spalling Spalling Spalling Spalling Spalling 

119.7 305 0 2363 Spalling Spalling Spalling Spalling Spalling 

119.7 305 0 2954 Spalling No spalling No spalling No spalling Spalling 

119.7 305 24.97 2954 Spalling No spalling No spalling No spalling Spalling 

126.5 406 0 2913 Spalling Spalling Spalling Spalling Spalling 

99.7 406 0 3080 Spalling Spalling Spalling Spalling Spalling 

(Kodur 

et al. 2001) 

40.2 305 24.97 1000 No spalling Spalling Spalling Spalling No spalling 

40.2 305 0 1500 Spalling Spalling Spalling Spalling Spalling 

68.9 305 0 1800 No spalling Spalling Spalling Spalling No spalling 

68.9 305 0 2200 Spalling Spalling Spalling Spalling Spalling 

68.9 305 24.97 1500 Spalling No spalling Spalling No spalling Spalling 

73.4 305 0 1800 Spalling Spalling Spalling Spalling Spalling 

73.4 305 0 2200 Spalling Spalling Spalling Spalling Spalling 

73.4 305 24.97 1500 Spalling Spalling Spalling Spalling Spalling 

72.7 305 0 2000 No spalling Spalling Spalling Spalling No spalling 

72.7 305 0 1300 Spalling Spalling Spalling Spalling Spalling 

99.6 305 0 2000 Spalling Spalling Spalling Spalling Spalling 

99.6 305 0 2000 Spalling Spalling Spalling Spalling Spalling 

99.6 305 0 3000 Spalling Spalling Spalling Spalling Spalling 

119.7 305 0 1979 Spalling Spalling Spalling Spalling Spalling 

(Kodur 

et al. 2005) 

85 406 0 3895 No spalling No spalling No spalling No spalling No spalling 

85 406 0 4328 Spalling Spalling Spalling Spalling Spalling 

85 406 0 4328 Spalling Spalling Spalling Spalling Spalling 

114 406 0 4567 Spalling No spalling Spalling No spalling Spalling 

114 406 0 5373 Spalling Spalling Spalling Spalling Spalling 

114 406 0 3546 Spalling No spalling No spalling No spalling Spalling 

138 406 26.94 4233 Spalling Spalling Spalling Spalling Spalling 

138 406 26.94 4981 Spalling Spalling No spalling No spalling Spalling 

138 406 26.94 4981 Spalling Spalling Spalling Spalling Spalling 

40.2 305 0 930 No spalling No spalling No spalling No spalling No spalling 

138 406 26.94 4981 Spalling Spalling Spalling Spalling Spalling 

72.7 305 24.97 1200 Spalling Spalling Spalling Spalling Spalling 

Note: the highlighted columns were randomly selected, statistically evaluated and included in testing dataset. 

*The exponential of measured eccentricity value was used for developing MLR, ANN and ANFIS models. 
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