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1. Introduction 

 

Sandwich structures according to high weight strength 

are used in various industries such as aerospace, 

shipbuilding and automobile. The purpose of this study 

becomes to analyze the critical buckling load of micro 

sandwich hollow circular plate, among the studies that have 

been done in this field could be mentioned the following 

cases: 
Feldman and Aboudi (1997) analyzed the buckling of 

functionally graded (FG) plates under in-plane compressive 
loading. Javaheri and Eslami (2002) used the classical plate 
theory (CPT) to analyze the thermal buckling of 
functionally graded plates. Tornabene (2009) studied the 
dynamic behavior of moderately thick functionally graded 
conical, cylindrical shells and annular plates. Using finite 
element method, Koukouselis and Mistakidis (2015) 
presented the buckling behavior of thin ferrocement 
stiffened plates. Tornabene and Reddy (2013) analyzed the 
mechanical behavior of functionally graded material (FGM) 
and laminated doubly-curved shells and panel resting on 
nonlinear and linear elastic foundation. Ma and Wang 
(2004) studied the axisymmetric bending and buckling of 
FGM circular plates based on third-order shear deformation 
plate theory and classical plate theory. Chan et al. (2019) 
investigated the nonlinear buckling of stiffened FGM 
truncated conical shells resting on an elastic foundation and 
subjected to a uniform axial compressive load. Based on the 
classical nonlinear von Karman plate theory. Ma and Wang 
(2003) investigated nonlinear bending and post-buckling  
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of a functionally graded circular plate under mechanical 

and thermal loadings. The effect of small scale on the 

buckling/thermal buckling of carbon nanotubes is 

investigated by Arani et al. (2011, 2012a), and 

Mohammadimehr et al. (2011). Tornabene et al. (2011) 

used the generalized differential quadrature (GDQ) method 

and the first-order shear deformation theory (FSDT) to 

studied the dynamic behavior of functionally graded 

materials (FGMs) and laminated doubly curved shells and 

panels of revolution with a free-form meridian. Sobhy and 

Zenkour (2019) studied the porosity and inhomogeneity 

effects on the buckling and vibration of double-FGM 

nanoplates. Rajabi and Mohammadimehr (2019) presented 

the bending analysis of a micro sandwich skew plate using 

extended Kantorovich method based on Eshelby-Mori-

Tanaka approach. Tornabene et al. (2015) analyzed 

recovery of through-the-thickness transverse normal and 

shear strains and stresses in statically deformed functionally 

graded (FG) doubly-curved sandwich shell structures and 

shells of revolution. By using differential quadrature 

method (DQM), Jafarian Arani and Kolahchi (2016) 

analyzed the buckling of embedded concrete columns 

armed with carbon nanotubes. Their results indicated the 

influences of volume percent of SWCNTs, geometrical 

parameters, elastic foundation and boundary conditions on 

the buckling of column. Liu et al. (2017) investigated the 

static bending, free vibration, and buckling of functionally 

graded (FG) moderately thick microplates. Their results 

showed the deflection decreases while the frequency and 

buckling load increase with decreasing the plate thickness. 

Frikha et al. (2018) presented the dynamic behavior of 

functionally graded carbon nanotubes reinforced composite 

shell structures (FG-CNTRC) via forced vibration. Liu et al. 

(2018) studied the mechanical behavior of functionally 
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graded (FG) microplates with defects or cracks by effective 

numerical methods. Eslami et al. (2016) studied the effects 

of different porosity types, including symmetric and 

asymmetric distributions on the critical buckling load of the 

circular plate, by using the higher order shear deformation 

theory (HSDT). Their results indicated that the asymmetric 

distribution of porosity relative to the symmetric 

distribution reduces critical buckling load and also 

decreases buckling load with increasing porosity 

coefficient. Also in recent years, the use of high-order plate 

theories to analyze the mechanical behavior of various 

structures has been more prosperous, Vu et al. (2018), Bui 

et al. (2016), Yin (2016), Do et al. (2017a). They used new 

third order shear deformation theory (TSDT) without any 

requirement of shear correction factors. Their results 

showed the influence of using new plate theory on 

mechanical behavior of different structure. 

Mohammadimehr et al. (2018b) investigated  bending, 

buckling, and free vibration analyses of carbon nanotube 

reinforced composite beams and experimental tensile test to 

obtain the mechanical properties of nanocomposite. Zghal 

et al. (2018) investigated the mechanical buckling behavior 

of functionally graded materials and carbon nanotubes-

reinforced composite plates and curved panels. Sobhy and 

Zenkour (2018) investigated the influence of magnetic field 

on buckling and vibration of sandwich nanobeams with 

CNT reinforced face sheets. Their results showed the effect 

of different parameter such as viscoelastic damping for the 

structure and the foundation, the magnetic field parameter, 

humidity concentration on critical buckling load. Tornabene 

et al. (2016) presented the free vibrations of laminated 

composite doubly-curved shells and panels reinforced by 

CNTs. Hajmohammad et al. (2018) investigated the effects 

of radial compressive load and uniformly distributed load 

on the critical buckling load of micro circular plate based on 

the nonlinear boundary layer theory. The governing 

equations of sandwich rectangular plate by using first order 

shear deformation theory for different boundary conditions 

is obtained by Kiani (2016). His results showed by 

increasing the temperature, the critical buckling load of 

rectangular sandwich plate increases. By using doublet 

mechanics theory, Aydogdu and Gul (2018) analyzed the 

buckling of double nanofibers embedded in an elastic 

matrix based on an Euler-Bernoulli beam model. 

Mohammadimehr et al. (2018a) investigated the free 

vibration and buckling of micro sandwich plate by using 

strain gradient theory subject to different loads such as 

electric, magnetic and mechanic. Bending and buckling of 

perfect functionally graded solid circular plates is studied 

by Saidi et al. (2009). Liu et al. (2019) employed the non-

classical Kirchhoff plate theory and modified couple stress 

theory for studying the static bending and buckling 

behaviors of nanoplates. Karamanli and Aydogdu (2019) 

presented the elastic buckling behavior of isotropic, 

laminated composite and sandwich beams subjected to 

various axially varying in-plane loads and boundary 

conditions (BCs). Yu et al. (2019a) used the modified 

couple stress theory (MCST) to analysis the mechanical 

behavior of functionally graded (FG) microbeams. Safari 

Bilouei et al. (2016) studied the buckling of concrete 

columns retrofitted with nano-fiber reinforced polymer 

(NFRP) by using Euler-Bernoulli beam (EBB) theory. Some 

researchers worked about vibration analysis of micro 

sandwich structures including cylindrical shells (Yazdani et 

al. 2019), annular circular plate (Emdadi et al. 2019), 

vibration analysis of viscoelastic tapered micro-rod 

(Mohammadimehr et al. 2015), electro-thermal non-local 

vibration analysis of embedded double-walled boron nitride 

nanotubes (DWBNNTs) (Arani et al. 2012b). Trabelsi et al. 

(2019) investigated the thermal buckling behavior of 

functionally graded plates and cylindrical shells. Their 

results indicated the effect of material compositions, power 

law index, thermal loading, boundary conditions and 

geometrical parameters of shells on the thermal buckling 

behavior of FGM structures. Akhavan et al. (2019) 

considered active control of micro Reddy beam integrated 

with functionally graded nanocomposite sensor and actuator 

based on linear quadratic regulator method. Yu et al. 

(2019b) investigated the effect of material gradient factors 

along the axial and thickness directions, material length 

scale factor, boundary condition, and other aspect ratios of 

two-directional FG on mechanical behavior. Recent studies 

have been done on the mechanical behavior of sandwich 

structures, Bui et al. (2013), Do et al. (2017b). Their results 

carried out to demonstrate the influence of temperature, 

power law index of FG core and geometric parameter on 

mechanical behavior of sandwich plate.    

Piezoelectric materials applications, nanotechnology and 

micro scale analysis for smart structures were reviewed in 

the introduction. According to reviewed literatures, a 

combination of these topics for smart structures is a lack of 

the previous study. By reviewing the literature, it can be 

seen that up to date there are no researches about the 

influence of various parameters on critical buckling load of 

micro sandwich hollow circular plate with considering 

porous core and piezoelectric layer reinforced by FG carbon 

nano-tube using Ritz method. For obtaining the governing 

equation of equilibrium, high-order shear deformation 

theory and modified couple stress theory are employed. The 

Ritz method is applied to solve the differential equations. 

The results of this research can be used to optimize the micro 

sandwich plate for various applications. 

 

 
2. Governing equations of equilibrium 
 

Consider a micro sandwich hollow circular plate with  

 

 

 

Fig. 1 A schematic view of a micro sandwich hollow 

circular plate with considering porous core integrated with 

piezoelectric layers 

186

https://www.scopus.com/record/display.uri?eid=2-s2.0-85056824194&origin=resultslist&sort=plf-f&src=s&sid=0924397623635321b14cde90264c83de&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2835783228600%29&relpos=6&citeCnt=3&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85056824194&origin=resultslist&sort=plf-f&src=s&sid=0924397623635321b14cde90264c83de&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2835783228600%29&relpos=6&citeCnt=3&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85056824194&origin=resultslist&sort=plf-f&src=s&sid=0924397623635321b14cde90264c83de&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2835783228600%29&relpos=6&citeCnt=3&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85056824194&origin=resultslist&sort=plf-f&src=s&sid=0924397623635321b14cde90264c83de&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2835783228600%29&relpos=6&citeCnt=3&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84864776517&origin=resultslist&sort=plf-f&src=s&sid=df8a11a8426381d1cd50cc4acfea9478&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2835783228600%29&relpos=12&citeCnt=22&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84864776517&origin=resultslist&sort=plf-f&src=s&sid=df8a11a8426381d1cd50cc4acfea9478&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2835783228600%29&relpos=12&citeCnt=22&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84864776517&origin=resultslist&sort=plf-f&src=s&sid=df8a11a8426381d1cd50cc4acfea9478&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2835783228600%29&relpos=12&citeCnt=22&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85059871210&origin=resultslist&sort=plf-f&src=s&sid=0924397623635321b14cde90264c83de&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2835783228600%29&relpos=3&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85059871210&origin=resultslist&sort=plf-f&src=s&sid=0924397623635321b14cde90264c83de&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2835783228600%29&relpos=3&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85059871210&origin=resultslist&sort=plf-f&src=s&sid=0924397623635321b14cde90264c83de&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2835783228600%29&relpos=3&citeCnt=0&searchTerm=


 

Analytical solution for buckling analysis of micro sandwich hollow circular plate 

 

the inner radius a, outer radius b, the thickness of porous 

core hc, the thickness of bottom piezoelectric layer hb and 

the thickness of top piezoelectric layer ht (see Fig. 1). 
 
2.1 Displacement field of sandwich circular micro 

sandwich plate 
 

High-order shear deformation theory (HSDT) of plate is 

employed to model the micro sandwich hollow circular 

plate, displacement fields are given as Nguyen-Xuan et al. 

(2013) 

0
0

( , )
( , , ) ( , ) ( ) ( , )


  

 r

w r
u r z u r z f z r

r


    (1) 

0
0

( , )1
( , , ) ( , ) ( ) ( , )


  



w r
v r z v r f z r

r 


  


  (2) 

0( , , ) ( , )w r z w r   (3) 

where
3

2

4
( ) ( )

3
 

z
f z z

H
,   t c bH h h h , u0(r,θ), 

v0(r,θ)
 
and w0(r,θ) are the displacements at the mid-surface, 

φr(r,θ) and φθ(r,θ) are the rotation of a transverse normal 

about the axial and circumferential directions, respectively. 

To increase the accuracy of problem solutions and to 

improve the proposed model, high-order shear deformation 

theory (HSDT) with the five degrees of freedom is used. 

Also, by considering that the proposed model is related to a 

thick plate, the use of HSDT is necessary. 

 

2.2 The modified couple stress theory for micro 
sandwich hollow circular plate  
 

Based on the modified couple stress theory (MCST), the 

components of the symmetric curvature tensor (χij) are 

defined as Rostami et al. (2018) 
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where L2 and G are the material length scale parameter and 

the shear modulus, respectively. 

 

2.3 The constitutive equations for porous core and 
piezoelectric layers 
 

The linear constitutive equations for porous core are 

defined as Mohammaimehr et al. (2016) 
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Qij is the stiffness components of the porous core that is 

expressed as follows 
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The linear constitutive equations for piezoelectric layer 

reinforced by FG carbon nano-tube are defined as Rostami 

et al. (2019) 
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intensity, electric displacement vectors, piezoelectric 
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E11, E22 and υ12 
are Young’s modulus and Poisson’s ratio as 

Shen and Xiang (2012), respectively.  
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The relations of volume fraction by considering the 

distribution of carbon nano-tube along the thickness 

direction of piezoelectric layers expressed as Dinh Duc et 

al. (2017) 
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2.4 The electric field in piezoelectric layers  

 
The electric field of piezoelectric layers defined as 

Rouzegar and Abad (2015) 
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2.4 Hamilton’s principle 
 

The governing equations of motion for micro sandwich 

hollow circular plate are derived by using Hamilton’s 

principle as Sahmani et al. (2013) 

0
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t
U W dt   (29) 

The variation form of strain energy and external work 

are defined as Mohammadimehr and Rostami (2018) 
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The equilibrium equations of micro sandwich hollow 

circular plate considering porous core and piezoelectric 

layers can be derived by substituting the Eqs. (30) and (31) 

into Eq. (29) as follows 
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where the resultant forces and moments are defined as 

follows 
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Fig. 2 Comparison of critical buckling load for a clamped 

supported isotropic homogeneous circular plate (p=0.001 N, 

H=0.5 μm, L=17.6 μm, e0=0, T1=300 K) 

 

 

To examine the buckling of micro sandwich hollow 

circular plate under radial load the Ritz numerical method is 

used to solve the governing equations, the relationships 

used in this method are as Kiani (2016) 
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where 
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R r
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4. Numerical results and discussions 

 

In this section, the buckling of micro sandwich hollow 

circular plate with the consideration of the porous core and 

piezoelectric layer reinforced by FG carbon nano-tube is 

studied. The effects of various parameters such porous 

coefficients, small length scale parameter, distribution of 

carbon nano-tube in piezoelectric layers and temperature on 

the critical buckling load are investigated. 

 
4.1 Validations of results  

 
(a) 

 
(b) 

Fig. 3 The effect of porous coefficients on critical buckling 

load of micro sandwich hollow circular plate H=0.3 mm, 

VCNT= *

1 300 ,0.3 , , 4, 17.6   CNT CNT T KH mm V V a b L m, T1=300 K, a=b/4, L=17.6 μm for (a) H/b=0.01-

.035 (b) H/b= 

 

 

To validate the analysis, the results for circular plate are 

compared with (Eslami et al. 2016) see Fig. 2. The 

comparison shows that the present results have a good 

agreement with those in the literature. 

 
4.2 Buckling analysis of micro sandwich hollow 

circular plate  
 

For analyzing the influence of different parameters on 

critical buckling load of micro sandwich hollow circular 

plate is plotted in Figs. 3-7 as follows. In Fig. 3 we can see 

the effects of porous coefficients on critical buckling load 

of micro sandwich hollow circular plate. With increasing 

porous coefficients, the stiffness of micro sandwich hollow 

circular plate decreases so that the critical buckling load of 

system decreases. Fig. 4 demonstrates the influence of small 

length scale parameter, from this figure could be found by 

increasing this parameter, the critical buckling load of 

micro sandwich hollow circular plate increases. Fig. 5 

shows the effect of temperature on critical buckling load 

with respect to (H/b) of micro sandwich. With increasing  
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Fig. 4 The effect of small length scale parameter on critical 

buckling load of micro sandwich hollow circular plate 

(H=0.3 mm, VCNT= *

1 300 ,0.3 , , 4, 17.6   CNT CNT T KH mm V V a b L m, T1=300 K, a=b/4, L=17.6 μm) 

 

 
Fig. 5 The effect of temperature on critical buckling load of 

micro sandwich hollow circular plate (H=0.3 mm, VCNT=
*

1 300 ,0.3 , , 4, 17.6   CNT CNT T KH mm V V a b L m, T1=300 K, a=b/4, L=17.6 μm) 

 

 

temperature, the stiffness of micro structure decreases so 

that the critical buckling load of system decreases. The 

influence distribution of carbon nano-tube in piezoelectric 

layers is indicated in Fig. 6. By increasing (H/b) the critical 

buckling load of system decreases in FG-V case, vice versa 

in FG-O and UD distribution increases.  

 
 
5. Conclusions 
 

In this paper, the buckling analysis of micro sandwich 

hollow circular plate with the consideration of the porous 

core and piezoelectric layer reinforced by FG carbon nano-

tube is studied. By applying the principle of minimum 

potential energy, high-order shears deformation theory and 

modified couple stress theory, the governing equations of 

equilibrium for micro sandwich hollow circular plate were 

derived. The Ritz method type solution is used to obtain the 

critical buckling load of micro sandwich hollow circular 

plate. The accuracy of the analytical method is more than 

the numerical method and also requires less time to solve,  

 
Fig. 6 The effect of distribution of carbon nano-tube in 

piezoelectric layers on critical buckling load of micro 

sandwich hollow circular plate  (H=0.3 mm, VCNT= *

1 300 ,0.3 , , 4, 17.6   CNT CNT T KH mm V V a b L m, 

T1=300 K, a=b/4, L=17.6 μm) 

 

 

thus the analytical method has been used, also, it is well 

known that analytical approaches are quite limited to 

practice. The results indicate that by increasing the porous 

coefficient of core the critical buckling of system decreases. 

Also, by increasing the temperature change, the stiffness of 

system and critical buckling decreases. Moreover, it is seen 

that the critical buckling load increases with an increase in 

the material length scale parameter. By increasing (H/b) the 

critical buckling load of system decreases in FG-V case, 

vice versa in FG-O and UD distribution increases. The 

results of this research can be used for optimization of 

micro-structures and manufacturing different structure in 

aircraft and aerospace. 
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