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1. Introduction 
 

Concrete is among the most fundamental and most 

widely used materials in the construction industry and it is, 

therefore, necessary to continuously investigate further 

improvements to it such as concrete structures with 

improved durability and mechanical properties (Sabur et al. 

2001). In the last years, the introduction of self-compacting 

concrete (SCC) has brought huge technological advances. 

The use of SCC has facilitated the placing of concrete 

between the rebar without need of external vibration, just by 

means of the weight of concrete itself. Utilizing SCC leads 

to the reduction of construction time and cost as well as the 

reduction of noise in construction sites Khatib (2008). 

Concrete workability is an important factor for proper 

execution, which after widespread application of 

reinforcing bars in concrete in the beginning of the 20th 

century; it has been maintained for a long time by adding 

water to the cement. However, in recent research works it 

has been found that the use of large amounts of the water in 

the cement can lead to negative results Alabi et al. (2012). 

In SCC, superplasticizer and binder materials are important 

to achieve high workability and proper viscosity while 

eliminating the separation, and to provide solutions for the 

design of the optimal mix of concrete toward reducing the 
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aggregate to cement materials ratio, increasing the amount 

of cement- paste with a certain water to cement ratio, and 

control of the largest coarse aggregate size (Aggarwal et al. 

2008). The volume of binder materials used in SCC, in 

comparison to conventional concretes, is higher and this 

indicates the importance of utilizing proper type of the 

material and weight combination of these materials to 

provide higher durability and strength of concrete and also 

its corresponding effects such as reduced generation of 

pollutant gazes during cement production and participation 

in the sustainable development (Mehta 1978). With respect 

to this issue, i.e., that consumption of high amounts of 

cement and superplasticizer requires huge expenses, the 

utilization of certain alternative supplementary cementitious 

materials (SCMs) such as metakaolin as a replacement for 

Portland cement has been in consideration. The 

environmental concerns over extraction of raw materials 

and emission of CO2 during cement production have urged 

us to reduce the amount of consumed cement by application 

of additives (AzariJafari et al. 2019). Utilizing metakaolin 

increases the concrete strength and durability against 

chemical attacks, alkali silica reaction and freeze-thaw 

cycles. Metakaolin is also effective in certain mechanical 

properties of concrete including compressive strength, early 

age and flexural strength (Poon et al. 2006, Wild et al. 

1996, Coleman and Page 1997, Frias and Cabera 2000, 

Ramzanianpour and Bahrami Juvein 2012, Sfikas et al. 

2014, Hassan et al. 2012a). The wide range of materials and 

substances used in this type of concrete and the complexity 

of its corresponding mix design, which is affected by 
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various parameters, as well as the  difficulty in formulating 

relationships between these parameters have made it 

necessary to propose and present a model for mix design of 

the SCC incorporated metakaolin. 

The lack of a reliable and robust prediction method for 

the mechanical properties, such as the 28-day compressive 

strength, is mainly due to the large number of parameters 

affecting its nonlinear behavior. As the deterministic 

methods have not been able to offer reliable predictions in 

the last two decades, soft computing techniques, such as 

surrogate models, have started to contribute to the problems' 

solutions in a significant way. In the last decades, the use of 

artificial intelligence methods for modeling and prediction 

in civil engineering has become widespread due to their 

advantages these methods offer. Soft computing techniques 

have been used for the modeling of mechanical 

characteristics of concrete materials. Namely, artificial 

neural networks (ANNs) (Wang et al. 2015, Šipoš et al. 

2017, Asteris and Kolovos 2019, Asteris et al. 2016, 2017, 

2018, Sonebi et al. 2016a, Mansouri et al. 2016), adaptive 

neuro-fuzzy inference systems (ANFIS) (Wang et al. 2015, 

Mansouri et al. 2016), support vector machines (SVM) 

(Sonebi et al. 2016b, Gilan et al. 2012), genetic expression 

programming (GEP) (Kiani et al. 2016, Gholampour et al. 

2017), model trees (MT), and multivariate adaptive 

regression splines (MARS) (Mansouri et al. 2016, Kaveh et 

al. 2017, Šipoš et al. 2017, Sonebi et al. 2016a) have been 

proposed for the prediction of the mechanical and physical 

properties of concrete materials. The ANN models from 

these studies reduce, significantly, the mixture cost and 

time. Mansouri et al. (2016) used a comprehensive dataset, 

which had been utilized in evolutionary algorithm models 

such as ANFIS, ANN, MT and MARS for estimating the 

properties of fiber reinforced –polymer (FRP) confined 

concrete. Kiani et al. (2016) proposed new equation for the 

compressive strength of foam cellular concrete using GEP, 

based on comprehensive laboratory data, in a wide range of 

mixture components. Ashrafian et al. (2018) developed 

heuristic models for the prediction of compressive strength 

characteristics of fiber reinforced SCC containing nano 

silica using artificial intelligence method; they resulted 

MARS techniques was superior to other proposed models. 
ANN, SVM and ANFIS provide robust modeling 

technologies, which are alternative to regression analysis 
approaches; however they are not formula-based heuristic 
regression methods. Surrogate models such as MARS and 
M5P MT are capable of generating linear relationships 
between input and output variables and provide 
„transparent‟ results as regression-based formula. In this 
paper, we present a new formulation for SCC incorporating 
metakaolin using two predictive methods namely (a) a 
MARS method based on nonlinear regression, and (b) an 
MT expanded version of M5 Prime algorithm (M5P MT). 
The structure of this paper is as follows: Section 2 describes 
the experimental dataset used in this study as well as a 
statistical analysis of each one of them. Section 3 describes 
the proposed methodological approaches, as well as MARS 
and M5P MT specific methods. The comparative results and 
the modeling approach are presented in Section 4. Analysis 
of results and discussion are presented in Section 5.  
Finally, the conclusions are described in last section. 

2. Background of experimental dataset 
 

Improvement of the performance specifications of SCC 

are usually acquired by the addition of different 

supplementary cementitious based materials, admixtures 

and water to the ordinary concrete mixture designs. (Wild et 

al. 1996). Recent advances have been assisted by the 

utilization and comprehension of chemical combination 

(e.g., super plasticizers and SCMs for example metakaolin). 

Metakaolin has essential efficacy on the workability and 

early age and long-term compressive strength of SCC 

(Ramzanianpour and Bahrami Juvein 2012). In many cases, 

there is the economic benefit of price differential between 

cement and SCMs. Furthermore, partial substitution of 

cement allows for a considerable decrease in the quantity of 

the chemical admixture (Hassan et al. 2012a). However, the 

behavior simulation of the compressive strength of SCC is 

more difficult than that of ordinary concrete. 

Recently, Alyhya (2016) performed a regression analysis 

to formulate the compressive strength of a SCC mixture by 

the ratio of water to binder (W/B). In addition, he collected 

experimental data from several studies available in 

literature (Alyhya 2016). It was found that the compressive 

strength of SCC cube specimens at the age of 28-days 

(CS28) could be calculated by following equation 

     
 95

   65
 

 ⁄
 (1) 

In this paper, the MARS and M5P MT methods generate 

new predictive formulas to estimate CS28 of SCC and to 

analyze relationships between this key-property and the 

influencing parameters as follows 

       (          
  

  
 
 

 
      ) (2) 

where C (Kg/m3), MK (Kg/m3), B (Kg/m3), SP (Kg/m3), 

CA/FA, W/B and Dmax (mm) are the cement, metakaolin, 

binder, super plasticizer, coarse aggregate to fine aggregate 

ratio, water to binder ratio and maximum size of aggregate 

in the mix design, respectively. The above parameters have 

been chosen as the input variables on this study and 

literature review. 

It is clear that the techniques derived utilizing the 

MARS, M5P MT or other data driven methods, in most 

cases, have a predictive capability which lies within the data 

range used for their development. The amount of data used 

for the training process of the MARS and M5P MT methods 

bears heavily on the reliability of the final models. Optimal 

yield of the proposed models to predict the compressive 

strength of SCC considerably depends on the integrity of 

the data. It is important that a large variety of experimental 

data needed to develop concrete relationships between 

variables must be accessible. To develop these proposed 

models, a collection of 204 particular data records from 

experiments has been obtained from published papers 

(Madandoust and Mousavi 2012, Dinakar and Manu 2014, 

Hassan et al. 2012b, Güneyisi et al. 2009, Hassan et al. 

2015, Kavitha et al. 2015, Kannan and Ganesan 2015, 

Abouhussien and Hassan 2015, Seyd 2015, Gilan et al. 

2012, Ahari et al. 2015, Megat Johari 2011, Khatib 2008, 

Justice and Kurtis 2007, Badogiannis et al. 2015, Dadsetan 
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and Bai 2017, Gill and Siddique 2018, Lenka and Panda 

2017, Wild et al. 1996, Ferreira et al. 2015, Tirumala et al. 

2018, Khotbehsara et al. 2017, Joseph et al. 2017) and is 

 

 

presented in Table 1. The dataset includes the values of C, 

MK, B, SP, CA/FA, W/B,  Dmax, and CS28 of SCC 

mixtures. Moreover, Fig. 1 demonstrates the frequency 

 
Fig. 1 Histograms of the parameters 
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Table 1 Data from experiments published in literature 

 

Table 2 Correlation matrix of the input variables 

Dmax W/B CA/FA SP B MK C Variable 

-0.3 -0.42 -0.07 -0.02 0.53 -0.45 1.00 C 

-0.06 -0.09 -0.02 0.26 0.11 1.00 -0.45 MK 

-0.38 -0.74 -0.01 0.31 1.00 0.11 0.53 B 

-0.34 -0.31 -0.04 1.00 0.31 0.26 -0.02 SP 

0.61 -0.2 1.00 -0.04 -0.01 -0.02 -0.07 CA/FA 

0.26 1.00 -0.2 -0.31 -0.74 -0.09 -0.42 W/B 

1.00 0.26 0.61 -0.34 -0.38 -0.06 -0.3 𝐷    

 

 

histograms of the parameters. Basically, some of the SCC 

variables could be dependent on each other. High negative 

or positive values of the correlation coefficient between the 

variables may result to poor efficiency of the methods and 

to the difficulty in construing the effects of the expository 

variables on the respond. Subsequently, the correlation 

coefficients between all possible variables have been 

specified and presented in Table 2. As can be seen in the 

table, there are not significant correlations between the 

independent variables.  

For the MARS and M5P MT analyses, the database sets 

were randomly divided into two phases: approximately 75% 

(153 data points) of the datasets were used for the training 

phase while the remained datasets (51 data points) were 

kept for testing the generalization capability of the 

approaches. 

 
 
 

No. Reference 
No. of 

Datasets 

Compressive 

Strength [MPa] 

1 Madandoust and Mousavi (2012) 15 31-54 

2 Dinakar and Manu (2014) 3 94.1-107.5 

3 Hassan et al. (2012) 8 39.4-48.9 

4 Guneyisi et al. (2009) 22 60.7-98.6 

5 Hassan et al. (2015) 18 29.6-55.22 

6 Kavitha et al. (2015) 4 44-71 

7 Kannan and Ganesan (2015) 8 40.77-55.7 

8 Abouhussien et al. (2015) 4 48.66-55.22 

9 Syed Ahmed (2009) 7 39-46 

10 Gilan et al. (2012) 25 19-50 

11 Ahari et al. (2015) 4 45.5-64.5 

12 Megat Johari et al. (2011) 3 91.5-103.5 

13 Khatib (2008) 6 66.1-89.7 

14 Justice and Kurtis (2007) 6 45-75 

15 
Sfikas et al. (2014), 

Badogiannis et al. (2015) 
9 62.3-91 

16 Dadsetan and Bai (2017) 4 82-89 

17 Singh Gill and Siddique (2018) 4 41.4-52.4 

18 Lenka and Panda (2017) 10 37-68 

19 Wild et al. (1996) 7 62.6-82.47 

20 Ferreira et al. (2015) 11 23.4-48 

21 
Chitroju and Yerikenaboina 

(2018) 
14 30-46 

22 Khotbehsara et al.(2017) 6 42.5-46 

23 Joseph et al. (2017) 6 64.1-71.5 

Total  204 19-107.5 

 
Fig. 2 Schematic flow diagram for the proposed data driven approaches 
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3. Predictive data driven approaches 

 

Traditional modeling methods are on the basis of 

empirical relations obtained from experimental results and 

observations. Therefore, the application of artificial 

intelligence methods for modeling and problems prediction 

is widespread in civil engineering due to its considerable 

benefits (Kiani et al. 2016). In the past, the complexity of 

the hardened properties of SCC resulted in attempts mostly 

empirical in nature. Variety of materials used in self-

compacting concrete and the complexity of its mixture 

proportions show that in order to propose improvements 

fast and accurate models are necessary to predict the 

properties. Thus, 28-days compressive strength is 

examined, in this paper, as hardened properties of SCC via 

new methods of MARS and M5P MT. A schematic flow 

diagram for the proposed data driven approaches is 

presented in Fig. 2. 

 

3.1 M5 prime model tree  
 

M5P MT is a supervised learning method which have 

been widely used to numeric attributes. This technique was 

 

 

first introduced by Quinlan (1992), Wang and Witten (1997) 

enhanced the method by means of an algorithm called M5P. 

M5P MT is a tree that contains a root node and leaves with 

linear regression functions at the top and bottom of the tree. 

The main aim of this model is to determine the relevancy of 

independent and dependent variables (Witten and Frank 

2005). One of the advantages of model tree is to distribute 

space of input variables into some disparate regions to 

create a linear regression in every region. This advantage 

improves the accuracy of model. In fact it divides problems 

to sub-problems and combines the results of these sub-

problems in order to solve those (Rezaie-Balf et al. 2017). 

This algorithm comprises two distinct steps: the growth 

of tree and the tree step. Initially, the instance space 

recursively splits to construct a regression tree in M5P 

algorithm. A splitting criterion is used to minimize the intra-

subset variability in the values down from the root through 

the branch to the node. By means of testing each attribute at 

a specific node, the variability can be calculated by the 

standard deviation of the values that reach the node from 

the root through the branch (Witten and Frank 2005). Fig. 

3(a) schematically illustrates the splitting phase of input 

space and the general structure along with the dependent 

 

 
Fig. 3 Splitting the input space and prediction by the model tree for a new data record: (a) splitting of the input space 

(X1×X2) by the M5P MT; (b) predicting a new data by the M5P MT (Rezaie-Balf et al. 2017) 

(a) 

(b) 
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leaves is presented in Fig. 3(b). 

In order to organize the basic tree, Standard Deviation 

Reduction (SDR) is applied as the splitting criterion in M5P 

MT. This criterion can be calculated as 

      ( )  ∑|
  

 
|    (

 

  ) (3) 

where K indicate a set of data that reach the node; Ki 

denotes the subsets of data that have the ith outcome of the 

potential set; and sd is abbreviation of the standard 

deviation (Witten and Frank 2005). This splitting process 

forces the child node to have smaller value of standard 

deviation as compared to parent node thus making them 

more pure (Quinlan 1992). The implementation of M5P MT 

chooses the split that maximizes the expected error 

reduction after testing all the possible splits. This data 

division during M5 algorithm implementation produces a 

large tree which may be the cause of over-fitting. 

Furthermore, a certain pruning method was offered by 

Quinlan (1992) to overcome the problem of over-fitting in 

this paradigm. In general, the pruning is achieved by 

replacing a sub tree with a linear regression function. More 

details in this respect can be found in Quinlan (1992), Wang 

and Witten (1997). 

 

3.2 Multivariate adaptive regression splines 
 

MARS is a non-linear and non-parametric regression 

method which was presented by Friedman (2010). It is 

implemented by models of non-linear responses between a 

system input and output using a set of splines (piecewise 

polynomials) with different gradients. There is no need for a 

permanent assumption about basic functional relationship 

between input and output variables. Endpoints of the 

segments are called nodes. A node defines endpoint of an 

area of data and beginning of another area of data. The 

resulted splines (known as base functions) provide more 

flexibility for the model and curvatures, thresholds and 

other deviations of linear functions. The MARS method 

creates basis functions by step searching. Adaptive 

regression algorithm is used to select nodes position. 

MARS models are implemented via a two-step method. In 

the first step, functions are added up and probabilistic nodes 

are found for performance improvement leading to a model 

with a precise curve fitting (primary phase). The second 

step involves the removal of minimum real terms 

(secondary phase). Suppose that y is a deterministic output 

and X=(X1, ..., Xp) is input variable matrix, P. Thus, it is 

considered that data are obtained from an unknown “real” 

model. Consequently, the response is as follows 

    (       )     ( )      (4) 

where, e is the error. MARS is used to approximate the 

function f by employing basis functions (BFs). Basis 

functions are referred to splines (smooth polynomials) 

comprising piecewise-linear functions and piecewise-cubic 

functions. In this study, piecewise-linear functions are 

employed and these functions are explained in the 

following. 

Piecewise-linear functions are a type of max (0, x-t), 

where a node is located on t value, max (.) denotes that only 

positive part of (.) is used; otherwise, it is zero. 

   (     ) {
                    
                       

 (5) 

The MARS method is a linear combination of BFs 

expressed as follows 

 ( )     ∑   

 

   

  ( ) (6) 

where, λm is smoothing parameter. Each λm(x) is a basis 

function which comprises one spline function or the product 

of two or more spline functions (although data might 

impose the use higher order; here, a maximum of a second 

degree order is considered). The coefficients β are constant 

and can be estimated using least squares method. The 

MARS modeling stems from data. First, the primary 

method is applied to the training data for fitting the model. 

A model is constructed with the intercept, β0, and the basis 

pair that generates the largest reduction in the training error. 

Next model is added to the model, based on present model 

of basic function 

 ̂     ( )   (      )   ̂     ( )   (      ) (7) 

where the least squares method is used for the estimation. 

Mutual effects between BFs which are present in the model 

are also considered, since the basis function is added to the 

model space. Then BFs are added to the model to obtain the 

maximum number of terms leading to a purposely over fit 

model. Then a secondary removal approach is employed to 

reduce the number of terms. This removal method is applied 

to find a model which is closest to optimal range by 

eliminating extraneous variables. In this method, BFs with 

minimum contribution to the model are eliminated in order 

to find the best sub-model. Therefore, BFs selected from set 

of all BFs which were used in primary selection step, 

comprise the final optimized model. Generalized cross 

validation (GCV) method is used to compare subsets of the 

model due to its low computational cost. The GCV equation 

which is an adaptive amount that serves to decrease the 

chance of over fitting and approximates high dimensional 

BFs for decreasing goodness of fit probability. N 

observations are used to calculate GCV of the training data 

model (Friedman 2010, Jeckabsons 2010) 

       

 
 

∑ [    (  )]
 
   

 

[   
    (   )  

 
]
   (8) 

where M is the number of BFs, N is the number of 

observations, d is the estimation parameter, and f (xi) 

represents values predicted by the MARS model. An 

average squared error of the evaluated model in training 

data is the numerator which is estimated by the penalizing 

denominator. The denominator increases the complexity of 

the model by assuming an ascending variance. It is worth 

mentioning that (M-1)/2 is the number of nodes of the basis 

function. GCV not only estimates the number of BFs of a 

model but also estimates the number of nodes (Hastie et al. 

2009, Zhang and Goh 2013). In order to minimize Eq. (6), 
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one BF is eliminated in each removal step such that the 

presented model is fitted sufficiently (Friedman 2010). 

MARS is an adaptive technique, since BFs and positions of 

variable node are selected by data-driving and are specific 

for each problem. 

 

3.3 Performance evaluation criteria 
 

To compare the statistical criteria of the developed 

techniques, different performance measures (Eqs. (9)-(13)) 

are calculated. The indices include correlation coefficient 

(R), root mean square error (RMSE), mean absolute error 

(MAE), average absolute error (AAE) and engineering 

index (a20-index). 

  
∑ (    ̅) (    ̅) 

   

√∑ (    ̅) ∑ (    ̅)  
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∑  (     )
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∑

|     |
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 (13) 

where  ̅ is the mean of O (observed target),  ̅ is the mean 

of P (predicted target), M is the number of dataset sample 

and m20 is the number of samples with value of rate Oi/Pi 

between 0.80 and 1.20 (0.80≤Oi/Pi≤1.20). Note that for a 

robust predictive model, the values of RMSE, MAE and 

AAE are expected to be zero, while the R and a20-index 

values are expected to be equal to 1.00. The recently 

proposed a20-index has the advantage that their value has a 

physical engineering meaning. It declares the amount of the 

samples that satisfies predicted values with a deviation 

±20% compared to experimental values (Apostolopoulou et 

al. 2018, Asteris et al. 2018, Asteris and Nikoo 2019, Chen 

et al. 2019). 

 

 

4. Modeling and results 
 

Evaluation of hardened properties of SCC containing 

metakaolin will be accomplished using 28-days 

compressive strength. The effects of curing and 

environmental conditions are not investigated in this 

research work though their influence on compressive 

strength at age of 28-day has been reported in previous 

experimental studies. The data used in the proposed MARS 

and M5P MT are arranged in a format of seven input 

parameters including cement, metakaolin, binder (cement+ 

supplementary cementitious materials), super plasticizer, 

coarse aggregate to fine aggregate ratio, water to binder 

ratio and maximum size of aggregate. The dataset presented 

in this study comprises 204 samples collected from the 

literature (Table 1). 

Table 3 The range of experimental variables 

Components Minimum Maximum Average 
Standard 

deviation 

Input variables 

Cement (kg/m3) 209.5 550 394.5 69.56 

Metakaolin (kg/m3) 0 163.5 47.17 34.81 

Binder (kg/m3) 330 600 461.30 70.79 

Super plasticizer 

(kg/m3) 
0 14 4.40 3.24 

Coarse aggregate to 

fine aggregate ratio 
0.47 2.6 1.11 0.393 

Water to binder ratio 0.27 0.6 0.41 0.082 

maximum size of 

aggregate (mm) 
6.7 30 15.19 5.30 

Output variable 

Compressive 

strength (MPa) 
19 107.5 54.96 20.09 

 

 

Based on the above database, each input training vector 

is of dimension 1×7 and consists of the values of C, MK, B, 

SP, CA/FA, W/B and Dmax. The corresponding output 

training vectors are of dimension 1×1 and consist of the 

value of the 28-days compressive strength of the SC 

concrete specimen. Their mean values together with the 

minimum, maximum values as well standard deviation 

(STD) values are listed in Table 3. 

 

4.1 Development of M5P MT 
 

The M5P MT procedure for prediction of the 28-days 

compressive strength (CS28) utilized WEKA 3.7 software. 

In this section, the capability of M5P MT is evaluated 

toward finding the mathematical formulation of linear 

equations for CS28 of self-compacting concrete containing 

metakaolin. The initial parameters of M5P MT technique 

were taken to their default values; pruning factor 5.0 and 

smoothing option. After classifying, the model tree method 

including seven inputs and one output parameter was 

implemented for prediction of CS28 of SCC using 6 rules. 

These rules based on conditional sentences are presented in 

Table 4.  

A schematic diagram of tree-building of the M5P MT 

modeling technique for the estimation of compressive 

strength of SCC containing metakaolin is presented in Fig. 

4. All input variables were taken into account in the 

estimation of the compressive strength of SCC containing 

MK; they are significant in development of the proposed 

linear models (LMs). 

 

4.2 Development of MARS 
 

An open source code of MARS which implements the 

main functionality of the MARS method for regression 

proposed in is used to accomplish the analyses presented in 

this study. Table 5 presented analytical details of MARS, 

including basis functions (BFs) type, numbers and 

maximum interactions in the final model and GCV value. 

Also, this study used a 10-fold cross-validation approach to 

avoid model performance assessment bias. Analysis of 

variance (ANOVA) test which is statistical methodology to  
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Table 5 MARS details to predict CS28 

Type of BFs Piecewise-linear 

Number of BFs 24 

Max interaction 2 

GCV 65.279 

 

 

determine important variables and important interactions 

between predictor variables in high-dimensional models 

was implemented for the model utilizing the training data. 

In Table 6, the GCV and associated input variables show the 

importance of that specific ANOVA function which were 

investigated via the increase in the GCV value caused by 

the removal of the considered predictor variables from the 

implemented MARS method. As can be seen in Table 7, the 

ANOVA decomposition identified CA/FA and B as the most 

influential variables in the prediction of CS28, respectively. 

The other effective variables on compressive strength 

include W/B, Dmax, SP, and MK which were ranked from 

higher to lower values. 

The MARS model determined the basis functions and 

their related equations. This listed functions and equations 

in order to choose a best model and optimal equation of 

desire output from MARS is provided (Zhang et al. 2016). 

The details of BFs for CS28 are shown in Table 7. The 

 

 

 

excellence of the processing speed of MARS is obvious. 

The interpretable MARS method to estimate CS28 of 

SCC containing metakaolin is given by 

            5 6    43 ∗        96 ∗      

  83 4  ∗   3  53 575  83 ∗   4  55 78 985 

∗   5  549 6 556 ∗   6    353 ∗   7     7  

∗   8    689 6 533 ∗   9  4 864 ∗       

     3 ∗         4  ∗          47 ∗    3  

   434 ∗    4  364 686 ∗    5    535 ∗    6  

 53 45  94 ∗    7   8466  55 ∗    8  

   69 7  366 ∗    9  55 85 856 ∗       

 55  3 45 ∗          5 ∗          43 

∗    3      6 ∗    4 

(20) 

 

4.3 External validation of proposed models 
 

Tropsha et al. (2003) have introduced some new criteria 

for the evaluation of the methods according to their 

performance using datasets incorporated for the tests. It is 

suggested that at least one slope of regression lines passing 

through the origin for estimated values against actual values 

or vice versa should be close to unity (Sattar and 

Gharabaghi 2015). 

Table 4 General features of the proposed model tree method 

Equation No. LM No. LM Rules of MT approach 

(14) (1) 
-0.009 * B + 1.95* SP + 5.99 * CA/FA 

 - 5.045 * W/B + 38.63 
SP <= 4.316 

  
|   SP <= 1.26 

  
|   |   W/B <= 0.44 : LM1 

|   |   W/B >  0.44 : LM2 

|   SP >  1.26 
  

|   |   CA/FA <= 0.971 : LM3 

|   |   CA/FA >  0.971 : LM4 

SP >  4.316 
  

|   CA/FA <= 1.03 : LM5 

|   CA/FA >  1.03 : LM6  

(15) (2) 
-0.009 * B + 1.95 * SP + 8.38 * CA/FA 

 - 72.64 * W/B + 60.99 

(16) (3) 
0.06 * C + 0.10 * MK - 0.051 * B + 3.53 * SP - 

5.56 * CA/FA - 76.13 * W/B + 63.81 

(17) (4) 
0.031* MK - 0.025 * B + 2.97 * SP + 9.94 * 

CA/FA - 12.15 * W/B + 46.79 

(18) (5) 
-0.032 * MK - 0.02 * B + 1.18 * SP - 15.82 * 

CA/FA- 3.99 * W/B + 74.96 

(19) (6) 
0.035 * C - 0.027 * MK + 2.74 * SP + 6.94 * 

CA/FA + 32.68 * W/B + 25.2 

 
Fig. 4 Proposed pruned tree generation of the CS28 of SCC based on M5P algorithm 

144144



 

Prediction of the compressive strength of self-compacting concrete using surrogate models 

Table 6 ANOVA decomposition based on error 

No. of BFS GCV STD variable(s) 

1 76.528 4.404 MK 

1 84.813 14.714 B 

2 71.984 7.863 SP 

4 164.553 6640.332 CA/FA 

1 90.541 10.798 Dmax 

1 68.989 2.098 C and B 

1 73.334 2.393 C and CA/FA 

1 68.090 2.406 C and W/B 

1 65.728 3.210 MK and SP 

3 88.945 23.528 B and CA/FA 

4 84.465 6629.914 SP and CA/FA 

1 92.105 13.965 CA/FA and W/B 

3 120.737 10.711 CA/FA and Dmax 

 

Table 7 Basis functions and related equations of MARS 

model for CS28 

Basis 

function 
Equation 

BF1 BF1=max(0, SP - 6) 

BF2 BF2=max(0,6 -SP) 

BF3 BF3=max(0, CA/FA - 0.807) 

BF4 BF4=max(0, CA/FA -1.284) 

BF5 BF5=max(0,1.284 – CA/FA) * max(0, SP -1) 

BF6 BF6=max(0,1.284 – CA/FA) * max(0,1 -SP) 

BF7 BF7=BF3 * max(0,296.300 - C) 

BF8 BF8 = max(0,41.250 -MK) 

BF9 BF9=max(0,1.284 – CA/FA) * max(0, Dmax -19) 

BF10 BF10=max(0,1.284 – CA/FA) * max(0,19-Dmax) 

BF11 BF11=BF2 * max(0,80 - MK) 

BF12 BF12=max(0,450 -B) 

BF13 BF13=BF3 * max(0, B -550) 

BF14 BF14=BF3 * max(0,550 -B) 

BF15 BF15=max(0,1.284 –CA/FA) * max(0, W/B-0.380) 

BF16 BF16=max(0, B -450) * max(0, CA/FA -1.284) 

BF17 BF17=max(0, CA/FA -1.284) 

BF18 BF18=max(0,1.284 – CA/FA) 

BF19 BF19=BF18 * max(0, Dmax -19) 

BF20 BF20=BF18 * max(0, SP -1.52) 

BF21 BF21=BF18 * max(0,1.52 - SP) 

BF22 BF22=max(0, Dmax -10) 

BF23 BF23=max(0, C -340) * max(0, W/B -0.4) 

BF24 BF24= F12 * max(0, C -403) 

 

 

  ∑
     

  
                 

     

  
 

 

   

 (21) 

Furthermore, the coefficient of determination calculated 

for the regression line passing the origin should be smaller 

than 0.1. 

  
     

 

  
  (22) 

  
     

  

  
 (23) 

Table 8 Validation statistical criterions for proposed 

approaches 

Model 

R K K' m n Rm 

(R>0.8) 
(0.85<K, 

K'<1.15) 
(m, n<0.1) (Rm>0.5) 

MT 0.875 0.964 1.00 - 0.385 - 0.402 0.511 

MARS 0.930 0.992 0.993 - 0.154 - 0.154 0.548 

Alyhya -0.030 0.926 0.916 -1.00e+3 -940.26 2.76e-5 

 

Table 9 Comparison of results obtained from proposed 

models 

Performance Model 

Statistical criteria* 

R 
RMSE 

(MPa) 

MAE 

(MPa) 

AAE 

(%) 

a20-index 

(%) 

Training 

MT 0.928 77.10 6.59 12.7 84.31 

MARS 0.972 23.60 3.91 8.3 90.85 

Alyhya 0.130 602.32 19.857 43.2 36.60 

Testing 

MT 0.875 93.92 7.76 14.9 84.31 

MARS 0.930 46.46 5.30 10.3 84.31 

Alyhya -0.030 543.22 18.25 36.71 31.37 

*Bold text refers to best performance 

 

 

In addition, it is necessary that cross validation satisfy 

the following condition 

      (  √|     
 | )    5  (24) 

The following relationships give the squared correlation 

factors through the origin between the forecasted and actual 

values 𝑅 
 , and between the actual and forecasted values 

𝑅 
   as follows 

  
    ∑  

 (   )  ∑(    ̅ ) 

 

   

 

   

 (25) 

𝑅 
     ∑  

 (    )  ∑(    ̅ ) 

 

   

 

   

 
(26) 

Table 8 shows the validation criteria and associated 

performance measures of proposed AI techniques in the 

developed form. If some or all the necessary conditions are 

satisfied by these techniques they would be regarded as 

valid. As seen the required criteria are all satisfied implying 

that they have the predictive potential and are not regarded 

as just accidental correlations. 

 

 

5. Discussion 
 

The admission or rejection of the approaches was 

determined by their capability to estimate the 28-days 

compressive strength (CS28) of SCC. To test the precision 

of the model, a comparative study has been performed in 

terms of R, RMSE, MAE, AAE and a20-index statistical 

metrics. Figs. 5 and 6 delineated the fitting sufficiently and 

a20-index of the proposed models for the prediction of 

CS28. It can be observed that the points are perceptibly  
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closed and around the ideal line (y=x). The comparison of 

the derived results with the experimental findings 

demonstrates the ability of the proposed models to 

approximate the compressive strength of self-compacting 

concrete. Specifically, the developed MARS model can 

predict the compressive strength in a reliable and robust 

manner. Furthermore, the developed MARS model 

outperforms the proposed MT and Alyhya regression model 

in the training and testing performances, with 12.7% and 

14.9 % error, respectively.  

Fig. 5 illustrated observed to predicted CS28 ratio. As it 

can be seen, the closer the ratio to unity, the more precise 

 

 

the models. Distribution plot of observed to predicted ratio 

for the investigated models indicated in Fig. 6. Values of the 

AI and Alyhya models indicated outside the range data 

points are almost of over predicted or under predicted 

distribution in the prediction procedure. 

As shown in Fig. 7 the comparison of values observed 

and computed of the M5P MT, MARS and alyhya 

developed model is presented. The results of plots of Fig.7 

indicated that the MARS technique to predict local 

maximum and minimum of data point has better 

performance than the other models.  

Also M5P MT and MARS in the estimation of  

 
Fig. 5 Scatter plots of observed and predicted CS28 for training (dark color) and testing (light color) performances of the 

proposed models; (a): MT, (b): MARS, (c): Alyhya model 
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compressive strength in a range of 60-100 (MPa) 

respectively have accurate results reported. Comparisons of 

R, RMSE, MAE and AAE, in Table 9, indicate that MARS 

gives only marginally better predictions than M5P MT. The 

 

 

 

predicted CS28 values based on the MARS model indicate 

high degree of dependency with the experimental results 

considered than M5P MT approach both for training and 

testing process. The statistical criteria have shown 

 
Fig. 6 Ratio between the observed and predicted CS28; (a) MT; (b) MARS; (c) Alyhya model 

 
Fig. 7 Time series plot of observed and predicted compressive strength for proposed models: (a) MT; (b) MARS; 

(c) Alyhya model 
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obviously this condition. In this study, the maximum value 

of correlation of coefficient is 0.972 for training stage in the 

MARS method and the minimum value is 0.875 for testing 

stage in the M5P MT methods. Therefore, both MARS and 

M5P MT approaches could be used as trustworthy tools to 

estimate compressive strength of the SCC containing 

metakaolin. 

 

 

6. Conclusions 
 

In this study, data driven approaches such as the MARS 

and M5P algorithm based model trees have been used to a 

novel formulation of the 28-days compressive strength of 

SCC incorporated metakaolin. The application of MARS 

and M5P MT to generate linear contribution of input and 

output variables and regression based formula has been 

investigated. The models were developed by using 204 data 

sets including mixture proportions specification such as C, 

MK, B, SP, CA/FA, W/B and Dmax as inputs. Statistical 

metrics were utilized to validate the efficiency of the 

proposed data driven models. The performance criteria 

indicated that the MARS and M5P MT were able to produce 

accurate estimation of CS28 based on mixture content. The 

reliability of the developed predictive models was 

investigated by external validation. The results indicate that 

the proposed models are robust and provide more accurate 

predictions than previous developed model.  The methods 

presented can be employed as alternative techniques for 

simulating the compressive strength of self-compacting 

concrete materials. 
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