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1. Introduction 
 

Fluid-conveying submerged cylindrical pipes have been 

widely used in many civil and mechanical engineering 

applications for example in the submarine industry, oil and 

gas industry, petrochemicals systems, and so on. Such 

cylindrical structures have been analyzed for many of the 

failures and/or operating problems due to flow-induced 

vibrations and instabilities from previous decades (Housner 

1952, Benjamin 1961, Païdoussisand issid 1974). In the last 

years, some studies have been done on the dynamic 

characteristics of pipelines (Amabili et al. 1999a, 1999b, 

2000, 2003, 2008, Païdoussis et al. 2004, 2005, 2007a, 

2007b, Lopes et al. 2002, Semler et al. 2002, Wadham-

Gagnon et al. 2007, Ibrahim(2010, 2011). Also, several 

studies have been performed on the dynamical response of 

the submerged pipes and/or fluid conveying pipes against 

underwater shock, effect of the moving mass, fluid induced 

vibrations and ground motion acceleration that is noted as 

follows. 

Mechanical analysis of nanostructures has been reported 

by many researchers (Zemri 2015, Larbi Chaht 2015, 

Belkorissat 2015, Ahouel 2016, Bounouara 2016, Bouafia 

2017, Besseghier 2017, Bellifa 2017, Mouffoki 2017 Khetir 
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2017). Gong et al. (2000) applied a computational method 

for safety evaluation of submerged pipelines, subjected to 

underwater shock. In this research, the fluid structure 

interaction between the pipeline and seawater were 

considered based on the coupled boundary-element and 

finite-element programs, by means of the Doubly 

Asymptotic Approximation (DAA). Lee and Oh (2003) 

developed a spectral element model for the pipe conveying 

fluid to study the flow induced vibrations of the system by 

the exact constitutive dynamic stiffness matrix. Lam et al. 

(2003) examined the dynamic response of a simply 

supported laminated underwater pipeline exposed to 

underwater explosion shock. They concluded that the 

strength of the radial direction for the pipe is weaker than 

the strengths in the longitudinal and the circumferential 

directions. Consequently, the dynamic response of the radial 

direction is larger than those of other directions. Yoon and 

Son (2007) studied the dynamic behavior of simply 

supported fluid-conveying pipe in due to the effect of the 

open crack and the moving mass. Lin and Qiao (2008) 

explored vibration and instability of an axially moving 

beam immersed in fluid with simply supported conditions 

along with torsional springs. Huang et al. (2010) used 

Galerkin’s method to obtain eigen frequencies of tubes 

conveying fluid having different boundary conditions. 

Further, they calculated the variation of system eigen 

frequencies by the effect of the Coriolis forces and 

expressed a correlation between a pipe conveying fluid and  
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Euler-Bernoulli beam. Zhai et al. (2011) used the 

Timoshenko beam model for obtaining the dynamic 

response of a fluid-conveying pipe under random excitation. 

They solvedthe governing equations bythe pseudo 

excitation method together with complex mode 

superposition method. Also, they assumed that the 

parameters of load are random. Liu et al. (2012) analyzed 

fluid-solid interaction problem for an elastic cylinder by 

numerical simulations and acquired the vibration of 

cylinder for both laminar and turbulent flows. Dynamic 

behaviour investigation of pipelines under earthquake 

acceleration is a research field with few works. Seismic 

response of natural gas and water pipelines in the Ji-Ji 

earthquake was considered by Chen et al. (2002). They 

conducted a Statistical analysis for understanding the 

relationship between seismic factors (the spectrum intensity, 

peak ground acceleration and peak ground velocity) and 

repair rates. Also, Abdoun et al. (2009) studied influencing 

factors on the behavior of buried pipelines subjected to 

earthquake faulting. In none of mentioned investigations, 

the structure is not composite. Effect of using fiber-

reinforced polymer composites for underwater steel pipeline 

repairs was studied by Shamsuddoha et al. (2013). They 

offered a widespread review about of using fiber-reinforced 

polymer composites for in-air, underground and underwater 

pipeline repairs. Ray and Reddy (2013) made a study on the 

active damping of piezoelectric composite cylindrical shells 

conveying fluid. Alijani and Amabili (2014) used energy 

method with the Amabili-Reddy nonlinear higher-order 

shear deformation theory for determining the nonlinear 

vibrations and multiple resonances of fluid filled arbitrary 

laminated cylindrical shells. They demonstrated that water-

filled composite shells may exhibit complex nonlinear 

dynamic behaviour. Thinh and Nguyen (2016) investigated 

the free vibration of composite circular shells containing 

fluid. They used the Dynamic Stiffness Method (DSM) 

based on the Reissner-Mindlin theory and non-viscous 

incompressible fluid equations for modelling of structure. 

Dynamic characteristic of steady fluid conveying in the 

periodical partially viscoelastic composite pipeline was 

studied by Zhou et al. (2017). It is shown that the reducing 

of coverage fraction decreases the flutter velocity. Non-

linear vibration of laminated composite circular cylindrical 

shells using Donnell’s shell theory and Incremental 

Harmonic Balance (IHB) method was analyzed by Dey and 

Ramachandram (2017). Furthermore, the mechanical 

behavior of concrete structures containing nanoparticles has 

been investigated experimentally and analytically by a 

number of researchers. The influences of nanoparticles on  

 

 

dynamic strength of ultra-high performance concrete was 

tested by Su et al. (2016). Jafarian Arani and Kolahchi 

(2016) studied buckling analysis of concrete columns 

reinforced with carbon nanotubes by using Euler-Bernoulli 

and Timoshenko beam models. Buckling of concrete 

columns retrofitted with Nano-Fiber Reinforced Polymer 

was investigated by SafariBilouei et al. (2016). Inozemtcev 

et al. (2017) improved the properties of lightweight 

concrete with hollow microspheres with the nanoscale 

modifier. Mathematical modeling of concrete pipes 

reinforced with carbon nanotubes (CNTs) conveying fluid 

for vibration and stability analysis was done by Zamani 

Nouri (2017). Vibration of Silica nanoparticles-reinforced 

concrete beams considering agglomeration effects was 

considered by Shokravi (2017). Also, Rabani Bidgoli and 

Saeidifar (2017) studied time-dependent buckling of SiO2 

nanoparticles reinforced concrete columns exposed to fire. 

Recently, Seismic response of SiO2 nanoparticles-reinforced 

concrete surface pipes was investigated by Motezaker and 

Kolahchi (2017). In this research, the concrete pipes were 

unsubmerged. 

Hitherto, the dynamic behavior of the nanocomposite 

submerged pipes conveying fluid under earthquake load has 

not been investigated by any researcher. So in this research, 

for the first time, the seismic response of the nanocomposite 

submerged pipe conveying fluid under earthquake load is 

analytically considered as the importance of the subject. 

Mori-Tanaka method is used to evaluate the material 

properties of the nanocomposite. The governing equations 

of the structure are derived using energy method and 

according to classical theory. The dynamic displacement of 

the structure is derived using differential quadrature method 

(DQM) and Newmark method. In present study, effect of 

various parameters like volume percent of SiO2 

nanoparticles, boundary conditions, geometrical parameters 

of pipe, internal and external fluid pressure and earthquake 

intensity on the dynamic displacement of the structure is 

presented. 

 

 

2. Mathematical modeling 
 

As shown in Fig. 1, an underwater nanocomposite 

cylindrical pipe conveying fluid with length a, radius R and 

thickness h is considered. The geometrical properties of the 

nanocomposite pipe are set as: length to radius ratio: 

a/R=10, thickness to radius ratio: h/R=0.03. The boundary 

conditions are simply supported and SiO2 nanoparticles 

volume percent is 0.05 unless otherwise specified. 

 

Fig. 1 Schematic of underwater concrete pipe conveying fluid 
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2.1 Strain-displacement relationships 
 

There are many new theories for modeling of different 

structures. Some of the new theories have been used by 

Tounsi and co-authors (Bessaim 2013, Bouderba 2013, 

Belabed 2014, Ait Amar Meziane 2014, Zidi 2014, Hamidi 

2015, Bourada 2015, Bousahla et al. 2016a, b, Beldjelili 

2016, Boukhari 2016, Draiche 2016, Bellifa 2015, Attia 

2015, Mahi 2015, Ait Yahia 2015, Bennoun 2016, El-Haina 

2017, Menasria 2017, Chikh 2017).  

In order to calculate the middle-surface strain and 

curvatures, using Kirchhoff-Law assumptions, the 

displacement components of cylindrical shell in the axial x, 

circumferential θ, and radial z directions can be written as 

(Brush and Almroth 1975) 
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where (u1, u2, u3) denotes the displacement components at 

an arbitrary point (x,θ,z) in the shell, and (u,v,w) are the 

displacement components of the middle surface of the shell 

in the axial, circumferential and radial directions, 

respectively. Also, z is the distance from an arbitrary point 

to the middle surface. Using Donnell’s linear theory and 

applying Eqs. (1)-(3), strain-displacement relationships may 

be written as 
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where (εxx, εθθ) are the normal strain components and (εxθ) is 

the shear strain component. 

The constitutive equation for stresses σ and strains 

εmatrix may be written as follows 
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2.2 Mori-Tanaka rule 
 

In this section, the effective modulus of the concrete 

pipe strengthened by SiO2 nano-particles is illustrated. The 

SiO2 nano-particles are assumed with uniform distribution 

in the concrete. The matrix is assumed to be elastic and 

isotropic, with the Young’s modulus and the Poisson’s ratio 

Em, υm respectively. The resulting relations for the 

composite are (Mori and Tanaka 1973) 
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where σij, εij, γij, k, m, n, l, p
 
are the stress components, the 

strain components and the stiffness coefficients, 

respectively. According to the Mori-Tanaka method, the 

stiffness coefficients are given by (Mori and Tanaka 1973) 
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where Cm 
and Cr are the volume fractions of the concrete 

and the SiO2nano-particles, respectively. Also kr, lr, nr, pr, 

mr are the Hills elastic modulus for the SiO2 nano-particles 

(Mori and Tanaka 1973). 

 

 
3. Motion equations 
 

In this part, the governing equation of motion can be 

obtained using energy method. 

 

3.1 Energy method 
 

The total potential energy, V, of the underwater 

cylindrical shell conveying fluid is the sum of strain energy 

U, kinetic energy K, and the work done by the fluid W. 

The strain energy can be written as 

  ,dVU
V

xxxxxx     
(10) 

By substituting Eqs. (4)-(6) into (10) yields 

dAdz
xR

w
z

x

w

R

w

x

v

R

u

R

w
z

R

w

R

w

R

v

x

w
z

x

w

x

u
U

x

h

h A

x























































































































  















2

22

2

22

2

2

22

2

5.05.0  

(11) 

By introducing force and moment resultants as Eqs. 
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(12)-(13) and substituting in Eq. (11), Eq. (14) yields 
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The kinetic energy may be expressed as 
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By substituting Eqs. (1)-(3) into (15) and defining the 

following term 
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We have 
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The external work due to internal Newtonian fluid can 

be obtained using the well-known Navier-Stokes equation 

as below 
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where V=(Vx, Vθ, vz) is the flow velocity vector in 

cylindrical coordinate system with components in 

longitudinal x, circumferential θ and radial z directions. 

Also, P, and ρf are the pressure, the viscosity and the 

density of the fluid, respectively and Fbody denotes the body 

forces. In Navier-Stokes equation, the total derivative 

operator with respect to t is 
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At the point of contact between the fluid and the core, 

the relative velocity and acceleration in the radial direction 

are equal. So  

,
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dw
vz   (20) 

By employing Eqs. (19) and (20) and substituting into 

Eq. (18), the pressure inside the pipe can be computed as 
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By multiplying two sides of Eq. (21) in the inside area 

of the pipe (A), the radial force in the pipe is calculated as 

below 
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Finally, the external work due to the pressure of the 

fluid may be obtained as follows 
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Also, the external work due to outside fluid can be 

obtained as follows (Ghavanloo and Fazelzadeh 2011) 
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It should be noted that the parameter is positive 

(0<η<1). Here, R0 
is shell outer radius and R1 is the distance 

from the center line to the position where the induced 

viscous flow vanished. To couple the elastic deformationof 

the shell and the viscous flow of the external fluid, it is 

assumed that the surface traction of the external fluid along 

the interface is equal to external force exerted on the shell.  

vFq   (26) 

The external work due to the earthquake loads can be 

computed as below 
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Wherem and a(t) are the mass and the acceleration of 

the ground. 
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3.2 Hamilton’s principle 
 

The governing equations of the structure are derived 

using the Hamilton’s principle which is considered as 

follows 
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Now, by applying the Hamilton’s principle and after 

integration by part and some algebraic manipulation, three 

equations of motion can be derived as follows 
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By integrating the stress-strain relations of the structure 

and introduced Eqs. (12)-(13), we have 
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By substituting stress resultants, Eqs. (32)-(37), in 

governing equations, Eqs. (29)-(31), relations can be 

obtained in terms of only the displacement fields. 

Also, the boundary conditions are taken into account as 

below 
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in the following, DQ method along with Newmark 

technique is selected because the governing equations are 

nonlinear and the higher accuracy is needed. 

 

3.3 DQ method 
 

There are a lot of numerical methods to solve the initial 

and/or boundary value problems that occur in an 

engineering domain. One of the best numerical methods is 

differential quadrature method (DQM).This method has 

several advantages compared to other numerical methods 

that are listed as below:  

1. DQM is a precise method for solving of nonlinear 

differential equations in approximation of the derivatives. 

2. DQM can satisfy a variety of boundary conditions 

and need much less formulation and programming effort. 

3. The accuracy and convergence of the DQM is high. 

Due to the above outstanding merits of the DQM, in 

recent years, the method has become increasingly popular 

in the numerical solution of problems in analysis of 

structural and dynamical problems. In these method, the 

derivative of the function may be defined as follows 

(Kolahchi et al. 2015) 
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where Nx and Nθ denote the number of points in xand 

θdirections, f(x, θ)
 

is the function, and Aik, Bjl
 

are the 

weighting coefficients defined as 
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where M and P are Lagrangian operators defined as 
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 and for higher-order derivatives, we have 
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The Chebyshev polynomials are used as below for 

selecting sampling grid points  
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Assuming Eqs. (52)-(54) (for changing relations to 

standard eigenvalue problem form) and applying above 

equations into the motion equations, the matrix form of 

governing equations can be written as Eq. (55) 
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 (55) 

where KL, KNL, C, M, db 
and dd 

represent the linear stiffness 

matrix, the nonlinear stiffness matrix, the damping matrix, 

the mass matrix, the boundary points and domain points, 

respectively. 

 

3.4 Newmark method 
 

Newmark-β method can beemployed to obtain the time 

response of the structure. Based on this method, Eq. (55) 

can be rewritten as below (Simsek 2010) 

,)( 11

*

  ii QdK
 (56) 

K
*
(di+1) and Qi+1 are the effective stiffness matrix and the 

effective load vector in time of i+1 which can be presented 

as 

,)()( 1011
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(59) 

Eq. (56) is solved at any time step and modified velocity 

and acceleration vectors are calculated as follows 

,)( 32101 iiiii ddddd    
 (60) 

,1761   iiii dddd    (61) 

these modified velocity and acceleration in Eqs. (60) and 

(61) are considered in next time step and all these 

procedures mentioned above are repeated. 

 

 

4. Numerical results and discussion 
 

A computer program based on the DQM being written 

in MATLAB®  to solve the nonlinear motion equations set 

out originally in Eq. (56). For this purpose, a 

nanocomposite pipe of length a, radius R, thickness h, 

Young's modulus of 20 GPa and Poisson's ration of o.3 as 

shown in Fig. 1 is considered. Also, it is assumed the 

flowing liquid is water. The mass density and viscosity of 

water is equal to (998.2 kg/m
3
) and (10

-3
 Pa.s) respectively. 

Also, for the strengthening of concrete, SiO2 nanoparticles 

with the density of ρnp=3970 kg/m
3
 is used. For considering 

earthquake effects, the acceleration of the earthquake 

according to Tabas earthquake is considered that the 

distribution of acceleration in 20 seconds is shown in Fig. 2. 

Furthermore, the cylindrical shell is investigated with three 

kinds of boundary conditions: two edges simply supported 

(SS), clamped (CC), and simply supported and clamped 

(SC). In addition, in the following figures, the deflection at 

the middle point of the pipe is studied.  

 

 

 

Fig. 2 The accelerogram of 1978 Tabas Earthquake 
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Fig. 3 Comparison of the present work with the Exact 

solution 

 

 

Fig. 4 Accuracy of DQM for determining the dynamic 

displacement 

 

 

4.1 Validation 
 

In the absence of similar publications in the literature 

covering the same scope of the problem, one can not 

directly validate the results found here. Therefore, the 

present work could be partially validated based on a 

simplified analysis without considering the nonlinear terms 

of the governing equations and by comparing the linear 

dynamic response of the pipe which obtained by DQ and 

exact (i.e., Navier (Kolahchi et al. 2015)) methods. 

Considering the material properties the same as those 

reported in first paragraph of section 4, it can be concluded 

that DQM method is accurate and acceptable for present 

problem because the present results closely match with the 

analytical method illustrated in Fig. 3. 

 

4.2 The convergence of present method 
 

The convergence and accuracy of DQ method in 

evaluating the maximum deflection of the underwater pipe 

conveying fluid with CC boundary condition is illustrated in 

Fig. 4. The results are offered for different values of the 

DQM grid points. It is found that 15 DQ grid points can 

yield accurate results. So, the results presented below are 

based on the number of grid points 15 for DQ solution 

method. 

 

Fig. 5 The effect of internal fluid on the dynamic 

displacement of submerged pipe versus time 

 

 

Fig. 6 The effect of external fluid on the dynamic 

displacement of fluid-conveying pipe versus time 

 

 

4.3 Effect of various parameters 
 

In this study, four types of CC pipelines considering the 

existence of external and internal fluid were modeled and 

computed. Fig. 5 shows the dynamic displacement of 

submerged pipeline under Tabas earthquake for two cases of 

empty and fluid-conveying pipeline with dashed and solid 

lines, respectively. It can be found that considering the 

interior fluid, decreases the stiffness of the structure and as 

a result, the displacement of the structure increases. 

Furthermore, the maximum displacement value for the 

submerged pipeline conveying fluid is almost five times 

more than the submerged pipeline without fluid.  

The dynamic displacement of CC pipeline conveying 

fluid under Tabas earthquake for two cases ofthe existence 

of external fluid and without external fluidis shown in Fig. 

6. It can be observed in the presence of external fluid, 

dynamic deflection of system increases because the 

stiffness of the structure decreases. Also, the maximum 

deflection value for the submerged pipeline conveying fluid 

is almost three times more than the pipeline conveying fluid 

without external fluid. By comparing Figs. 5 and 6, it can be 

observed that the maximum deflection for the submerged 

pipeline without internal fluid is less than the pipeline 

conveying fluid without external fluid. 

The changes of deflection versus time for various  
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Fig. 7 The boundary conditions effects on the dynamic 

displacement versus time 

 

 

Fig. 8 The effect of thickness to radius ratio on the dynamic 

response of pipe versus time 

 

 

boundary conditions are shown in Fig. 7. By investigating 

the boundary conditions effects on the dynamic 

displacement of the structure, it is found that the pipe with 

simply-simply boundary condition has the most deflection 

in comparison to the other ones. Because the simply 

boundary condition has lower constraint and consequently 

the structure is softer.  

Fig. 8 indicates the effect of the thickness to radius ratio 

of the CC pipe on the dynamic deflection versus time. As 

can be seen, by increasing the thickness of the structure, 

dynamic deflection of system decreases. it is because the 

structure become stiffer.  

The effect of aspect ratio (a/R) on the dynamic 

deflection of the CC pipe versus time is shown in Fig. 9. It 

is obvious that by increasing the length to radius ratio, the 

dynamic deflection of system increases.  

The effect of SiO2 nanoparticles volume percent on the 

dynamic displacement of the system versus time is shown 

in Fig. 10. The changes of the displacement are shown for 

cr=0, cr=0.05
 
and cr=0.10. The results show that increasing 

of SiO2 nanoparticles volume percent leads to decreasing in 

dynamic deflection of the system for the reason that the 

stiffness of the structure increases. 

 

Fig. 9 The effect of length to radius ratio of CC pipe on the 

dynamic response of pipe versus time 

 

 

Fig. 10 The effect of SiO2 nano-particles volume percent on 

the dynamic response of pipe versus time 

 

 

5. Conclusions 
 

The dynamic response of nanocomposite submerged 

pipeline conveying fluid under the earthquake acceleration 

was investigated in this study. The nanotechnology was 

used for improving the mechanical behavior of Concrete 

pipe and it was strengthened with SiO2 nanoparticles. The 

Mori-Tanaka method was applied for determining the 

elastic coefficients of nanocomposite. Furthermore, the 

system was subjected to the dynamic loads caused by 

earthquake. Navier-Stokes equation and an external force 

were employed to calculate the internal and external fluid 

effect in the pipe, respectively. The motion equations were 

derived using an energy method and Hamilton’s principle 

and solved via DQM and Newmark method. The effects of 

boundary conditions, volume percent of SiO2 nanoparticles, 

geometrical parameters of pipe and the interior and exterior 

fluid force on the dynamic displacement of the structure for 

the Tabas earthquake were taken into considerations. 

Results indicate: 

1. The present results obtained by DQM and Newmark 

method are in good agreement with analytical method.  

2. With Increasing the SiO2 nanoparticles volume 
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percent, the dynamic deflection of the system decreases 

because the stiffness of the structure increases. 

3. Considering the interior fluid in the submerged 

pipeline, decreases the stiffness of the structure and as a 

result, the displacement of the structure almost five 

times increases. 

4. External fluid force in the pipeline conveying fluid, 

causes the dynamic deflection of system almost three 

time sincreases because the stiffness of the structure 

decreases. 

5. The maximum deflection for the submerged pipeline 

without internal fluid is less than the pipeline conveying 

fluid without external fluid. 

6. The highest and lowest dynamic deflection of the 

structure were respectively obtained for simply-simply 

and clamped-clamped boundary condition. 

7. By increasing the length to radius ratio of pipe, the 

dynamic deflection of system increases. It is because the 

structure become softer. 

8. By increasing the thickness to radius ratio, dynamic 

deflection of system decreases. it is because the 

structure become stiffer. 
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