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1. Introduction 
 

Reinforced concrete (RC) is now widely used in a 

variety of structures owing to its versatility, high 

compressive strength, durability and resistance to fire and 

water damages. The wide usage of concrete structures 

increases the demand for economical and optimum design. 

In the structural optimization, the aim usually is to find the 

design parameters in such a way that the cost function be 

minimized and the design requirements get satisfied. 

Although structural optimization initially was developed 

during World War II for minimum weight design of the 

aircrafts (Cox and Smith 1943), it is still one of the most 

important research areas. Some of the recent important 

researches on the optimum design of concrete structures are 

as the following.  

Mergos (2016) studied the optimum seismic design of 

reinforced concrete frames according to Eurocode 8 (EC 8) 

and fib Model Code 2010 (MC2010). Genetic algorithm 

(GA) was used to perform optimization and the optimum 

results obtained according to EC 8, and MC 2010 were 

compared. It was concluded that MC2010 provides 

enhanced structural damage control in RC frames. 

Habibi et al. (2016) developed optimum design curves 

for RC beams according to INBR9 regulations. Lagrange 
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Multipliers Method (LMM) was utilized to obtain closed-

form solutions for design parameters. Minimization of 

concrete and steel material cost were considered as the 

objective of the optimization, while the ultimate flexural 

capacity of the beam was considered as the main constraint. 

Gharebaghi et al. (2016) proposed a method for design 

optimization of RC frames subjected to earthquake loading. 

The method was an automated design procedure consisting 

of a Tree Classification Method (TCM) and a real-valued 

model of Particle Swarm Optimization (PSO).   

Nigdeli and Bekdaş (2017), studied the Optimum design 

of RC continuous beams considering unfavorable live-load 

distributions. A Random Search Technique (RST) was 

utilized to find optimum cross-section dimensions and 

reinforcement of continuous RC beams. Design constraints 

were considered according to ACI 318. 

Fedghouche (2017) studied the cost optimization of 

doubly reinforced high strength concrete (HSC) T-beams. 

The considered cost function consisted of HSC, rebar, and 

formwork costs. Also, the constraints were considered in 

accordance with Eurocode 2 (EC-2). The optimization 

problem solved using Generalized Reduced Gradient 

algorithm. 

Chutani and Singh (2017) developed a method for 

design optimization of RC beams using Particle Swarm 

Optimization (PSO). The total material cost of concrete and 

rebars were considered as the objective function, while the 

main constraints were moment capacity, lateral stability, 

and deflection according to Indian Standard (IS). 

Alghamdi and Ahmad (2018), developed an optimum 

design methodology for RC beams and columns exposed to 

chloride. An Excel program was developed to achieve 

structural durability of beams for desired service life and 

corrosive environment. 
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Esfandiari et al. (2018), studied the Optimum design of 

3D reinforced concrete frames using a hybrid algorithm 

called DMPSO. The hybrid algorithm was constructed by 

combining multi-criterion Decision Making (DM) and 

Particle Swarm Optimization (PSO) algorithms. 

Uz et al. (2018) studied layout optimization of multi-

span RC beams subjected to dynamic loading. Charged 

system search (CSS) algorithm was used to find optimum 

span ratios in continuous beams with several spans. 

Gharebaghi et al. (2018) studied the optimum seismic 

design of reinforced concrete frame structures. The 

proposed procedure aimed to minimize construction cost 

and uniform damage distribution over the height of 

structures. The results showed that the proposed method is 

capable of resulting in designs with less damage under 

severe earthquakes. 

Silva and Amilton (2018) studied the optimization of 

reinforced concrete polygonal sections under biaxial 

bending with axial force. The considered variables were 

location, diameter and number of steel rebars in the section. 

Sequential Linear Programming (SLP) algorithm was used 

as the optimization technique to minimize the rebar area of 

the section. 

Shariat et al. (2018) studied design optimization and 

sensitivity analysis of RC beams using Lagrangian 

Multipliers Method (LMM). Total material cost of steel and 

concrete was considered as the objective function and 

flexural capacity of beams as the main constraint. By 

performing sensitivity analysis, the optimum results 

obtained according to three design codes of ACI, BS, and 

Iranian concrete standard (ICS) were compared. 

The Lagrange Multipliers Methods (LMMs) have been 

successfully used in constrained engineering problems 

(Arora et al. 1994). In the LMMs the constrained problem is 

transformed to an unconstrained one and the final solution 

is obtained through a series of unconstrained optimization 

sub-problems. This method has been successfully applied in 

the optimization of singly and doubly RC beams (Habibi et 

al. 2016, Shariat et al. 2018). Ceranic and Fryer (2000) 

applied LMMs in the optimization of RC beams in 

accordance with British Standard requirements. Barros et 

al. (2005) utilized LMMs for design optimization of singly 

and doubly reinforced concrete beams based on the EC2-

2001 design criteria. Also, in some researches the LMMs 

are combined with the other optimization techniques. For 

instance, Adamu et al. (1994) proposed an application of 

Continuum-type Optimality Criteria (COC) method for 

optimum design of RC beams, where the minimality 

conditions were derived using the Augmented Lagrangian 

method. The main advantage of using LMM in the design 

optimization of RC beams is that analytical equations can 

be developed to obtain optimum values of the design 

parameters. These analytical equations can then be used by 

practicing engineers easily. 

The main objective of the present study is to develop an 

analytical approach based on LMM for optimum design of 
RC beams, in accordance with the INBR9 criteria. In the 
present study, both shear and flexural capacities are 
considered as the main constraints. This is the main 
difference in the optimization model of the present study 
with the previous works done by Habibi et al. (2016) and 

Shariat et al. (2018), where only the flexural capacity had 
been considered. Considering shear capacity as a constraint 
leads to have a better optimum design formulation because, 
in practical designs, the tensile reinforcements are used 

together with the shear reinforcements. As it is shown 
through the paper, this assumption will reduce the ratio of 
reinforcements (𝜌), and this will result in lower costs. The 
optimum design equations and curves achieved in this study 
can be used for the minimum cost design of RC beams 
without the need of any prior knowledge of optimization. 

 

 
2. Proposed method 

 

In the present work, the LMM method is employed to 

obtain the analytical formulation for optimum design of RC 

beams. The objective is to minimize the total material cost 

of the RC beams. In general, the objective function can be 

written as below 

𝑍 = 𝑓(𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝑛) (1) 

Subject to constraints 

𝑔𝑖(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) ≤ 0        𝑖 = 1, 2, … , 𝑃 (2) 

Where 𝒙𝟏 to 𝒙𝒏 are the design variables, and 𝒈𝟏 to 

𝒈𝒑 are the constraints. 

In this study, the main design constraints of the problem 

are assumed to be active. Accordingly, the unconstrained 

Lagrangian function can be written as follows 

𝐿 (𝑥1, 𝑥2, … , 𝑥𝑛 , 𝜆1, 𝜆2, … , 𝜆𝑃) 

= 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) + ∑ 𝜆𝑖𝑔𝑖(𝑥1, 𝑥2, … , 𝑥𝑛)

𝑃

𝑖=1

 
(3) 

Where 𝝀𝒊 are the Lagrange multipliers. The necessary 

conditions can be written as follows 

𝜕𝐿

𝜕𝑥𝑘

=
𝜕𝑓

𝜕𝑥𝑘

+ ∑ 𝜆𝑖

𝑃

𝑖=1

𝜕𝑔𝑖

𝜕𝑥𝑘

= 0   𝑘 = 1, 2, … , 𝑛 (4) 

𝜕𝐿

𝜕𝜆𝑖

= 𝑔𝑖 = 0           𝑖 = 1,2, … , 𝑃 (5) 

Eqs. (4) and (5) taken together form a system of 𝒏 + 𝒑 

equations in 𝒏 + 𝒑 unknowns and its solution will yield 

stationary values for 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 and 𝝀𝟏, 𝝀𝟐, … , 𝝀𝒑 from 

which an optimum design can be achieved. 

In this study, the effects of shear force (𝑽𝒖)  and 

bending moment (𝑴𝒖) are simultaneously considered. As 

mentioned in the previous section, first, a cost function is 

defined as the objective function, which will be minimized 

during the optimization process. The shear and the bending 

moment capacity are considered as the main constraints. 

Finally, according to Eq. (3) the Lagrangian function can be 

developed to obtain the minimum cost solution through 

Eqs. (4) and (5).  

All of these steps are performed as explained in the 

following: 

The total cost per unit length of a beam depends on its 

material cost, geometry and reinforcement area. In the 

present study the cost function is calculated as follows 
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c = (cs + csv + cc)L (6a) 

c =  *cs (ρbd +
Asv(2b + 2d + 4d′)L

s
) + cc(bh)+ L (6b) 

where 𝑪 is the total material cost of the beam, 𝑪𝒔 is the 

cost of the longitudinal reinforcements, 𝑪𝒔𝒗 is the cost of 

the transverse reinforcements (stirrups), 𝑪𝒄 is the cost of 

concrete, and 𝑳 is the length of the beam. Also, 𝒃 and 

𝒅 are the width and the effective depth of the given beam. 

𝝆 is the reinforcement ratio which equals to 𝑨𝒔/𝒃𝒅 , and 

𝑨𝒔  is the tensile rebar area. 𝑨𝒔𝒗  is the transverse 

reinforcement area and 𝒔 is the distance between the shear 

reinforcements which is obtained from Eq. (7b). In the 

present study, it is assumed that 𝒃 and concrete cover ratio 

𝒓 are constant and do not change during the design process. 

It is obvious that the length of each shear reinforcement 

(stirrup) equals to (𝟐𝒃 + 𝟐𝒅 + 𝟒𝒅′).  

The material cost ratio can be introduced as 𝒒 =
 𝑪𝒄 / 𝑪𝒔  , where 𝑪𝒄 and 𝑪𝒔 are concrete and steel cost per 

unit volume, respectively. The cost objective function of the 

beam can be defined as Eq. (6c), where 𝒓 is concrete cover 

ratio with respect to the effective depth of the beam 𝒅. 

c = cs (ρbd +
Asv(2b + 2d + 4d′)

s
+ (1 + r)bdq) L (6c) 

The ultimate shear force is considered equal to the shear 

resistance of the beam as follows 

Vu = Vr = vc + vs (7a) 

Where 𝒗𝒔  and  𝒗𝒄  are shear strengths that 𝒗𝒔  is 

supplied by stirrups and  𝒗𝒄 is supplied by concrete. These 

strengths can be calculated using the INBR9 equations as 

follows 

vs = dAsvfyd/s,   vc = 0.2bdϕc√fc (7b) 

Also the distance between the stirrups can be calculated 

using the Eq. (7c) 

Vu = (dAsvfyd/s) + 0.2bdϕc√fc  →   s 

=
dAsvfyd

Vu − 0.2bdϕc√fc

 
(7c) 

By substituting Eq. (7c) in Eq. (6c), the following 

equation can be obtained. 

c =
1

fyd

(csb) [ρdfyd +
2Vu

b
+

2Vu

d
−

4Vur

b
 

+0.4ϕc√fcd(2r − 1) − 0.4ϕc√fcb + (1 + r)dqfyd]𝐿 

(8) 

Where 
𝟏

𝒇𝒚𝒅
(𝒄𝒔𝒃) has been considered to be a constant 

(one). Similar equation can be defined for total cost of a 

Doubly Reinforced Beam (DRB) per unit length using Eq. 

(9), where length of the beam is assumed to be one (L=1). 

c′ = [ρdfyd +
2Vu

b
+

2Vu

d
−

4Vur

b
+ 0.4ϕc 

√fcd(2r − 1) − 0.4ϕc√fcb + (1 + r)dqfyd] 

(9) 

Then, the ultimate flexural capacity equation is derived 

which is considered as a constraint. The ultimate limit state  

 

Fig. 1 Reinforced section with rectangular stress block 

based on the INBR 

 

 

methodology with the equivalent concrete stress block is 

used (Fig. 1). The partial strength reduction factors for steel 

and concrete are considered based on the INBR9. By taking 

moment about the rebar's axis the flexural capacity of the 

beam can be obtained as Eq. (10).  

Mu

bd2
= ρfyd (1 −

ρfyd

2αfcd

) (10) 

Where 𝑴𝒖  is the ultimate applied moment, 𝒇𝒚𝒅 is 

reduced yield strength of steel which equals to Ø𝒚𝒇y, and, 

𝒇𝒄𝒅 is the reduced compressive strength of concrete which 

equals to Ø𝒄𝒇𝒄. According to INBR9 Ø𝒚  and Ø𝒄 are taken 

as 0.85 and 0.65, respectively. 𝜶  and 𝜷  are the 

coefficients which are used to define the equivalent 

concrete stress block. According to INBR 9 these 

coefficients are calculated as 𝛼 = 0.85 − 0.0015𝑓𝑐 , 

𝛽 = 0.97 − 0.0025𝑓𝑐  where fc is the characteristic 

strength of concrete. 

The final step includes formulating the Lagrangian 

function of the problem and solving it to obtain the 

optimum solution. Using Eq. (3) and based on the proposed 

method the unconstrained problem can be defined as 

follows 

L = ρdfyd +
2Vu

b
+

2Vu

d
−

4Vur

b
+ 0.4ϕc√fcd(2r − 1) 

−0.4ϕc√fcb + (1 + r)dqfyd + 

λ *Mu − ρbd2fyd (1 −
ρfyd

2αfcd

)+ 

(11) 

Eq. (11) is the Lagrangian function for as Singly 

Reinforced Beam (SRB). By taking partial derivatives of 

the Lagrangian function and equating to zero, the optimum 

reinforcement ratio will be obtained 

∂L

∂d
= 0 → 

ρfyd −
2Vu

d2
+ 0.4ϕc√fc(2r − 1) + (1 + r)qfyd 

−λ (2ρbdfyd (1 −
ρfyd

2αfcd

)) = 0 

(11a) 

∂L

∂ρ
= 0 ⟶ 

dfyd − λ (bd2fyd +
ρbd2fyd

2

αfcd

) = 0 

(11b) 
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∂L

∂λ
= 0 ⟶ 

Mu − ρbd2fyd (1 −
ρfyd

2αfcd

) = 0 
(11c) 

By solving these three equations as a simultaneous 

system of equations, the optimum reinforcement ratio is 

obtained as follows 

ρ opt = ρ1 − ρ2 + ρ3      (12) 

where 

ρ1 =
αfcd

fyd

 (12a) 

ρ2 = (0.4199(−9b2α2f𝑐𝑑
2 f𝑦𝑑

4 vu
2 

+3𝑏𝛼f𝑐𝑑f𝑦𝑑
4 vu(αf𝑐𝑑mu + qf𝑦𝑑mu + q𝑟f𝑦𝑑mu 

+2𝑏𝛼f𝑐𝑑vu −  0.4√fcmuϕc + 0.8𝑟√fcmuϕc)))/ 

(bf𝑦𝑑
3 vu(−27b2α3f𝑐𝑑

3 f𝑦𝑑
6 muvu

2 + A∗)1 3⁄ ) 

(12b) 

ρ3 =
0.2645(−27b2α3fcd

3 fyd
6 muvu

2 + A∗)1 3⁄

bfyd
3 vu

 (12c) 

In the above equations, 𝐴∗ equals to 

A∗ = √(729b4α6fcd
6 fdy

12mu
2vu

4 

+4(−9b2α2fcd
2 fdy

4 vu
2 + 3bαfcdfdy

4 vu[αfcdmu 

+qfdymu + qrfdymu + 2bαfcdvu 

−0.4√fcmuϕc + 0.8r√fcmuϕc])3) 

(12d) 

Also, the optimal effective depth can be obtained using 

Eq. (13) 

d opt =
√

Mu

ρ opt   fydb (1 −
ρ opt  fyd

2αfcd
)

  
(13) 

It is necessary to define the maximum tensile 

reinforcement 𝝆𝒎𝒂𝒙, i.e., when the reinforcement ratio is 

greater than 𝝆𝒎𝒂𝒙, the double reinforced design is required. 

In accordance with the INBR9 the maximum tensile 

reinforcement ratio is limited to lowest value of 𝝆𝒃 and 

0.025, where 𝝆𝒃 is the balanced reinforcement ratio 

The balanced reinforcement ratio is obtained by Eq. 

(14a). The compressive reinforcement ratio must be 

bounded by the allowable minimum reinforcement ratio as 

per INBR9 regulations (Eq. (14b)). 

𝜌𝑏 =
𝛼𝑓𝑐𝑑

𝑓𝑦𝑑

(
700𝛽

700 + 𝑓𝑦

) (14a) 

𝜌𝑚𝑖𝑛 = max ,
1.4

𝑓𝑦

 ,
0.25√𝑓𝑐

𝑓𝑦

- (14b) 

In a continuous beam with distributed loading, by 

increasing the length of the beam, the ratio of 𝑴𝒖/𝑽𝒖 will 

also increase. Consequently, the ratio of 𝝆 𝒐𝒑𝒕 will be 

increased to compensate the bending capacity of the beam. 

This is shown in Figs. 2 to 7. For deriving these curves, the 

width of the beam is considered as 0.3 meters. In these 

figures, 𝝆𝒎𝒊𝒏 and  𝝆𝒎𝒂𝒙 are the lower and upper bound 

limits for 𝝆 where have been calculated according to  

 

Fig. 2 Optimum tensile reinforcement ratio for Mu/Vu=0.5 

 

 

Fig. 3 Optimum tensile reinforcement ratio for Mu/Vu=1 

 

 
Fig. 4 Optimum tensile reinforcement ratio for Mu/Vu=2 
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Fig. 5 Optimum tensile reinforcement ratio for Mu/Vu=3 
 

 

Fig. 6 Optimum tensile reinforcement ratio for Mu/Vu=4 

 

 

INBR9. It should be noted that these limitations are side 

constraints of the problem and the main constraints are the 

flexural and shear capacities of the beam. Similar graphs 

can be drawn for different values of 𝒓, 𝒃, 𝑴𝒖 and 𝑽𝒖.  

For ratios larger than 𝑴𝒖/𝑽𝒖 = 𝟓, the diagram does not 

have tangible changes. For ρ smaller than 𝝆𝒎𝒊𝒏, 𝝆𝒎𝒊𝒏 is 

used to solve the problem. 

It is observed that increasing the ratio of material cost 

𝒒 =  𝑪𝒄 / 𝑪𝒔  (i.e., increasing the cost of concrete or 

reducing the cost of steel) results in increasing the optimum 

reinforcement ratio. The reason for this, is that when the 

cost of concrete is increased, the cost function must remain 

minimum, thus, the effective depth will be reduced to 

decrease the concrete volume. This will lead to reducing of 

the bending strength of the beam. To compensate this 

decrease in the beam capacity, the amount of tensile rebar 

(reinforcement ratio) should be increased. 

For different ratios of material cost and materials stress,  

 

Fig. 7 Optimum tensile reinforcement ratio for Mu/Vu=5 

 

 

Fig. 8 Optimum tensile reinforcement ratio for reinforced 

concrete beams with and without stirrups 

 

 

a comparison has been made between the results obtained 

using the developed method of the present study, and the 

method developed by Habibi et al. (2016). This comparison 

is shown in Fig. 8. It should be noted that in both methods, 

the ratio 𝒓 is taken as 0.1 for drawing the curves shown in 

Fig. 8. 

According to Fig 8, it is obvious that the reinforcement 

ratio obtained using the developed method of the present 

study is lower than the ratio obtained using the method 

developed by Habibi et al. (2016). The existence of the 

parameter [−
2Vu

d2 + 0.4ϕc√fc(2r − 1)] in Eq (11a) has led 

to an increase in effective depth and a decrease in 

reinforcement ratio. This parameter enters into calculations 

when the shear constraint is considered.  

 

 

3. Numerical example 
 

A numerical example is considered to evaluate the  
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Fig. 9 The given RC beam 

 

Table 1 Design results using optimal and conventional 

methods 

Total 

material 

costs 

($⁄m
3
) 

Area of 

stirrups in a 

meter 

(mm
2
) 

Area of tensile 

reinforcement 

(mm
2
) 

Effective 

depth 

(mm) 

Design number 

0.7734×Cc 997.7107 2422.6786 1100 1 (Conventional) 

0.7706×Cc 975.4588 2375.9832 1116.6 2 (Habibi et al. 2016) 

0.7606×Cc 869.0540 2169.3174 1200 3 (Conventional) 

0.7549×Cc 747.3843 1968.3880 1300 4 (Conventional) 

0.7540×Cc 673.4388 1860.9806 1363.2 5 (Present Study) 

0.7543×Cc 631.3689 1804.2815 1400 6 (Conventional) 

0.7574×Cc 519.8822 1667.1224 1500 7 (Conventional) 

0.7635×Cc 412.0704 1550.4555 1600 8 (Conventional) 

 

 

proposed relations for optimum design of concrete beams 

accounting for flexural and shear effects. In this example, a 

rectangular RC beam with 300 mm width and 8 meters in 

length, as shown in Fig. 9, is subjected to an ultimate 

distributed load of 100 kN/m. 

The ratio 𝒓 is taken as 0.10, and the material cost ratio 

𝒒 is assumed as 1/150. Characteristic strength of concrete 

and steel yield stress are considered to be 20 and 400 MPa, 

respectively. According to the considered strengths for 

concrete and steel and using the INBR9 relations the values 

of 𝜷 and 𝜶 are calculated as 0.895 and 0.82, respectively. 

Also, 𝒇𝒄𝒅  and 𝒇𝒚𝒅  are obtained as 13 and 340 MPa, 

respectively. The maximum ultimate bending moment and 

the maximum effective ultimate shear force acting on the 

beam are assumed as 800 kN. m and 350 kN, respectively. 

By using Eq. (12), the optimal tensile reinforcement ratio is 

obtained as 0.0045. From Eq. (13a), the corresponding 

optimum effective depth is obtained as 1363.2 mm and the 

required rebar area is obtained as 1860.98 mm
2
. The 

minimum material cost of the beam per unit length is also 

obtained from Eq. (8) as 0.754𝐶𝑐. 

The design results obtained using the proposed method 

are compared with the results obtained using conventional 

design procedure, and the method proposed by Habibi et al. 

(2016). This comparison is shown in Table 1. In this table, 

design number 5 is obtained using the proposed method, 

design number 2 is obtained using the method proposed by 

Habibi et al. (2016), and the other designs in the table are 

obtained by conventional design procedure. The material 

cost results of Table 1 are also plotted in Fig. 10. According 

to Table 1 and Fig. 10, material costs of all designs 

including conventional method and optimum method 

developed by Habibi et al. (2016) are higher than those 

obtained using the proposed method of the present study. 

 

Fig. 10 Comparison between the total material costs of the 

RC beam 

 
 
4. Conclusions 

 
In this research, an analytical method was proposed and 

developed to obtain the minimum cost design of RC beams 

considering both flexural and shear effects. In the optimum 

design formulation, the total costs were considered as the 

sum of concrete, reinforcement and stirrups' costs. Cost of 

formwork and labor were not considered in the formulation. 

Moment and shear capacities of RC beam were considered 

as the main constraints. The minimum cost design was 

found using an LMM based method. The results were 

presented in closed form relations which can be used easily 

by practicing engineers. Also, graphical representations of 

the results were provided for better comprehension of the 

optimization process. Considering the shear capacity as a 

constraint made the 𝝆𝒐𝒑𝒕 equation more complicated and 

thus deriving the graphs from the analytical solution was 

not easy. To overcome this issue, by considering different 

ratios for 𝑴𝒖/𝑽𝒖, various graphs have been plotted. The 

results of this study show that by using the developed 

method and considering the shear capacity as a constraint, 

the optimum reinforcement ratio ( 𝝆 ) will be reduced. 

Consequently, this will result in lower material costs. 
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