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1. Introduction 
 

The feasibility of using fiber reinforced polymer (FRP) 

bars in reinforced concrete structures has been verified by 

extensive studies (Manalo and Benmokrane 2014, 

Kosmidou 2018, Lee 2018). Although the compressive 

strength of FRP bars is lower than their tensile strength, 

their application as compression longitudinal reinforcement 

can still achieve a certain strengthening effect (De Luca 

2010, Tobbi 2012, Afifi 2013). However, at present, the 

design codes of various countries (ACI 440.1R-15, GB 

50608-2010, CSA S 806-12 and JSCE-1997) offer very 

limited design guidelines for compression concrete 

members reinforced with FRP bars (FRP-RC) and the 

research in this area is not mature. Improving the study on 

compression performance of FRP-RC to realize its full 

structural potential is essential to solving the problem of 

durability for RC structures in highly corrosive 

environments. 

Many investigations about the performance of FRP-RC 

columns under axial compression have been carried out 

(Hasan 2017, Sreenath 2017, Hadi 2016, 2017, Karim 2016, 
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Tobbi 2013, Afifi 2013, Mohamed 2010, 2014, De Luca 

2010, Sharbatdar 2003, Pessiki 1997). Regarding the aspect 

of compression-bending performance of FRP-RC, Peng et 

al. (2018) used OpenSees to establish a nonlinear model of 

eccentrically loaded FRP-RC columns, analyzing 

parametrically the second-order effects of eccentric loading 

on FRP-RC columns and obtaining a modified equation for 

the bending moment magnification factor. Hadhood et al. 

(2016, 2017) conducted experimental investigations on the 

eccentric loading performance of concrete columns 

reinforced with FRP bars and spirals. The axial force-

moment (P-M) interaction diagrams were predicted based 

on the principles of strain compatibility and internal force 

equilibrium in accordance with the recommendations in the 

available design standards. Hadiet al. (2016, 2017) 

investigated GRFP reinforced concrete (GFRP-RC) and 

GFRP reinforced high-strength concrete (GFRP-HSC) 

columns. The experimental results show that the axial load 

and flexural capacity of the GFRP-RC columns are smaller 

than those of the steel reinforced concrete (steel-RC) 

columns. However, the ductility of the GFRP-RC columns 

was very close to that of the steel-RC columns. The 

ductility and post-peak axial load-axial deformation 

behavior of the GFRP-HSC specimens can be significantly 

improved by providing closely spaced helices. It also found 

that ignoring the contribution of the GFRP bars in 

compression leads to a considerable difference between 

analytical and experimental results. Zadeh et al. (2017) 
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Abstract.  Concrete reinforced with fiber reinforced polymer (FRP) bars (FRP-RC) has attracted a significant amount of 

research attention in the last three decades. A limited number of studies, however, have investigated the effect of bond slip on the 

performance of FRP-RC columns under eccentric loading. Based on previous experimental study, a finite-element model of 

eccentrically loaded FRP-RC columns was established in this study. The bondslip behavior was modeled by inserting spring 

elements between FRP bars and concrete. The improved Bertero-Popov-Eligehausen (BPE) bond slip model with the results of 

existing FRP-RC pullout tests was introduced. The effect of bond slip on the entire compression-bending process of FRP-RC 

columns was investigated parametrically. The results show that the initial stiffness of bond slip is the most sensitive parameter 

affecting the compression-bending performance of columns. The peak bond stress and the corresponding peak slip produce a 

small effect on the maximum loading capacity of columns. The bondslip softening has little effect on the compression-bending 

performance of columns. The sectional analysis revealed that, as the load eccentricity and the FRP bar diameter increase, the 

reducing effect of bond slip on the flexural capacity becomes more obvious. With regard to bond slip, the axial-force-bending-

moment (P-M) interaction diagrams of columns with different FRP bar diameters show consistent trends. It can be concluded 

from this study that for columns reinforced with large diameter FRP bars, the flexural capacity of columns at low axial load 

levels will be seriously overestimated if the bond slip is not considered. 
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studied the influence of flexural stiffness and second-order 
effects on FRP-RC frames and discussed the practicality of 
the ACI 318 guidelines with respect to these two factors. 
The investigation conducted by Sreenath et al. (2017) 
revealed that the yield load and ultimate load at failure 
withstood by the steel-RC were considerably more than that 
of GFRP-RC. The energy absorption capacity of GFRP-RC 
was also poor compared to steel-RC columns. Both the 
columns exhibited nearly the same ductile behavior. Issa et 
al. (2012) explores the behavior of GFRP-RC and steel-RC 
columns subjected to eccentrically axial load. Large 
longitudinal deformations were recorded for columns with 
GFRP reinforcement and for columns with large tie spacing. 
However, tie spacing had no notable effect on the maximum 
lateral deflection and ductility of GFRP-RC columns. GFRP 
bars recorded higher strains than steel bars and these strains 
were larger when the tie spacing was large. The increase in 
the strength of the concrete was associated with reduction in 
the GFRP bar strain. Gong et al. (2009) systematically 
studied and summarized the characteristics of axial 
compression and the bending and seismic performance of 
FRP-RC columns and proposed corresponding design 
recommendations. Choo et al. (2006) studied the interaction 
and second-order effects of the P-M relationship of FRP-RC 
interface. The analytical results show that FRP-RC columns 
have a tendency to undergo brittle-tension failure. To avert 
brittle-tension failure to a failure controlled by concrete 
crushing, a reinforcement ratio that is greater than a 
minimum required reinforcement ratio is required. 
Sharbatdar et al. (2003) carried out experimental and 
analytical study on CFRP reinforced concrete (CFRP-RC) 
columns. It concluded that CFRP reinforced columns under 
combined axial and flexural stresses develop strengths that 
can be computed with plane section analysis similarly 
employed for steel-RC elements. Columns tested under 
monotonically increasing eccentric loading were able to 
develop their expected moment capacities. Mirmiran et al. 
(2001) proposed an FRP-RC design calculation method that 
considers second-order effects and is based on the bending 
moment magnification factor of reinforced concrete as 
specified by the ACI318-89 guidelines. 

Another aspect to consider is the bond behavior between 
FRP bars and concrete, which is the main factor affecting 
the mechanical performance, failure mode, loading 
capacity, cracking width, deformation capacity, structural 
analysis and design of FRP-RC structural members. Xu et 
al. (2018) proposed and developed a piezoceramic-based 
active sensing approach to find the debonding between a 
GFRP bar and the concrete structure. Mohamed et al. 
(2017) used a novel beam-testing method to assess the bond 
performance of fiber-reinforced polymer (FRP) bars in 
reinforced-concrete resisting systems subjected to tension-
compression reversed cyclic loading. Cyclic bond stress-
slip relationship under different loading conditions was 
acquired. Mesbah et al. (2017) studied experimentally and 
numerically the evaluation of bond strength of FRP 
reinforcing rods in concrete. The effects of different 
parameters of FRP bar, such as type, shape and diameter, on 
the bond behavior of FRP rebar and concrete were 
evaluated. Vilanova et al. (2015) carried out Experimental 
study of bond-slip of GFRP bars in concrete under sustained  

Fig. 1 Specimen design 
 
 

loads. The distribution of bond stresses and their evolution 
during sustained loading were analyzed. Hao et al. (2007) 
carried out GFRP-RC bond-slip tests and examined how the 
bond-slip behavior is affected by such factors as 
reinforcement type and rib height, width, and spacing. 
Okelo et al. (2005) proposed an average bond strength 
equation that considers the effect of the type and anchorage 
length of FRP bars. Cosenza et al. (1997) summarized a 
large number of FRP bar bond-slip test results from earlier 
studies and analyzed the mechanism and influence of 
various factors, including fiber type, surface treatment 
methods, confining pressure, FRP bar diameter, and 
concrete strength, on bond-slip performance. Multiple 
studies have shown that, because the elastic modulus and 
surface hardness of FRP bars are generally lower than those 
of steel rebar, their performance with concrete is also 
inferior.  

In FRP-RC beam-columns, the FRP-RC bond 
performance will affect the compression-bending 
performance when FRP bars are under tension. The aim of 
the present study is to clarify the effect of FRP-RC bond 
slip on the mechanical properties of FRP-RC columns under 
eccentric loading. Based on earlier experiments carried out 
by this research group, including FRP bar pull-out tests and 
eccentric compression test on FPR-RC short columns, the 
present study establishes a finite element model (FEM) and 
uses the improved Bertero-Popov-Eligehausen (BPE) bond-
slip model (Cosenza et al 1997) to study the effect of bond 
slip on the entire eccentric loading process and the ultimate 
loading capacity of FRP-RC columns. The results of this 
study will give a theoretical reference for the design of 
FRP-RC beam-columns. 

 
 
2. Establishment and verification of the FEM 

 
2.1 Mechanical parameters of the model 
 
An earlier experiment on the behavior of eccentrically 

loaded GFRP-RC columns is detailed elsewhere (Sun et al. 
2017). The specimens were designed as compression 
members with small eccentricity, as shown in Fig. 1. The 
mechanical properties of the materials are as follows: GFRP 
bar diameter of 10 mm with rib spacing of 10 mm, tensile  
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bars. These variations are manifested primarily in such 
aspects as bond-slip stiffness, the peak bond stress and its 
corresponding slip, and the residual bond stress. To study 
systematically the effect of bond-slip behavior on the 
performance of FRP-RC columns under eccentric loading, 
the present study carried out a finite-element parametric 
analysis based on the improved BPE bond-slip model 
(Cosenza et al. 1997). Eq. (1) shows the expression of 
improved BPE model. 
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where τ1 
and s1 are the maximum bond strength and the 

corresponding slip, respectively, τ3 is the friction component 
of the bond resistance, and α, p are model parameters, 
which need to be determined from tests. Fig. 10 shows a 
typical τ−s curve from the improved BPE model. 

Based on the collected existing experimental results, the 
model parameters were chosen as follows. The power index 
that determines the ascension of the curve in the initial 
loading stage is α=0.2−1.0, the peak bond stress τ1=6−20 
MPa and its corresponding peak slip s1=0.5−4.0 mm, and 
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the residual bond stress τ3 was set to be equal to 20%-80% 
of τ1. 

 
5.1 Effect of the bond-slip Initial stiffness  
 
In the improved BPE model, the change of power index 

α reflects the changes in the initial stiffness of the bond slip: 
as α decreases, the initial tangent modulus of the τ−s curve 
increases, and so does the corresponding initial stiffness of 
the bond slip. Fig. 11 shows the complete P−Δ curve of 
each specimen for different values of α.  

It shows that α starts to affect the complete P−Δ curve 
approximately from stage II: the higher the initial stiffness 
of the bond-slip response, the higher the initial stiffness and 
loading capacity of the column. In addition, as the load 
eccentricity increases, the improvement of the stiffness and 
loading capacity of the column becomes more significant. 
During parameter analysis, when α was reduced by 80%, 
for the specimens with e=75, 125, and 175, the peak loading 
capacity improved by 1.4%, 5.1%, and 9.3%, respectively, 
and the tangent stiffness at the second stage of the P−Δ 
curve increased by 0.4%, 2.1%, and 13.6%, respectively. 

 
5.2 Effect of the peak bond stress τ1 and the 

corresponding peak slip S1 
 
Fig. 12 and Fig. 13 are the P−Δ curves for the e=125 

and 175 specimens with various values of peak bond stress 
τ1 and its corresponding peak slip S1.  

Unlike α, parameters τ1 and S1 produce significant  

78



 
Effect of bond slip on the performance of FRP reinforced concrete columns under eccentric loading 

 

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

350

III

III

II

II

e=175

e=125

 
3
=0.2

1

 
3
=0.4

1

 
3
=0.6

1

=0.5


1
=15

S
1
=1

S
3
=3*S

1

P
 (

kN
)

 (mm)

 
3
=0.8

1

I

Fig. 14 Effect of parameter τ3 
 
 

influence in stage III of the P−Δ curve-that is, during its 
obviously nonlinear stage. As τ1 increases and S1 decreases, 
the eccentric loading capacity gradually decreases. This 
pattern becomes even more obvious with the increase of 
eccentricity. This shows that the lower the peak secant 
stiffness of bond slip (the slope of the line connecting the 
origin with the peak value of the τ−s curve), the more 
obvious the decrease in eccentric loading performance of 
the specimens. However, if the boundary point (point 2)  
 
 

between the second and the third stages of the P−Δ curve is 
used as a design point of a structural component, then the 
peak bond stress and its corresponding peak slip has no 
significant effect on the normal performance of such a 
structural component. 

 
5.3 Effect of the residual bonding stress τ3 
 
The parameter τ3 

controls the residual bond strength and 
the stiffness during the softening stage of the τ−s curve. Fig. 
14 shows the P−Δ curves obtained by changing the value of 
τ3 in the FEM. For the specimen with eccentricity e=125, 
the change in τ3 has not resulted in any change of the P−Δ 
curve, whereas, for the e=175 specimen, the increase of τ3 
has only resulted in the loading improvement in last curve 
segment. Further analysis has revealed that, if S1 is further 
reduced, the influence point of τ3 on the P−Δ curve will 
advance slightly, but it will not exceed the peak value point 
of the P−Δ curve, indicating that the softening behavior of 
the bond slip tends to not affect the loading performance in 
the normal service state. 

 
 

6. Effect of bond slip on loading capacity 
 
6.1 Effect of the FRP bar diameter on loading 
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Fig. 15 Effect of bond slip on compression-bending performance under different FRP bar diameter conditions
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Adjusting the FRP bar diameters in the FEM enabled the 

P−Δ curves of FRP-RC columns with FRP bar diameters of 
DFRP=10/15/20 (mm), under a no bond slip condition and 
considering bond slip, to be obtained and compared, as 
shown in Fig. 15. The effect of FRP bar diameter on bond 
slip was not considered during the analyses. Previous 
studies (Hao 2007, Zhang 2015, Okelo 2005 and Cosenza 
1997) show that, the bond strength decreases as the bar 
diameter increases. In fact, the impact of bond slip on the 
eccentric loading performance of columns would be 
overestimated when the effect of the FRP bar diameter 
increase is not considered, resulting in conservative 
analytical results in this analyses. The finite element results 
show the loading capacity of columns gradually increases 
and the post peak degradation of loading capacity decreases 
with the increasing diameter of FRP bars. Moreover, it is 
worth noting from Fig. 15 that the weakening effect of 
FRP-RC bond slip on the stiffness and loading capacity of 
columns becomes even more obvious as the FRP bar 
diameter increases. 

 
6.2 Analysis of P-M interaction diagram 
 
Based on the preceding FEM analysis of columns with 

different FRP bar diameters and loading eccentricities, the 
corresponding P-M interaction diagrams were obtained. 
Cross sectional analysis (Fig. 16) was conducted and the 
theoretical P-M interaction diagram was obtained by using 
Eq. (2). 
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Where σft and σfc are the tensile and compressive stress 
of FRP bar, respectively. εcu is the ultimate strain of 
concrete. Eft 

and Efc are the tensile and compressive elastic 
modulus of FRP bar, respectively. Aft 

and Afc 
are the cross-

sectional area of the tensile and compressive FRP bars, 
respectively. fc is the summit strength of concrete. x is the 
compression depth of concrete. α1 and β1 

is the equivalent 
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rectangular stress diagram coefficient, αf 
and h0 

are the 
distance from the centroid of FRP bar to the near and far 
edge of the cross section, respectively, as shown in Fig. 16. 

The theoretical and FEM P-M interaction diagram and 
experimental results are compared in Fig. 17. It is evident 
that they are in good agreement. Furthermore, when the 
FRP-RC bond slip is considered, the FEM results are even 
closer to the experimental results. 

Fig. 18 shows a comparison of FEM P-M interaction 
diagrams, with and without consideration of bond slip, and 
for varying FRP bar diameters. It shows that, when the load 
eccentricity e is small, FRP-RC bond slip produces no 
effect on the axial loading capacity and flexural capacity, 
primarily because FRP bars are under compression. 
However, if the eccentricity that corresponds to the FRP bar 
at the beginning of tension was used as a limit ec, when e 
exceeds ec and increases gradually, the weakening effect on 
flexural capacity caused by bond slip becomes even more 
obvious. Moreover, the flexural capacity reduction is 
magnified as the FRP bar diameter DFRP increases, causing 
large deviations in P-M interaction diagrams with and 
without consideration of bond slip, as shown in Fig. 18. 

It can be concluded that, if the bond slip is not 
considered during the design process, the flexural capacity 
of columns reinforced with large diameter FRP bars will be 
seriously overestimated at the low axial load levels. 

The FEM calculation results show that, when the effect 
of bond slip is not considered, as the FRP diameter 
increases, the P-M interaction curve changes  

cu

fc=(1- 1af /x) cu

ft=( 1h0/x-1) cu

xc x= 1xc

1f cf c

P

e
af

a'f

h0

ftAft

fcAfc fcAfc

ftAft

Compression

Tension M=Pe

(a)                    (b)                (c)                  (d)              (e) 
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stress block; (e) equivalent rectangular stress block
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correspondingly. That is, when the reinforcement ratio is 
low, the P-M interaction curve is a nonmonotonic curve 
with an inflection point, as exhibited by the DFRP=10 curve 
in Fig. 19(a). However, as the FRP reinforcement ratio 
increases, the curve becomes monotonic and the inflection 
point disappears gradually, as exhibited by the DFRP=20 
curve in Fig. 19(a), which is consistent with the previous 
findings of Hadhood et al. (2016).  

However, when the effect of the bond slip is considered, 
the trends of the P-M curves for columns with different FRP 
bar diameters are consistent; all become nonmonotonic and 
approach the curve with a low FRP bar diameter, as shown 
in Fig. 19(b), which reflects the fact that as the FRP bar 
diameter increases, the weakening effect of the bond slip on 
column flexural capacity increases at low axial load levels. 
 
 
7. Conclusions 

 
In this study, the compression-bending performance of 

FRP-RC columns with consideration of bond slip was 
carried out using finite-element analysis. Moreover, the 
effects of key parameters of the bond-slip constitutive 
model on the compression-bending performance and the 
loading capacity of FRP-RC columns were discussed. 
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Within these parameters, the main findings of this study are 
as follows. 

During eccentric compression, FRP-RC columns 
undergo two obvious stiffness degradation stages, the first 
due to concrete cracking in the tension zone and second due 
to the significant nonlinear behavior of concrete in the 
compression zone. 

The initial stiffness of bond slip is the main factor 
affecting the mechanical performance of FRP-RC columns 
under eccentric loading. The higher the initial stiffness of 
the bond slip, the higher the stiffness and loading capacity 
of the column.  

The peak bond stress and its corresponding peak slip 
had an insignificant effect on the stiffness, but they had a 
small effect on summit loading capacity. The softening 
behaviour of bond slip only affects the performance of 
columns under large-deformation conditions, whereas it has 
little effect on the normal performance of structural 
components. 

Regarding the loading capacities reflected in P-M 
interaction diagrams, the load eccentricity when tension 
occurs in the FRP bar can be used as a limit. The weakening 
action of bond slip on the compression-bending 
performance becomes more evident when the eccentricity 
rate exceeds the limit. Moreover, as the FRP bar diameter 
increases, the degradation of column stiffness and loading 
capacity also increases. With respect to FRP-RC bond slip, 
the P-M interaction diagrams of columns with different FRP 
bar diameter have consistent trends.  
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In cases of eccentrically loading column with large 
eccentricity or high FRP bar diameter, bond slip has a 
significant weakening effect on the flexural capacity at low 
axial load levels. This effect should be carefully considered 
in practical engineering applications. 
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