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1. Introduction  

 

In view of the ongoing enormous infrastructure growth 

all around the globe, the consumption of cement by 

concrete industry has grown exponentially. Almost one 

tonne of carbon dioxide is released for each tonne of 

production ordinary Portland cement (OPC) (Pacheco-

Torgal et al. 2008). A notable achievement to battle the 

demand of cement and reduce carbon dioxide emissions, 

research has yielded development of a cement free concrete 

known as Geopolymer. Geopolymer is an inorganic 

polymer developed by Davidovits (1991), is one such 

material which can replace cement in future. In geopolymer, 

the binders are produced through the process of 

polymerization activated by the reaction of an alkaline 

liquid with the Silicon and Aluminum yielding Si-O-Al-O 

bonds. Some of the popular materials used for development 

of geopolymer are kalonitic clays, coarse and fine fly ash 

development of geopolymer are kalonitic clays, coarse and 

fine fly ash (Ambily et al. 2014, Vijai et al. 2015, Jindal et 

al. 2018, Senthamilselvi and Palanisamy 2018, Yadollahia 

and Benli 2017, Katpady et al. 2017), fine and coarse rice 

husk bark ash (He et al. 2013), metakaolin (Marin-Lopez et 

al.2009), granulated blast furnace slag (Mozumder et al. 

2017, Kurklu 2016, Prem et al. 2018b) and red mud (Cundi 

et al. 2005, Zhang et al. 2014). The combination of NaOH 

or KOH and sodium silicate or potassium silicate is usually 

used as alkaline liquid. The mechanical properties of the 

geopolymer are also dependent on the optimum curing 

conditions (Bakharev 2005). In general, the concrete 

compressive strength is dependent on various factors such 

                                           

Corresponding author, Ph.D. 

E-mail: prabhat@serc.res.in 
a
Scientist 

 

 

as physical and chemical properties, curing conditions, the 

particle size of aggregates, etc. Hence to overcome such 

randomness various researchers have applied numerical 

(Prem et al. 2017, Arani et al. 2019), theoretical (Verma et 

al. 2016a, Prem et al. 2018a, Al-Rousan et al. 2018) or 

machine learning approach to examine its behavior (Verma 

et al. 2015, Dutta et al. 2018, Erdal et al. 2018, Verma et al. 

2019). But such studies are available for conventional 

concrete and very limited for geopolymer concrete. The 

present research is motivated from this gap and hence 

detailed investigations on geopolymer concrete are 

presented in this study. 

 

 
2. Research significance 

 

The complex phenomenon of the bond formation in 

geopolymer is not well understood. In the absence of any 

theoretical model, it becomes difficult to arrive at the 

optimum mix to achieve desired mechanical properties. In 

order to provide guidance towards optimum selection of 

raw materials and curing procedure, authors in this study 

propose to predict the geopolymer compressive strength 

using regression algorithms. The use of computational 

method will enable to cut down costly lab experiments and 

provide inputs for designing geopolymer mix. The methods 

reported earlier by most of the researchers for the 

evaluation of the properties of cementitious composites are 

based on artificial neural networks (ANN) and fuzzy logic. 

The disadvantage of fuzzy logic is that the rules are based 

on the human heuristic knowledge while the ANN tends to 

over fit the data. In the present study, methods based on 

linear regression (Least absolute Shrinkage and Selection 

Operator (LASSO) and Elastic Net), tree regression 

(decision and bagging tree) and kernel methods (Support 

vector regression (SVR), Kernel ridge regression (KRR),  
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Table 1 Statistical properties of the dataset 

 
FFA 

(%) 

CFA 

(%) 

FRHBA 

(%) 

CRHBA 

(%) 

T 

(o C) 

C 

(days) 

CS 

(MPa) 

Maximum 80.00 80.00 40.00 40.00 90.00 28.00 58.90 

Minimum 0.00 0.00 0.00 0.00 25.00 7.00 14.80 

Mean 35.00 35.00 15.00 15.00 59.00 17.50 33.89 

Standard 

deviation 
35.62 35.62 16.14 16.14 24.27 10.54 9.78 

Median 30.00 30.00 10.00 10.00 60.00 17.50 32.90 

Variance 1268.91 1268.91 260.50 260.50 588.91 111.18 95.58 

 

 

Gaussian process regression (GPR) and Relevance vector 

machine (RVM)) are presented for evaluating compressive 

strength of geopolymer. From the review, it is found that the 

critical parameters which affects the mechanical properties 

of geopolymer are (i) type of raw material (ii) curing 

temperature and (iii) curing duration. The data published in 

Bohlooli et al. (2012) is adopted in the presented study. The 

performance of the methods is then compared in terms of 

error indices, convergence, residuals and computational 

cost. The methods were also validated with the trends 

reported in the literature. The present study focuses on the 

performance of the different applied statistical models for 

evaluating the compressive strength of geopolymer. 

 

 
3. Data set 

 

Geopolymer compressive strength largely depends upon 

the content of Si and Al. Fly ash (FA) is a rich source of 

silicon dioxide and aluminum oxide. It has been extensively 

used in geopolymer production. Rice husk bark ash 

(RHBA) is also high silica source (containing as high as 

75% silicon dioxide). The ratio of Si to Al can be adjusted 

by blending fly ash with RHBA. The seeded distribution of 

fly ash and RHBA is utilized for production of geopolymer. 

Two different seeded distribution of RHBA and FA forms 

the input to the methods along with curing time and 

temperature. The data used in the current study has been 

adopted from Bohlooli et al. (2012). The method has been 

trained for 70 datasets while remaining 50 are used for 

testing. The statistics of the data used are given in Table 1. 

where FFA, CFA, FRHBA, CRHBA, T, C, and CS 

represents fine FA, coarse FA, fine RHBA, coarse RHBA, 

temperature, curing age and compressive strength of 

geopolymer concrete, respectively. 

 

Table 2 Theoretical comparison of different regression 

methods 

 Core algorithm Loss function Regularization 

LASSO Penalized regression Quadratic l1-norm 

Elastic net Penalized regression Quadratic l1; l2-norm 

Decision 

tree 
Sorting & grouping Quadratic l2-norm 

Bagging 

tree 

Bootstrap 

aggregation 
Quadratic l2-norm 

SVR 
Structural risk 

minimization 

Quadratic, hinge, 

𝜖-insensitive 
l2-norm 

KRR Matrix inversion Quadratic l2-norm 

RVM 
Bayesian statistical 

inference 

Marginal 

likelihood 
Probabilistic 

GPR 
Bayesian statistical 

inference 

Marginal 

likelihood 
Probabilistic 

 

 
4. Methodology and method application 

 

In this section, the different applied statistical models 

used for evaluating geopolymer compressive strength are 

described briefly. These methods are broadly classified into 

three categories linear, tree and kernel methods as shown in 

Fig 1. The methods are then applied to evaluate the 

compressive strength of geopolymer using simpleR toolbox 

(Camps-Valls et al. 2013) in Matlab. Theoretically, the 

objective function in each of the methods consists of two 

parts - loss function which measures how well method fit on 

training data and regularization which measures the 

complexity of method. The type of loss function and 

regularization used by the regression methods are 

summarized in Table 2. 

 
4.1 Lasso 
 

LASSO is a shrinkage and selection method for 

performing linear regression. The size of the predicted 

coefficients is constrained using a penalty term. The 

coefficients are generated in a way that the bias is small. 

Consider the set of data represented by {(xi, yi), i =1, .., N }, 

X ∈ ℝ𝑛, Y ∈ ℝ.  

A formulation based on LASSO was developed by 

Tibshirani (1996). The following optimization problem is 

solved in LASSO for a given λ 

𝑚𝑖𝑛 𝛽𝑜𝛽 (
1

2𝑁
 ∑ (𝑦𝑖 − 𝛽𝑜 − 𝑥𝑖

𝑇𝛽 )2𝑁
𝑖=1  +  𝜆 ∑ |𝛽𝑗|

𝑝
𝑗=1 )  (1) 

where xi is input data vector (p×N), yi is the output at ith  

 

Fig. 1 Regression methods used in the present study 
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Fig. 2 Trace plot of coefficients for LASSO 

 

 

observation, N is the number of inputs, λ is regularization 

parameter. The parameters β0 and β in the above equation 

are scalar and p-vector, respectively. 

The training data is used for LASSO fit. The trace plot 

of the coefficients fit by LASSO in Fig. 2 shows the 

variation of the nonzero coefficients for the different values 

of λ. The larger value of implies more regularization and 

hence, results in lesser nonzero coefficients. The green 

dashed vertical lines represent the λ value corresponding to 

the minimum mean squared error (MSE) and the blue one 

with MSE plus one standard deviation. The top portion of 

the plot shows the number of nonzero coefficients (degree 

of freedom, df) in the regression, as a function of λ. From 

the plot, it is found that important parameters affecting the 

geopolymer compressive strength are curing time, fine fly 

ash, coarse RHBA and the curing temperature. The cross-

validation plot of the LASSO is shown in Fig. 3. Five-fold 

cross-validation is used in the present study to avoid 

overfitting and to generalize the method to an independent 

dataset. As λ increases, MSE is also found to increase 

drastically and results in overfitting of the method. The 

feature relevance plot of the LASSO is shown in Fig. 4. The 

correlation between the experimental and predicted 

compressive strength of geopolymer is shown in Fig. 11(a). 

 
4.2 Elastic net  
 
The major drawback with the LASSO is that the  

 

 

 

Fig. 3 Cross-validation for LASSO 

 

 

selection of the number of variables is limited by number of 

observations. Overcoming this drawback, Zou and Hastie 

(2005) introduced elastic net which can be stated as 

𝑚𝑖𝑛 𝛽𝑜𝛽 (
1

2𝑁
∑ (𝑦𝑖 − 𝛽𝑜 − 𝑥𝑖

𝑇𝛽 )2 +  𝜆𝑁
𝑖=1 𝑃𝛼(𝛽))   (2) 

Where 

𝑃𝛼(𝛽) =  
(1 − 𝛼)

2
||𝛽||

2

2 
+  𝛼||𝛽||

1
 

= ∑ (
(1−𝛼)

2

𝑝
𝑗=1 𝛽𝑗

2 +  𝛼|𝛽𝑗|) 

Elastic net reduces to LASSO for α=1. The value of α 

used in the present study is 0.5. Five-fold cross-validation is 

used for elastic net. The trace plot of the coefficients fit by 

elastic net is shown in Fig. 5. The parameters affecting the 

compressive strength of the geopolymer according to elastic 

net are curing time, fine fly ash, coarse RHBA, curing 

temperature and coarse fly ash. The feature relevance plot 

of the elastic net is shown in Fig. 6. The corresponding 

cross-validation plot is shown in Fig. 7. The correlation 

between the experimental and predicted compressive 

strength of geopolymer is shown in Fig. 11(b). 

 
4.3 Decision tree  
 

Decision tree typically represents a set of constraints 

which are hierarchically ordered, and are successively 

applied from root to terminal mode (Quinlan 1993). In  

 

 
 
 

 

Fig. 4 Feature relevance for LASSO 
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Fig. 5 Trace plot of coefficients for elastic net 

 

 

Fig. 6 Feature relevance for elastic net 

 

 

decision tree, the parent node is split into binary pieces such 

that the following impurity function is minimized (Breiman 

et al. 1993) 

𝑚𝑖𝑛   (   ) =  ( ) −   (  )  −   (  )     (3) 

In the equation the candidate split (r) at each node (u) is 

divided into left (  ) and right node (  ) having weights 

   and   , respectively. The impurity in the system is 

denoted by  ( ) , while  (  )  and  (  )  indicates 

impurity after splitting. ∆j(r, t) denotes impurity after split 

r. 

From the forecasting tree, positive weight 𝑤𝑛(𝑥𝑛 Ω) for 

each case x ∈ ℝ is computed. If 𝑙(𝑥 𝛺 𝑡) is assumed to be 

a node t then each conditions of 𝑥𝑛  ∈ 𝑙(𝑥 𝛺 𝑡) are 

assigned equal weight 𝑤𝑛 (𝑥 𝛺)  =  1/𝑁 (𝑡), where N(t) 

denotes all cases in 𝑙(𝑥 𝛺 𝑡). Further on considering X = x, 

the output y is evaluated from Eq. (4) 

𝑦 = ∑ 𝑤𝑛
𝑁
𝑛=1 (𝑥 𝛺)𝑌𝑛  

  = ∑ 𝑤𝑛𝑥 𝑋𝑛∈𝑙(𝑥 𝛺 𝑡)
(𝑥 𝛺)𝑌𝑛           (4) 

The decision tree obtained using the training data is 

shown in Fig. 8. The feature relevance for decision tree is 

shown in Fig. 9. Ten-fold cross- validation is used for 

elastic net. The corresponding cross-validation plot is 

shown in Fig. 10. The square marker shows the minimum 

cost and the dashed line is one standard deviation from the 

minimum. The correlation between experimental and elastic 

net fit is shown in Fig. 11(c). 

 

4.4 Bagging tree 

 

Fig. 7 Cross-validation for elastic net 

 

 

Fig. 8 Structure of the decision tree 

 

 

Fig. 9 Feature relevance for decision tree 

 
 
Decision tress is a non-parametric regression method 

that generally gives satisfactory results for nonlinear cases. 

But the main drawback of this method is absence of stable 

prediction rule. To overcome this limitation all, the decision 

trees obtained from the bagged samples are considered. The 

output by bagging is the average prediction at x from L trees 

(Breiman 1996), defined by 

𝑦 =  
1

 
∑ 𝑦𝑘
𝐾
𝑖=1 (𝑥)                 (5) 

The correlation between experimental and compressive 

strength of geopolymer predicted by bagging tree is shown 

in Fig. 11(d). 

 

4.5 SVR 
 
In SVR, the aim is to approximate the set of data given  
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Fig. 10 Cross-validation for decision tree 

 

 

by {(xi, yi ), i = 1, .., N }, X ∈ ℝn, Y ∈ ℝ. Mathematically, it 

can be expressed as (CampsValls et al. 2006, Vapnik 2013) 

𝑦 = 𝑓(𝑥) = ⟨𝑤 ∅(𝑥)⟩ + 𝑏             (6) 

where 〈. 〉 is the inner product operator, w and b are the 

function parameters and φ(x) is the kernel function. SVR 

then runs the linear regression in the output space. The 

objective of the support vector approach is to minimize the 

following equation 

 
1

2
||𝑤||2

2 = 𝐶 ∑ 𝐿1
∈𝑁

𝑛=1 (𝑦𝑛 ⟨𝑤 ∅(𝑥𝑛)⟩ + 𝑏)      (7) 

where 𝐿1
𝜖  is the loss function which determines how the 

SVR error is penalized and C is the hyperparameter which 

is varied to arrive at the optimal solution. 

Radial basis and ∈-insensitive loss function are used for 

SVR. The value of the hyper- parameters in evaluated using 

grid search which involves exhaustive searching through a 

manually specified range of the hyperparameter. The 

hyperparameter C, and radial basis function width used in 

the present study are 1000, 0.1 and 55.15, respectively. 

More details of the SVR method is given in Verma et al. 

(2016b). The correlation between the experimental and 

compressive strength evaluated using SVR is shown in Fig. 

11(e). 

 
4.6 KRR 
 
KRR is also known as least square SVR. KRR finds the 

solution by solving a set of linear equations while SVR 

needs to solve a quadratic optimization program. The 

optimization problem for KRR can be written as (Camps-

Valls et al. 2012) 

 min
1

2
||𝑤||2

2 +
1

2
𝐶 ∑ 𝑒𝑛

2𝑁
𝑛=1              (8) 

subject to: 𝑦𝑛 = ⟨𝑤 ∅(𝑥)⟩ + 𝑏 + 𝑒𝑛  𝑛 = 1… . . 𝑁 

where en represents the error from the training set and C is 

the penalty parameter. The kernel function used for KRR is 

radial basis. The hyperparameters for KKR were obtained 

using grid search. About one-third of the training data is 

kept aside for validation. The value of the penalty parameter 

C and the width of the radial basis function obtained after 

grid search are 1.64×10−5 and 145.42, respectively. The 

correlation between the experimental and predicted 

compressive strength of geopolymer is shown in Fig. 11(f). 

 

4.7 RVM 
 

RVM, proposed by Tipping (2001), uses a sparse 

Bayesian learning whose functional form is similar to SVM. 

The output of the RVM is given by 

𝑦(𝑥) =  ∑ 𝑤𝑛
𝑁
𝑛=1 𝐾(𝑥 𝑥𝑛) + 𝑤0         (9) 

where 𝐾 (𝑥 𝑥𝑛 ) is a kernel function, wn are the model 

weights and 𝑤0 is bias. For an input-target pair (𝑥 𝑡) it is 

assumed that 𝑝(𝑡|𝑥) is Gaussian 𝑁 (𝑡|𝑦(𝑥) 𝜎2) . The 

dataset’s likelihood can be expressed as (Tipping 2001) 

𝑝(𝑡|𝑤 𝜎2) = (2𝜋𝜎2)−
𝑁

2  𝑒𝑥𝑝 {−
1

2𝜎2
||𝑡 − ∅𝑤||2}  (10) 

where ∅  is 𝑁 × (𝑁 +  1) with ∅𝑛𝑚 = 𝐾(𝑥 𝑥𝑚−1  and 

∅𝑛𝑚 = 1. The posterior over the weights is written as 

(Tipping 2001) 

 𝑝(𝑤|𝑡 𝛼 𝜎2) = (2𝜋)−
𝑁+1
2  |∑| −

1
2 𝑒𝑥𝑝  

{−
1

2
(𝑤 − 𝜇)𝑇∑−1(𝑤 − 𝜇) }           (11) 

∑ = (∅𝑇𝐵∅ + 𝐴)−1𝑎𝑛𝑑 𝜇 = ∑∅𝑇𝐵𝑡 

where  𝐴 =  diag(α0 · · ·  α𝑛 ) , 𝐵 = 𝜎−2I𝑛  with (𝛼𝑖 ’s) as 

the hyperparmeters whose marginal likelihood is given by 

(Tipping 2001) 

𝑝(𝑡|𝛼 𝜎2) = (2𝜋)−
𝑁
2   

|𝐵−1 + ∅𝐴−1∅𝑇|−
1

2𝑒𝑥𝑝 {−
1

2
𝑡𝑇  (𝐵−1 + ∅𝐴−1∅𝑇)−1𝑡}  (12) 

Finally, the marginal likelihood for the hyperparameters 

is maximized over 𝜎2 

Radial basis function is used as kernel function. For this 

method also the hyperparameters are obtained using grid 

search. About one-third of the training data is kept aside for 

validation. The value of the parameter 𝜎2 and the width of 

the radial basis function obtained after grid search are 

0:0694 and 145.42, respectively. The correlation between 

the experimental and predicted compressive strength of 

geopolymer is shown in Fig. 11(g). 

 
4.8 GPR 
 

GPR is a non-parametric technique which uses Bayesian 

framework for solving nonlinear problems. More details on 

the GPR can be found in (Rasmussen and Williams 2006, 

Verrelst et al. 2012, Verma et al. 2016). The output of the 

GPR is given by 

  𝑦 = 𝑓(𝑥)+∈                 (13) 

where (𝑓(𝑥)) is a latent function and (∈) is the Gaussian 

noise. The output of GPR follows the following distribution 

(
𝑦
𝑦𝑡
)~𝑁(0 𝑀𝑡) 

  𝑀𝑡 = [
𝑚(𝑥) + 𝜎2𝐼 𝑀(𝑥 𝑥𝑡)

𝑀(𝑥 𝑥𝑡)
𝑇 𝑚(𝑥𝑡)

]           (14) 

where M(𝑥 𝑥𝑡) represents the training inputs and test input 

covariance, M(xt) is auto covariance of the testing data and 

M(x) is the training data auto covariance. The mean and  
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(a) Lasso (b) Elastic Net 

  
(c) Tree (d) Bagtree 

  
(e) SVR (f) KRR 

  
(g) RVM (h) GPR 

Fig. 11 Correlation between the experimental and predicted compressive strength 
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Table 3 Error indices for different method 

` ME MAE RMSE R 

LASSO 16.73 17.09 16.73 0.93 

Elastic net 11.73 12.31 11.73 0.93 

Decision tree 0.49 4.50 3.72 0.89 

Bagging tree 1.19 3.94 3.25 0.96 

SVR 0.22 1.29 1.03 0.99 

KRR 0.13 1.26 1.02 0.99 

RVM 0.64 3.75 3.29 0.93 

GPR 0.12 1.23 0.96 0.99 

 

 

variance of the output is given by 

𝜇 = 𝐾(𝑥 𝑥𝑡)
𝑇(𝑘(𝑥) + 𝜎2𝐼)−1𝑦  

 𝜎 = 𝐾(𝑥𝑡) − 𝐾(𝑥 𝑥𝑡)
𝑇(𝑘(𝑥) + 𝜎2𝐼)−1𝐾(𝑥 𝑥𝑡)   (15) 

Composite kernel consisting of radial basis function 

with adaptive length scale and a diagonal noise covariance 

matrix is used in the current study. The parameters of the 

method are obtained by maximizing the marginal likelihood 

instead of grid search as the computational cost is high with 

the composite kernel. The signal scaling factor for the  

 

 

kernel and the standard deviation of the noise are evaluated 

as 3.54 and -0.08, respectively. The correlation between the 

experimental and predicted compressive strength of 

geopolymer is shown in Fig. 11(h). 

 

 
5. Results and discussions 

 

Based on the results obtained from the application of 

different methods in the previous section, the performance 

of the method is benchmarked in terms of (i) error indices 

(ii) residuals (iii) convergence (iv) computational time and 

(v) validation. 

 
5.1 Error indices 
 

Four different types of error indices are used - mean 

error (ME), mean absolute error (MAE), root mean squared 

error (RMSE) and correlation coefficient (R). These error 

indices are evaluated for the testing dataset. The values of 

the indices obtained are given in Table 3. The error indices 

for the linear regression methods like LASSO and Elastic 

net are found to be worst. SVR, KRR and GPR are found to  

 

 
 
 

 

Fig. 12 Convergence of RMSE with number of predictions  

 

 

Fig. 13 Variation of residuals for different methods 
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perform better than the RVM among kernel based methods. 

The best method to predict the compressive strength of 

geopolymer is found to be GPR based on the error indices. 

 
5.2 Convergence 
 

The plot of RMSE versus the number of predictions is 

shown in Fig. 12. No abrupt jumps are observed indicating 

the consistency of the method in evaluating the compressive 

strength with the number of predictions. GPR and KRR are 

found to converge fast with the least RMSE value. 

 

5.3 Residuals 
 

Fig. 13 Shows the box plot of the residuals for testing 

dataset. The mean residual is found to be least for GPR and 

maximum for LASSO. The maximum and the minimum 

residual or GPR are found to 2.38 and -2.75. 

 
5.4 Computational time 

 

The variation of the computational time taken by the 

different algorithms for training and testing is shown in Fig. 

14. The computational time is found to be maximum for 

RVM. Therefore, the use of RVM should be avoided in case 

of larger dataset. The computational time is found to be 

least for KRR. 

 
5.5 Validation 
 

The purpose of this section is to see if the output from 

the methods follows the trend reported in the literature. For 

this purpose, three parameters are considered - (i) Curing 

temperature, (ii) Curing Duration and (iii) Ratio of 

FA/RHBA. The data was selected from the testing dataset in 

such a way that only the parameter studied was varying 

while other parameters were same. The trend followed by 

the predicted compressive strength from the methods are 

compared with that reported in the literature. 

 

 

Fig. 15 Variation of compressive strength with curing 

duration  

 
 
The gain in compressive strength of any normal 

concrete or geopolymer with the passage of curing duration 

is quite common and same was observed in Fig. 15. 

However, it is interesting to note that many researchers 

have focused to subject concrete to thermal curing (Prem et 

al. 2013, 2015) for accelerated strength development. The 

mechanical activation of geopolymer causes microstructure 

and structural changes (Kumar and Kumar 2011). 

Bakharev (2005) reported that compressive strength 

gained after one month of curing can be immediately 

obtained only after 24 hour of heat curing. Temuujin et al. 

(2009) observed compressive strength variations from 16 

MPa for room temperature cured samples to 45 MPa for 

activated fly ash based samples. The main cause for the 

sudden enhancement of mechanical properties is due to the 

speedy dissipation of silicate monomer and oligomer from 

RHBA surfaces leading to the formation of supersaturated 

aluminosilicate (Kusbiantoro et al. 2012). 

The variation of the compressive strength with the 

curing temperature is shown in Fig. 16. In the experimental 

results, it is observed that there is an increase in the  

 

Fig. 14 Computational time for different methods 
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Fig. 16 Variation of compressive strength with curing 

temperature  

 

 

compressive strength upto 80oC after which it drops. The 

similar trend has been reported by Atiş et al. (2015) and 

Huseien et al. (2016). SVR and KRR are found to capture 

variation of compressive strength with curing temperature 

effectively. 

Detphan and Chindaprasirt (2009) reported that the 

strength (ranging from 12.5-56.0 MPa) of the geopolymer 

depends upon the FA/RHBA mass proportion, RHBA 

fineness and the ratios of sodium silicate to sodium 

hydroxide. The variation of the compressive strength with 

the FA/RHBA is shown in Fig. 17. According the studies 

reported in the literature and the experimental results of 

Bohlooli et al. (2012), it is observed that compressive 

strength increases with the increase in FA/RHBA. SVR, 

KRR and GPR are able to capture the trend reflected by the 

experimental results. 

 

 
6. Conclusions 
 

The compressive strength of the geopolymer is predicted 

using different applied statistical models - LASSO, elastic 

net, decision tree, bagging tree, SVR, KRR, RVM and GPR. 

The inputs for the method are taken as the weight 

percentage of fine and coarse fly ash, fine and coarse rice 

husk bark ash, the temperature and time of water curing. 

The performance of the methods is compared in terms of 

error indices (ME, MAE, RMSE and R), convergence, 

residuals and computational time. Following conclusions 

are made from the present study: 
1. Being the linear regression methods, the performance 

of LASSO and elastic net is not at par with other 

methods. Therefore, their application to predict 

compressive strength of geopolymer should be avoided. 

2. The correlation between the actual and the 

compressive strength predicted by the methods for 

decision tree is found to be least. 

3. The computational time for RVM is found to be more. 

A highly nonlinear optimization problem is solved in the 

training phase of RVM. The makes RVM unsuitable for 

larger datasets. 

 

Fig. 17 Variation of compressive strength with FA/RHBA 

 

 

4. SVR, KRR and GPR are able to effectively capture 

the effect of the curing temperature, duration and 

FA/RHBA ratio on the geopolymer compressive 

strength 

5. Overall, GPR and KRR are found to be have better 

compressive strength predicting capabilities compared 

to other methods in terms of all the performance criteria. 

There- fore, GPR and KRR are recommended for the 

evaluation of compressive strength of geopolymer. 

There are several other factors which can affect the 

compressive strength of the geopolymer (like alkali content 

etc.). These parameters can be included as input in the 

present methods to improve their accuracy. These methods 

can be further extended to predict various other mechanical 

and fracture properties of geopolymer. 
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