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1. Introduction 
 

Bridges play an important role in transportation. 

Although most modern bridges are constructed from 

reinforced concrete, many factors, such as natural disasters, 

environmental temperature, building materials aging and 

overloading, still can cause a variety of bridge diseases. It 

reduces bridge life, transport efficiency and bridge safety 

(Zhang et al. 2011). Crack is a common defect of bridges 

and belongs to the first stage of deterioration. It not only 

affects the normal use of bridges, but also induce other 

diseases (Miguel et al. 2011). So, bridge surface condition 

assessment plays an important role in the structural health 

and reliability maintenance of concrete bridges (Gasser 

2007, Kumar and Barai 2012, Azarafza et al. 2017, Zhao et 

al. 2017). The traditional manual crack detection method is 

time-consuming, laborious, dangerous and subjective (Kim 

et al. 2015 and Wang et al. 2017). It cannot meet the 

requirements of efficient, automatic detection and 

reachability of any position. The development of high-speed 

video technology and large storage hardware makes it easy 

to collect road images in real time. Therefore, image-based 

technology provides an efficient and economical way for 

crack detection. Combined with unmanned aerial vehicle 

(UAV), it attracts more and more attention from academic 

research and industry application (Zou et al. 2012). 

Generally, the crack detection process includes three 

steps, 1) road surface data acquisition, 2) crack 

identification, 3) crack assessment (Radopoulou and 
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Brilakis 2015). The data acquisition methods include 

acquiring images and video sequences of pavement crack 

based on 2D equipment, acquiring pavement crack based on 

3D laser scanning method, and acquiring pavement crack 

based  on combination of 2D and 3D methods (Huang et 

al. 2014). Miguel et al. (2011) presents the first automatic 

crack detection system Roadcrack, which used a linear 

digital camera fixed on a vehicle to capture a sequence of 

images. The most widely used crack detection system in the 

United States is Fugro Roadware’s Automatic Road 

Analyzer (ARAN) platform, which uses two area scanners 

to collect road images. RAMBOLL system is equipped with 

multiple cameras or line scanning cameras to capture 

continuous images of road surface, and GIE laser vision 

system uses four laser sensors to obtain 3D images (Miguel 

et al. 2011). Prasanna et al. (2016) uses a robot carrying a 

surface-imaging camera to get image sequences. In 

literature (Miguel et al. 2011), linear scanning cameras and 

related equipment are equipped on the vehicle to collect 

road images at normal speed. Radopoulou et al. (2015) 

detects defect from video data obtained from camera on 

parked car. Kim et al. (2015) uses camera carried by UAV 

to get the image of bridge surface. In literature (Huang et al. 

2014), a high-resolution camera and a laser line projector is 

equipped to obtain two-dimensional and three-dimensional 

images respectively.  

In recent years, researchers have done a lot of work in 

crack detection technology. Image processing based crack 

detection methods are employed widely. In view of 

processing purpose, these techniques can be divided into 

crack detection methods (Zhang et al. 2011, Miguel et al. 

2011, Ghanta et al. 2012), crack classification methods 

(Nejad and Zakeri 2011, Salari and Bao 2011, Ying and 

Salari 2010), crack width and depth estimation (Liu et al. 
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2014). In terms of processing principle, crack detection 

technology can be divided into image gray feature based 

methods (Tsai and Li 2012), image texture and shape 

structure feature based methods (Zou et al. 2012, Kaul et 

al.2012, Zhao et al. 2014), machine learning based methods 

(Miguel et al. 2011, Cord and Chambon 2012) and 

comprehensive methods. At present, the comprehensive 

method is applied widely. Zhao et al. (2015) make use of 

the geometric characteristics of the surface, and cluster the 

candidate points by geometric representation and anisotropy 

to detect the inconspicuous cracks. The method can extract 

the inconspicuous cracks and measure the actual crack 

width. Morphological segmentation algorithm based on 

edge detection (Su and Yang 2018) was proposed for 

automatic measurement of concrete surface cracks, and 

small measurement errors of the area, length, and width of 

the concrete cracks are achieved. Zalama et al. (2014) 

designed a vehicle equipped with multiple sensors and 

detection systems to obtain information about road 

conditions at normal road speeds. By extracting the features 

of Gabor filtered images, lateral and vertical cracks can be 

detected off-line, and a complete road status report is 

provided. Jang and An (2018) proposed a line laser 

thermography scanning system for multiple crack 

evaluation on a concrete structure, and infrared images is 

used to successfully visualize and evaluate multiple cracks 

without false alarms. An unsupervised two-step pattern 

recognition system (Oliveira and Correia 2013) is proposed, 

which can identify multiple cracks in the image, identify the 

type and severity of cracks. It does not require manual 

marking samples and minimizes human subjectivity. In 

order to improve the performance of crack detection, Lee et 

al. (2013) combine morphology with neural network to 

detect, measure and analyze the width, length, direction and 

pattern of crack. In order to detect the full crack curve, Zou 

et al. (2012) proposed a new automatic crack detection 

method-Crack Tree, which can eliminate the influence of 

road shadows, and extract crack seeds to construct the 

minimum spanning tree. However, it can only detect the 

crack location and shape, and cannot detect the crack width. 

In order to make use of local structural feature of crack, Shi 

et al. (2016) proposed a new crack descriptor to represent 

cracks. And CrackForest was proposed to detect road cracks 

automatically based on random structured forests, which 

can effectively suppress noise. However, this method 

requires manual threshold selection to segment the image 

(Shi et al. 2016). Prasanna et al. (2016) remotely 

manipulated the Seekur robot to obtain bridge images, and 

used STRUM classifier to detect cracks automatically, with 

an accuracy of 95%. Zhang et al. (2016) proposed an 

efficient pavement crack detection method. In order to 

ensure the integrity of crack, they use ROBs as seeds to 

grow and merge highly similar areas while deleting areas 

with low similarity. Its detection accuracy is up to 95%. 

Based on 2D images, cracks can be detected quickly, but 
dark areas caused by shadows and crack repair cannot be 
distinguished correctly. 3D image can get the change of 
road surface depth, and make up for the shortcomings of 2D 
image. But when the change of road surface depth is not 
obvious, 3D image detection will be misjudged. 
Considering the actual complex pavement conditions, 

Huang et al. (2014) proposed a new method based on 
Dempster Shafer (D-S) evidence theory for pavement crack 
detection. The method combines 2D gray image analysis 
with 3D laser scanning information at the decision-making 
level, and get a high pavement crack detection accuracy. 
Jahanshahi et al. (2013) proposed a non-contact remote 
sensing crack detection and quantization method based on 
3D scene reconstruction, image processing and pattern 
recognition. This method uses depth perception to detect 
cracks and quantify their width, and has high detection 
reliability. 

Deep learning is a branch of machine learning. The 

advantage of deep learning is that it can automatically learn 

features and integrate feature learning into the process of 

model building, which reduces the incompleteness caused 

by artificial design features. Therefore, deep learning is 

widely used in many fields (Grazina et al. 2018, Tan et al. 

2018, Samik et al. 2018), and many researchers apply 

convolutional neural network (CNN) to concrete crack 

detection.  

Nhung et al. (2018) applied convolutional neural 

network to detect cracks in pavement images. High 

accuracy was achieved, without image pre-processing. Cen 

et al. (2017) designed a bridge crack detection and 

recognition algorithm based on convolution neural network, 

which avoided complex feature extraction in traditional 

image processing. The structure and parameters of CNN are 

the key factors to determine the performance of CNN. 

Genetic Algorithm was used to optimize the parameters of 

convolution neural network, and the CNN is applied to 

detect cracks, which improves the detection accuracy (Gibb 

et al. 2018). A convolutional neural network used to detect 

crack was designed through fine-turning an existed CNN 

architecture, and the method achieved high accuracy and 

robust performance for detecting crack on real concrete 

surface (Li and Zhao 2018). Jang et al. (2018) proposed a 

concrete crack detection technology based on depth 

learning. The method used the hybrid image, which 

combines visual and infrared thermal imaging images, and 

improved the convolution neural network structure. This 

method can automatically detect macro and micro cracks 

with minimizing false alarm rate. The CrackNet, an 

efficient architecture based on the Convolutional Neural 

Network (CNN), was proposed for automated pavement 

crack detection with explicit objective of pixel-perfect 

accuracy. CrackNet consists of five layers, and does not 

have any pooling layers. The CrackNet significantly 

outperforms the traditional approaches in terms of F-

measure (Zhang et al. 2017). Yang et al. (2018) 

implemented fully convolutional network (FCN) to identify 

and measure diverse cracks at pixel level. The FCN has the 

novel end-to-end structure, which combines typical 

convolutional neural networks and deconvolutional layers. 

The method semantically identifies and segments pixel-wise 

cracks at different scales, and uses single-pixel width 

skeletons to quantitatively measure the morphological 

features of cracks. The experimental result shows the 

method is feasible. Although the accuracy is not as high as 

CrackNet, the prediction is increased to pixel level and the 

training time is dramatically decreased. Zou et al. (2019) 

proposed DeepCrackan end-to-end trainable deep 
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convolutional neural network for automatic crack detection. 

In this method, multi-scale deep convolutional features 

learned at hierarchical convolutional stages are fused 

together to capture the line structures and high-level 

features for crack representation are learned to detect crack. 

The experimental results demonstrate that DeepCrack 

outperforms the current state-of-the-art methods. 

The advantage of crack detection method based on 
convolution neural network is that it can obtain high 
detection accuracy. It has two shortcomings. One is that it 
needs a large number of labeled image including actual 
crack and non-crack images to support the training 
procedure of CNN. The other is that it requires a high 
performance hardware. Usually, under the support of GPU, 
the method based on CNN runs long time. The aims of this 
paper is to ensure a certain detection accuracy with a faster 
processing speed for real-time diagnostic. Therefore, this 
paper does not choose depth learning for crack detection. 

In practical applications, most bridges are located in 

complex geographical locations, such as mountain areas, 

water surface, etc. Moreover, for the image acquisition of 

piers or the bottom of the bridge, the commonly used 

detection equipment and instruments cannot be applied to 

the scene. Unmanned aerial vehicle is considered as an 

important tool to obtain images with low labor and cost for 

the place hard to reach. This paper integrates OV5460 

industrial camera module and Cortex-A9 embedded system, 

and designs a set of image acquisition and processing 

equipment for concrete viaduct. The equipment is small and 

light weight, which can be carried on a small UAV. It is 

suitable for practical applications. 

The existing crack detection methods cannot guarantee 

both detection accuracy and real-time detection efficiency. 

Most detection methods try to achieve high detection 

accuracy in cost of increasing the complexity of the 

algorithm, while sacrificing the real-time detection 

efficiency. Because of the complex geographical 

environment and the roughness of the concrete surface, 

there are uneven illumination, weak crack information and 

noise in surface image. The traditional crack detection 

algorithm cannot deal with these problems and achieve 

high-precision crack detection. This paper presents a new 

method for automatic detection of concrete cracks. The 

method has high detection accuracy and fast running speed. 

It can be used to detect crack in real time, and meet the 

needs of practical engineering applications. Firstly, this 

method uses low-pass filter to remove the background and 

retain the crack information. Then, based on the proposed 

grayscale adaptive threshold segmentation method, rough 

crack information is extracted. Secondly, considering the 

area of crack connected domain and the shape of the crack, 

a comprehensive filtering method is adopted to remove the 

pseudo-crack and connect the crack fragments to ensure the 

integrity of the crack. Finally, the grayscale difference ratio 

and other four shape features are proposed to form feature 

vectors, and SVDD is used to detect cracks. 

 

 
2. Crack detection hardware platform 

 

Considering that the proposed crack detection algorithm 

 

Fig. 1 Block diagram of hardware system 

 

 

and hardware platform in this paper can be carried on a 

small UAV for on-line crack detection of viaducts, it is 

necessary to select the hardware equipment with small 

volume, low power consumption and stable operation. The 

proposed embedded system hardware platform for crack 

detection includes Cortex_A9 embedded module and 

OV5640 camera module, as shown in Fig. 1. 

The hardware platform uses industrial core board 

i_MX6Q, which integrates Cortex_A9 quad-core processor 

with 1 GHz work frequency. Cortex_A9 embedded module 

not only has super computing power, but also has very low 

power consumption. The power consumption is less than 

2.5W, which guarantees the endurance of the aircraft. The 

size of the system is only 100 mm×72 mm, which meets the 

needs of practical application. 

The OV5640 module is adopted to collect image. It is 

connected with the camera interface provided by 

Cortex_A9 and does not need external power supply, thus 

weight is lighted. Moreover, the size of the module is only 

47.5 mm×35 mm, and the maximum resolution is 2592× 

1944 pixels. The maximum image transmission rate under 

this resolution is 15fps, which meets the needs of real time 

image acquisition. The module has the advantages of ultra-

low power consumption, ultra-low noise and high-definition 

color images. 

The power module uses 11V lithium battery and HW-

BQ8010 voltage regulator module. 11V lithium batteries 

provide power for the quad-rotor aircraft, and is reduced 

through the power regulator module to provide 5V input 

voltage for Cortex_A9. 

 
2.1 Numerical simulation procedure 
 

One can write the extended form of the Hamilton’s 

Principle with the notations used in the present study as 
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In consideration of different 10m height wind speed v10 

and the power law exponent index α results shown in Table 

2, the representative upstream typhoon wind fields at 

different directions used as the input data for training ANN 

model are determined, which is shown in Tables 1-2. 

 

 

3. Crack detection method 
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In the process of automatic detection of cracks in 

concrete bridge images, the crack information is weak 

because of the influence of uneven illumination and many 

disturbances. Therefore, it is necessary to deal with the 

images to improve the quality, and then extract the crack 

feature to perform crack detection. The flow chart of crack 

detection method proposed in this paper is shown in Fig. 2. 

 

3.1 Image preprocessing 
 
3.1.1 Background removal 
Background subtraction is widely used in video 

surveillance and intelligent transportation, which subtracts 

the background from the video to obtain the motion 

foreground (Fujita and Hamamoto 2011). In the crack 

image of bridge, cracks are high-frequency information, so 

this paper uses Gaussian low-pass filter to smooth the 

image, then obtain low-frequency background image. The 

original image subtracts the background image to get high-

frequency crack image. 

 

Given the original image is f(x,y), the image after Gauss 

smoothing is g(i,j) 

( , ) ( , )g i j f i j G 
 

(1) 

Where, Gσ is the two-dimensional Gaussian template 

with the standard deviation σ. The Gaussian template 

coefficient is determined by zero-mean Gaussian function 

as shown in Eq. (2). 

2 2

2

( )

2( , )

i j

G i j Ce 





 

(2) 

Where, C is the normalization coefficient. 

The image h(i,j) after background removal is shown in 

Eq. (3). 

( , ) ( , ) g( , )h i j f i j i j 
 

(3) 

 
3.1.2 Threshold segmentation 
The image after background removal is shown in Fig. 3. 

Fig. 3(c) shows that the gray level of the processed image is 

low, so it is necessary to enhance the crack information by 

binary threshold segmentation. Fig. 3(c) cannot show the 

information effectively due to low gray. In order to provide 

the good visual information, the negative image of Fig. 3(c) 

is shown in Fig. 3(e). As shown in Fig. 3(d), the gray level 

of the image after background removal is relatively 

concentrated, so the segmentation result is not good by the 

commonly used binary segmentation method. In this paper, 

an adaptive threshold segmentation method based on 

grayscale estimation is proposed. 

Calculate the grayscale estimation t1 of h(i,j) 

1

( , )

1
( , )

i j A

t h i j
M 

 
 

(4) 

Where, A is a set of all pixels in h(i,j), M is the total 

number of pixels. 

Calculate the grayscale estimation t2 of suspected crack  

 
 

 

Fig. 2 The flow chart of crack detection system 

   

(a) original image (b) Histogram of original image (c) Image after background removal 

  
(d) Histogram of image after background removal (e) Negative image of (c) 

Fig. 3 Image and histogram after background removal 

Image acquisition  

Background 

removal 

Gray adaptive 

threshold 

segmentation 

Preprocessing 

Filtering based on 

connected domain area 

Filtering based on 

connected domain shape 

Morphological Filtering 

Comprehensive filtering Crack detection 

Feature extraction 

SVDD 

Classifier 

Crack detection 

results 

448



 

Real-time comprehensive image processing system for detecting concrete bridges crack 

 

 

 

points in t1. 

2

( , )

1
( , )

i j a

t h i j
m 

 
 

(5) 

Where, a is the set of pixels whose gray value is not 

zero in h(i,j). m is the total number of corresponding pixel. 

Given the segmentation threshold is 1 2( )

2

t t
T


 . 

Using T to segment h(i,j) and obtain image f1(i,j), as shown 

in Eq. (6). 
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h i j T
f i j i j A

h i j T
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
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，
 

(6) 

Ostu or Niblack methods are also common image 

threshold segmentation methods. In order to illustrate the 

advantages of the adaptive threshold segmentation method 

proposed in this paper, Fig. 4 shows the segmentation 

results of three thresholding methods for image after 

background removal as shown in Fig. 3(c). From Fig. 4, it 

can be seen that Ostu method ignores the details of cracks, 

while Niblack method is more sensitive to noise, which 

shows that the threshold selection of the two methods is 

inaccurate. From the red area in the graph, it is easy to find 

that the proposed adaptive threshold segmentation method 

based on grayscale estimation can protect the details of 

cracks and ensure the integrity of cracks better than Ostu 

method. Compared with Niblack method, the proposed 

threshold segmentation method can suppress some noise, 

and is simple in calculation and easy to implement. 

 

3.2 Comprehensive filtering 
 

After threshold segmentation, there are still some pixels 

with similar gray level as true crack pixels, called pseudo-

crack. The existence of these pseudo-crack will affect the 

true crack detection, so further removal of pseudo-crack is 

necessary to ensure high efficiency and accuracy of true 

crack detection. True crack and pseudo-crack have 

differences in size of pixel domain and pixel shape. Using 

any difference alone to filter pseudo-crack will affect the 

integrity of the true crack. Based on multiple difference, the 

comprehensive filtering method is proposed. It not only 

retains the true crack completely, but also removes the 

pseudo-crack efficiently.   

 

3.2.1 Filtering based on connected domain area 
Due to significant differences in the area of the 

connected domain between the true crack pixels and the 

pseudo-crack, the pseudo-crack can be removed by this 

difference. 

Firstly, the contour of pixel domain with gray level 1 is 

determined by eight neighborhood tracking method, then 

the connected domain Ck(x,y) is be determined. The area of 

each domain Ak is calculated by Green's theorem, as shown 

in Eq. (7). 

1 1 +1 1

1 1

1 1
( ( ) ( )) ( - )

2 2

n n

k l l l l l l l l l l

l l

A x y y y x x x y y x  

 

     
 
(7) 

Where, n is the total number of contour points. xl, yl  is 

the coordinates of the ith contour point. 

Secondly, after extracting the connected domain Ck(x,y) 

from the image, the appropriate area threshold Ta is selected 

to filter f1(i,j). f2(i,j) is obtained, as shown in Eq. (8). 

1

2

1

0 ( , ) ( , )& , 1,2,
( , )=

( , )

k k a af i j C x y A T k N
f i j

f i j others

  

  

(8) 

Where, Na is the number of connected domains, Ak is the 

area of the kth connected domain. 

 

3.2.2 Filtering based on shape extremum of 
connected domain  

Connected domain area based filtering may cause some 

pseudo-crack being preserved, because the domain area of 

some pseudo-crack connected domain is similar to the true 

crack’s. From the viewpoint of shape characteristics, the 

pseudo-crack is irregular in shape, while the true cracks are 

slender and elongated in shape. The pseudo-crack can be 

further filtered by utilizing their shape differences. The 

shape extremum of connected domain can describe the 

shape characteristics very well, so the shape extremum of 

connected domain is used to filter out pseudo-crack. 

From f2(i,j), the connected domains Ek(x,y) can be 

extracted. Shape extremum filtering of the connected 

domain is shown in Eq. (9). 

2

3

2

0 ( , ) ( , )& , 1,2,
( , )=

( , )

k k s lf i j E x y L T k N
f i j

f i j others

  



 (9) 

Where, Nl is the number of connected domains, Ts is the 

threshold. Lk is the shape extremum of the kth connected 

domain, as shown in Eq. (10).  

   
(a) Segmentation result by the 

proposed method 

(b) Segmentation result by Ostu method (c)  Segmentation result by Niblack 

method 

Fig. 4 Result image of three threshold segmentation methods 
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 ,kL Max w h
 

(10) 

Where, w and h is the length and width of the smallest 

enclosed rectangle of the kth connected domain 

respectively. 

 

3.2.3 Morphological filtering 
Following the above steps, the pseudo-crack is filtered, 

while some small fragments of the true crack pixels may be 

filtered out. Morphology filtering is used to connect the 

separated fragments, and ensure the integrity of the cracked 

pixels. 

In basic operations of morphology, expansion will fill 

the edges or internal holes. Corrosion can remove the burrs 

on the crack, and may also corrode the small joints between 

the cracks. In this paper, the closed operation is used to 

filter the image, as Eq. (11) show. The closed operation, 

which expands first and then corrodes, can not only smooth 

the outline of the image, but also fill breaks of crack. 

 4 3 3( , ) ( , ) ( , )f i j f i j S f i j S S    !  (11) 

Where, S is structural element,  is dilation operation, 

○—  is erosion operation.  

 

3.3 Feature extraction 
 

After pre-processing and comprehensive filtering, most 

of the pseudo-crack are removed. The next key step is to 

extract crack features for crack identification. 

Generally, cracks can be divided into transverse cracks, 

longitudinal cracks, oblique cracks and complex cracks 

according to their shape characteristics. Among them, the 

proportion of complex cracks is only 6% (Lins and Givigi 

2016), so most of others have linear characteristics and can 

be distinguished according to their geometry. Lee et al. 

(2013) used geometric features to identify cracks, such as 

the elongation and filling degree of the connected domain. 

But the applicability is poor because the elongation of the 

connected domain is effective for linear cracks, and is not 

suitable for identifying network cracks and non-fracture 

fragments. 

Based on the gray characteristics of crack, a new feature 

called grayscale difference ratio is put forward in this paper. 

Considering both the shape and gray characteristics of 

crack, this paper proposes five features, circularity, area 

ratio, eccentricity, filling degree and grayscale difference 

ratio, to constitute a feature vector for crack identification. 

 

3.3.1 Circularity of connected domains 
Circularity is one of the most common features in shape 

analysis. Circularity can well represent the contours 

characteristics of connected domains, and is insensitive to 

the size and angle of contours. The larger the circularity is, 

the more complex the contour of the connected domain is, 

and the more the shape is biased towards the circle. For the 

circular contour, the circularity of the connected domain is 

1. 

The circularity is defined by area and circumference, as 

shown in Eq. (12). 

2

4
c

L
F

A


 
(12) 

Where, L, A is the circumference and the area of 

connected domain respectively. 

 

3.3.2 Area ratio of connected domain 
Usually, the connected domain area of the crack 

fragments is larger than that of the non-crack fragments. 

The area ratio of connected domains is defined as Eq. 

(13). 

=
A

F
row col


  

(13) 

Where, A is the area of connected domains, row and col 

is the row and column of the image respectively.  

 

3.3.3 Eccentricity of connected domains 
The eccentricity of the connected domain can describe 

the compactness of the domain. If the eccentricity is 0, the 

connected domain is actually a positive circle and 1 means a 

line segment. The eccentricity is calculated as Eq. (14) 

shows. 

e

c
F

a


 
(14) 

Where, a and c is the major semi axis and the minor 

semi axis of the smallest enclosed ellipse of connected 

domain. 

 

3.3.4 Filling degree of connected domain 
The filling degree of a connected domain is the ratio of 

the domain area A to its enclosed rectangle area Ar , as 

shown in Eq. (15). 

pd

r

A
F

A


 

(15) 

Generally, the filling degree of crack fragments is 

smaller than that of non-crack fragments, because most of 

the cracks are slender and long, while non-cracks are 

irregular. 

 

3.3.5 Grayscale difference ratio of connected domain 
Considering that there are some non-crack structures 

such as scratches, stains, dents or holes in the image, these 

non-cracks cannot be distinguished from the true cracks 

very well by shape feature. Therefore, it is necessary to 

distinguish them by combining grayscale feature and shape 

feature.  

Given ROCD is the enclosed rectangle of the connected 

domain. r, C is the number of rows and columns of ROCD. 

R and C is the number of rows and columns of the original 

image f(i,j) respectively. The grayscale difference ratio of 

the connected domain is defined as 

1 1 1 1

1 1

1 1
( , ) ( , )

1
( , )

r c R C

i j i j

g R C

i j

f i j f i j
rc RC

F

f i j
RC

   

 





 


 

(16) 
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When non-crack structures such as watermarks and 

concaves formed by concrete surface shedding exists, the 

difference between the gray mean of corresponding domain 

ROCD and the gray mean of the whole image is larger than 

that of true crack.  

The above five features are used to construct feature 

vectors as the input of classifier to complete the detection of 

cracks. 

 

3.4 Crack detection  
 

After feature extraction, machine learning algorithm is 

used for classification and recognition. There are many 

machine learning algorithms, such as decision tree, artificial 

neural network, support vector machine and so on. In 

general, a large number of training samples make the 

recognition model fully trained to achieve high recognition 

rate. However, in actual application, it is difficult to obtain a 

large amount of defective data, and the imbalance between 

defective and non-defective data is encountered. Support 

Vector Data Description (SVDD) is a single-valued 

classification method proposed by Tax and Duin (2004). It 

does not need defective crack samples and overcome the 

above problem. Only through normal sample, SVDD can 

classify cracks and non-cracks. Although support vector 

data description algorithm is derived from support vector 

machine, its goal is to find a minimum hypersphere 

containing the target sample data rather than the optimal 

hyperplane, and to distinguish the target class data from the 

non-target class data. SVDD not only inherits the SVM’s 

advantages of few parameters, fast learning speed, strong 

generalization ability and global optimization, but also has 

the potential ability of on-line detection and identification. 

So in this paper, SVDD is used as classifier to detect cracks.                     

 

3.4.1 Support vector data description  
Given {xi, i=1,2,…N} is a set of training samples, the 

goal of SVDD is to find a hypersphere with a spherical 

center a and radius R, which contains all or most of the 

target samples xi, and R should be minimal. This 

hypersphere should satisfy the following relationships. 

2min h R  (17) 

2 2|| || 1,2, ,ix a R i N  ，
 

(18) 

By introducing relaxation factor ξ≥0, i=1,2,…N to 

enhance the robustness of its classification, the Eq. (18) 

becomes 

2

1

min ( ,a, ) 1,2,
N

i

i

h R R C i N 


   ，
 

(19) 

Where, C is a constant. It is used to control the penalty 

level of the wrong-classified sample. The constraints is 

shown in Eq. (20). 

2 2|| || + 0i i ix a R    ，
 

(20) 

The minimum radius of super sphere is obtained under 

this constraint condition.  

 
(a) Original image 

 
(b) Preprocessed image 

Fig. 5 Original image and preprocessed image 

 

 

3.4.2 Selection of kernel function 
The factors that influence the classification result mainly 

include kernel function and penalty parameter C. Although 

researchers have done a lot of research and discussion about 

the choice of these two parameters, so far there is still no 

systematic theoretical method to select the kernel function 

and penalty parameters, and it still needs experience to 

select. 

Gaussian kernel function used in this paper is the most 

common kernel function, and its kernel parameters have a 

great influence on the description effect of SVDD. The 

parameter selection methods mainly include genetic 

algorithm optimization, grid search method and cross 

validation method. In this paper, the grid search method is 

used to find the possible optimal parameters, and the cross 

validation method is used to verify the accuracy and find 

the optimal parameters. 

 

3.4.3 Selection of penalty parameters 
In order to control the experiential risk from sample 

misclassification, the balance between hypersphere volume 

and sample misclassification rate can be adjusted by penalty 

parameter C. 

Ignoring the effect of kernel function on the 

classification boundary, when C=1/N (N is the number of 

training samples), all the sample points are located on the 

surface of the hypersphere, and all of them are support 

vectors. Thus, the state of SVDD is over-fitting. With the 

gradual increase of C, the hypersphere contains more 

sample points, and the support vector will also be less.  

When C=1, the state of SVDD is under fitting, and all the 

sample points were inside the hypersphere. 

In this paper, set C=1, i.e., there is no misclassification 

in the sample class of training. 

 

3.4.4 Evaluation metric 
In this paper, some quantitative indicators are used to 
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evaluate the performance of detection models and detection 

results. They are accuracy, precision, detection probability 

and false alarm probability. 

1. Accuracy 

TN TP
Accuracy

TN FN FP TP




    
(21) 

2. Precision 

TP
Precision

FP TP


  
(22) 

3. Recall 

TP
Recall

FN TP


  
(23) 

4. False positive rate(FPR) 

FP
FPR

FP TN


  
(24) 

Where, TP (True positives) is the number of crack 

fragments correctly detected, TN (True negatives) is the 

number of non-crack fragments correctly detected, FP 

(False positives) is the number of non-crack fragments 

treated as crack fragments, FN (False negatives) is the 

number of crack fragments treated as non-crack fragments. 

 

 

4. Experiment and performance analysis 
 

Authors should discuss the results and how they can be 

interpreted in perspective of previous studies and of the 

working hypotheses. The findings and their implications 

should be discussed in the broadest context possible. Future 

research directions may also be highlighted. 

 

4.1 Image acquisition 
 
Using the image acquisition system designed in this 

paper, the actual bridge image is obtained under natural 

light. If the environment is too dark, it is necessary to carry 

light source for illumination. 

 
4.2 Image preprocessing 
 

The actual bridge images and the preprocessed results 

are shown in Figs. 5(a) and 5(b) respectively. From Fig. 5, it 

can be found that after preprocessing, the crack is roughly 

extracted, even the relatively inconspicuous cracks in 

original image, as the red circle shows in Fig. 5(b). It 

exhibits that the preprocessing method proposed in this 

paper is effective and feasible. However, as can be found in 

Fig. 5(b), there are some pseudo-crack in the preprocessed 

image, Therefore, after cracks are roughly extracted, 

pseudo-crack need to be further removed. 

 
4.3 Comprehensive filtering 
 

In order to remove pseudo-crack and preserve the crack, 

the threshold Ta is set to 48 pixels in filtering based on 

connected domain area, and the filtering result is shown in  

 

Fig. 6 Result by filtering based on connected domain area 

 

 

Fig. 7 Result by filtering based on connected domain 

shape extremum 

 

 

Fig. 8 Result by morphological filtering 

 

 

Fig. 6. Compared with Fig. 5 (b), it can be found that most 

of the pseudo-crack are removed and the true cracks are 

well preserved. But some of the small pseudo-crack still 

exist, because the threshold is too small, otherwise some 

cracks will be filtered out. 

In the filtering based on the shape extremum of 

connected domain, the threshold Ts is set to 29 pixels, and 

the filtering results are shown in Fig. 7. Compared with Fig. 

6, it is easy to find that the true cracks are still well 

preserved while the pseudo-crack are further removed, and 

only a small number of pseudo-crack exist. 

After above two steps, a large number of pseudo-crack 

are removed and the true cracks are completely preserved. 

However, during the filtering process, some small 

fragments of the true cracks are filtered out, as red circle 

shows in Fig. 7. Therefore, morphological filtering is 

needed to connect these fragments. The morphological 

filtering results are shown in Fig. 8. The shape of structural 

element is square, and the size of structural element is set to 

5. It shows that the fragments of true cracks are connected, 

and the true cracks are more complete. 

Comparing Fig. 5(b) with Fig. 8, a large number of 

pseudo-crack are removed and true cracks are preserved 

completely after comprehensive filtering, which shows that 

the proposed comprehensive filtering is effective and 

feasible. 

In order to further verify the performance of the  
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proposed method, Fig. 9 shows the preprocessing and 

comprehensive filtering result of longitudinal cracks. 

Comparison Fig. 9(a) with Fig. 9(e) shows that the 

proposed method can also extract longitudinal crack 

information completely. 

Based on the above experimental results, the pre-

processing and comprehensive filtering algorithm proposed 

in this paper can effectively extract complete cracks, either 

longitudinal cracks as shown in Fig. 9(a) or mesh cracks as 

shown in Fig. 5(a). 

 
4.4 Crack feature extraction and identification 
 

Different feature components in the feature vector 

represent different physical meanings, and they may have 

different amplitude, so the feature vectors are normalized 

before classification. 

 

 

 

 

Fig. 10 is original image and the extraction result of 

non-crack. Fig. 11 is original image and the extraction 

results of true crack.  

Table 1 is the corresponding feature vectors of images in 

Fig. 10 and Fig. 11. It can be found in Table 1 that true 

cracks and non-cracks differ from each other in the first 

four shape features, and there is a great difference in the 

grayscale difference ratio. This indicates that the five 

features proposed in this paper can describe the differences 

between true cracks and non-cracks, and can be used to 

distinguish true cracks from non-cracks well.  

In the detection of SVDD, proper Gauss kernel 

parameter σ is very important. In this paper, 102 non-crack 

images are selected from actual images as training samples, 

and the five-dimensional feature vectors of samples are 

constructed to train the SVDD model. The possible 

optimum value of σ is found by using the grid search  

   

(a) original image (b) Preprocessed image 
(c) Result by Filtering based on 

connected domain area 

  
(d) Result by Filtering based on connected domain shape 

extremum 
(e) Result by morphological filtering 

Fig. 9 Preprocessed image and comprehensive filtered image of longitudinal crack 

    
(a) The first images (b) The second images 

Fig. 10 Original image and extraction result of non-crack 

    
(a) The first images (b) The second images 

Fig. 11 Original image and extraction result of true crack 
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Fig. 12 The relationship between Gaussian kernel parameter  

σ and hypersphere radius R 

 

 

Fig. 13 The relationship between Gaussian kernel parameter  

σ and number of support vectors 

 

 

method. The relationships between σ and the radius R of the 

hypersphere is shown in Fig. 12, and the relationships 

between σ and the number  

of support vectors is shown in Fig. 13. 

Fig. 12 and Fig. 13 show that the optimal value of σ may 

be in the range of [0.64-0.72]. It should be noted that in 

order to reduce the rate of missing detection of cracks, the 

rate of false detection can be sacrificed to a certain extent in 

the process of seeking the optimal parameters. Thus, the 

optimal Gauss kernel parameter σ is 0.68, corresponding 

radius R of the hypersphere is 0.231, and the number of 

support vectors is 4. 

 

4.5 Performance evaluation and analysis 
 

In order to verify the performance of the crack detection 

algorithm proposed in this paper, the image acquisition 

equipment designed in this paper is used to obtain the actual 

bridge crack image. In the sample set, the ratio of true crack 

fragments (including transverse cracks, vertical cracks, 

 

Table 2 Detection performance by 5D feature vector 

TP TN FP FN 

61 59 6 4 

Accuracy Precision Recall FPR 

92.31% 91.04% 93.85% 9.23% 

 

Table 3 Detection performance by 4D feature vector 

TP TN FP FN 

62 54 11 3 

Accuracy Precision Recall FPR 

89.23% 84.93% 95.38% 16.92% 

 

 

oblique cracks and mesh cracks) to non-crack fragments is 

1:1, and 65 fragments are selected respectively. The 

performance results are shown in Table 2. 

From Table 2, it can be found that 61 of the 65 cracks 

have been correctly detected, only 4 have been missed, and 

only 6 of the non-crack fragments have been mistakenly 

detected. The detection accuracy rate is 92.31%, and the 

false positive rate (FPR) is 9.23%. This shows that the 

proposed crack detection method is effective and feasible, 

and can ensure a higher detection accuracy. 

Because the surface of concrete is rough and some 

cracks is weak, the extracted cracks may have local 

fracture, which results in missed identification of cracks. 

Meanwhile, because of the complexity of image texture, 

scratches, grooves and other structures are similar to cracks, 

and some of them may be misidentified as crack. 

In order to verify the validity of the proposed grayscale 

difference ratio, the first four features are used to construct 

a 4-D feature vector for detection, and the detection 

performance results are shown in Table 3. Comparing Table 

3 and Table 2, it can be found that the detection accuracy of 

four-dimensional feature vector is 89.23%, and false 

positive rate (FPR) is 16.92%. By introducing grayscale 

difference ratio, the detection accuracy is increased by 

about 3%, and false positive rate (FPR) is reduced by about 

5%. It shows that the proposed grayscale difference ratio 

effectively improves the detection accuracy. 

In order to further verify the superiority of the proposed 

method, we re-select the sample from actual concrete bridge 

image, in which the ratio of crack images to non-crack 

images is 1:1, 59 images for each. The recognition results 

are compared with those of the algorithm CrackIT (Oliveira 

and Correia 2013, Oliveira and Correia 2014) in recent 

years, as shown in Table 4. 

From Table 4, the detection accuracy of the proposed  

Table 1 Feature vectors corresponding to non-cracks and true cracks 

Feature 

Feature value 

Non-crack Crack 

The first group The second group The first group The second group 

Filling degree 0.1256493787 0.0693637095 0.0116792341 0.0126870660 

Circularity 0.1783838855 0.0805373834 0.0189185207 0.0132891503 

Circularity 0.9814441586 0.9810046036 0.9877458971 0.8882561750 

Area ratio 0.0204730349 0.0305924479 0.2234375000 0.6154947917 

Grayscale difference ratio 0.0095152759 0.1236134230 0.0297288039 0.0215607860 
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Table 4 Detection accuracy of two algorithms 

CrackIT method The proposed method 

70.34% 94.92% 

 

 

method is 94.92%, and that of CrackIT is 70.34%. The 

proposed crack detection method can greatly improve the 

detection accuracy. Because the illumination conditions are 

not uniform in the actual image acquisition process, there 

exist a lot of shadows and faculae. CrackIT algorithm 

cannot extract the crack target from such background, and 

its detection accuracy is not high. On the other hand, the 

contrast of actual crack image is low and the crack is weak, 

which also results in low detection accuracy of CrackIT.  

The proposed method can overcome these problems 

because the pre-processing method takes into account the 

frequency and gray characteristics of cracks to enhance 

crack image. In addition, comprehensive filtering uses the 

difference of, area and shape between true crack and 

pseudo-crack, so it can filter out a large number of pseudo-

crack, and retain true crack very well. The preprocessing 

method and comprehensive filtering can completely extract 

true crack for either low contrast image or weak crack 

image.  Then crack grayscale feature and crack shape 

feature are used to detect crack, so it can gain high positive 

detection rate. 

Tables 2 and 4 show that the proposed crack detection 

algorithm can not only filter out most of the interference 

and pseudo-crack, but also has a higher detection accuracy. 

In practical applications, processing speed is a key 

metric to decide whether to process in real time. In order to 

illustrate the real-time performance of the crack detection 

system designed in this paper, a comparison is made 

between the proposed method and the two widely cited 

crack detection methods, as shown in Table 5. 

As shown in Table 5, under the condition with same 

image pixel size and lower frequency processor, the 

designed system and the proposed method in this paper 

have a faster processing speed than the other two methods. 

The time from acquisition to detection of 800×600 pixel 

images is about 0.1s and 1920×1280 pixel images is about 

0.9s, which shows that the system and the method designed 

in this paper is suitable for real-time processing. 

To summarize, the designed system and the proposed 

method for crack detection in this paper has high detection 

accuracy, fast processing speed, small size and light weight. 

It is suitable for actual engineering applications. 

 

 

5. Conclusions 
 

In actual application, most bridges locate in remote field 

or on the water surface, and the collected objects locate in 

such as piers, the bottom of the bridge, etc. it is difficult to 

obtain data by traditional methods. To solve this problem, 

this paper designs bridge crack detection system based on 

image processing, including the image acquisition and 

processing hardware platform and crack detection software 

algorithm. The designed hardware system platform is small 

in size and light in weight. It is suitable for carrying on a 

Table 5 Performance in real time of three methods 

Method CPU pixel time 

literature (Zou et al. 2012) 2.4GHz 800×600 12s 

The proposed method 2.1GHz 800×600 0.1264s 

literature (Prasanna et al. 2016) 2.3GHz 1920×1280 2.75min 

The proposed method 2.1GHz 1920×1280 0.8765s 

 

 

small UAV to realize data acquisition in different positions. 

In the proposed algorithm, using pre-processing method and 

comprehensive filtering, a large number of pseudo-crack 

can be filtered out, and complete true crack is extracted. 

Feature vector is constructed as input of SVDD to detect 

crack, and its detection accuracy can reach 94.92%. The 

automatic crack detection system based on image 

processing designed in this paper has a fast processing 

speed. The time from acquisition to detection is about 0.9s, 

which meets the requirements of real-time processing. The 

system has high detection accuracy, simple operation and is 

easy to carry. It is suitable for practical engineering 

applications. 
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