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1. Introduction 
 

The priority agenda in concrete industry is to produce 

green concrete for the sake of environmental sustainability 

and economy (Suhendra 2014, Oti and Kinuthia 2015). In 

the country like India, where rice is considered to be main 

food crop with yearly rice production as high as 100 million 

MT, the RHABC provides a way of producing green 

concrete with solution to low cost housing. The main 

obstacles of wide use of RHABC are its severe batch to 

batch property variation produced even with same RHA 

source; sensitivity of RHABC to small variations in the 

constituent materials, mix proportions and other external 

factors; and also the absence of mix design guidelines in 

many countries including India.  

The RHA is a material that is generally obtained as a 

waste product from rice mills. Property of RHA obtained 

from same rice mill varies significantly. Ewa et al. (2018) 

reported severe batch to batch variation of properties of 

RHA even after collecting RHA from same source. The 
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similar variation is also observed from the research of de 

Sensale and Viacava (2018) on blended Portland cements 

containing residual RHA and limestone filler. This has been 

also verified in the present test program. 40 batches of 

RHABC cubes have been prepared of grade M25 from the 

same ingredients and mix constituents and tested for their 

compressive strength. The result is shown in Fig. 1. It can 

be clearly observed that there is significant batch to batch 

variation of RHABC even with same source of RHA. 

Moreover, distribution of the results are not normal, rather 

show non-uniform distribution. There remains 21% chance 

due to variability of RHA property that the compressive 

strength may fall below 20 MPa. Thus, application of some 

uncertainty measure in designing the mix that will make it 

robust to variation due to uncertainty is needed. Since, 

reducing uncertainty in this case is either impractical or add 

too much cost of production of RHABC, a mathematical 

optimization technique which considers uncertainty effect is 

supposed to be more viable. 

The object of mix design is to attain desired strength and 

workability with minimum cost of production considering 

various uncertainty effects. The added problem of mix 

design of RHABC is its sensitivity to uncertainty related to 

property variation of ingredients, especially the RHA. This 

is not a pertinent problem for ordinary cement concrete, 

since properties of cement can be well tested and cement is 

produced in factories maintaining standard stipulations that 

render the uncertainty related to property of cement a 
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Abstract.  As rice husk ash (RHA) is not produced in controlled manufacturing process like cement, its properties vary 

significantly even within the same lot. In fact, properties of Rice Husk Ash Based Concrete (RHABC) are largely dictated by 

uncertainty leading to huge deviations from their expected values. This paper proposes a Robust Cost Optimization (RCO) 

procedure for RHABC, which minimizes such unwanted deviation due to uncertainty and provides guarantee of achieving 
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properties have been modeled as uncertain-but-bounded type as associated probability density function is not available. 

Metamodeling technique is adopted in this work for generating explicit expressions of constraint functions required for 

formulation of RCO. In doing so, the Moving Least Squares Method is explored in place of conventional Least Square Method 

(LSM) to ensure accuracy of the RCO. The efficiency by the proposed MLSM based RCO is validated by experimental studies. 

The error by the LSM and accuracy by the MLSM predictions are clearly envisaged from the test results. The experimental 

results show good agreement with the proposed MLSM based RCO predicted mix properties. The present RCO procedure yields 
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values. At the same time, desired reliability of satisfying the constraints is achieved with marginal increment in cost. 
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minimal. Thus, in absence of well-defined data related to 

RHA and its influence on other ingredients, the problem of 

mix design of RHABC can be better investigated as an 

optimization problem under uncertainty. 

 Conventional Reliability Based Design Optimization 

(RBDO) approach for dealing optimization under 

uncertainty as expressed by Abbasnia et al. (2014) brings 

specified target reliability of desired performance; but the 

design may be still sensitive to input parameter variations. 

Moreover, when the probability density function is 

unavailable and stochastic parameters are modeled as 

uncertain but bounded type, Robust Optimization (RO) 

becomes an attractive alternate to RBDO. The RO is 

fundamentally concerned with minimizing the effect of 

uncertainty in the uncertain parameters to the variation of 

performance function and constraints. The RO has been 

successfully implemented in the recent past for stochastic 

mechanical systems (Beyer and Sendhoff 2007, Cheng et al. 

2017). Thus, in the present paper, the RDO is applied for 

cost optimization of RHABC mix under uncertainty which 

is abbreviated here as Robust Cost Optimization (RCO) 

approach. The RCO simultaneously minimizes cost and 

standard deviation of cost in producing RHABC. At the 

same time, the guarantee of getting the required strength 

and workability under uncertainty is ensured by adding 

suitable penalty term(s) to the deterministic constraint(s) 

and then satisfying target reliability criteria. The RCO is 

supposed to yield a mix that will be least sensitive to the 

input parameter variations without reducing the sources of 

uncertainty. Nunes et al. (2013) presented robust mix design 

approach for self-compacting concrete. However, such 

study on RHABC has not yet been observed in the existing 

literature. But, severe batch-to-batch property variation due 

to material uncertainty is generally observed in case of 

RHABC, which implies the necessity of RCO study with 

RHABC and constitutes the objective of this paper. 

It may be noted here that the RCO requires objective 
function and constraints in explicit functional form. Thus, a 
Response Surface Method (RSM) based metamodeling 
strategy is adopted in the present study. Nunes et al. (2013) 
applied polynomial RSM to approximate property for mix 
design of self-compacting concrete. Gazder et al. (2017) 

applied artificial Neural Network (ANN) to predict 
compressive strength of blended cement. Ozturk et al. 
(2018) applied ANN to approximate compressive strength 
of alkali-activated electric arc furnace slag. It is realized 
that a polynomial RSM will be particularly suitable for 
RCO, as this approach requires several repetitive evaluation 

of gradients of constraint function, which can be easily 
accomplished by the RSM. The RSM uncovers explicit 
functional relationship of compressive strength (or 
workability) as function of ingredient quantities. The 
conventional RSM is pivoted on the concept of Least 
Squares Method (LSM). In fact, Nunes et al. (2013) 

adopted the LSM based RSM when investigating robust 
mix design procedure. However, the LSM may be a major 
source of error in the RSM (Bhattacharjya and Chakraborty, 
2011, Bhattacharjya et al. 2018). Hence, a comparatively 
newer Moving Least Squares Method (MLSM) based 
adaptive RSM is explored in the present paper. The 

application of the MLSM based RSM in RCO is not yet  
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Fig. 1 Batch to batch variation of RHABC 

 

 

observed in the existing literature. Hence, this builds 

another uniqueness of the present study. 

The strength and workability of RHABC largely 

depends on the cement content (c), RHA content (r), super 

plasticizer content (sp), water to binder ratio (w/b) and sand 

content (fa) per m
3
 of concrete. The binder refers to the total 

quantity of cement and RHA per m
3
 of concrete. The RSM 

generates explicit equations for dependence of strength (and 

workability) on c, r, sp and w/b. If r, c and w/b are known, 

quantity of water (w) can be evaluated as, w=(w/b)×(r+c), 

since b=r+c. Also, if specific gravity of coarse aggregate is 

γca, the weight of coarse aggregate ca is given by (1.0-b-w-

fa-sp) ×γca. 

It may be noted that all the aforementioned quantities 

are uncertain. Thus, quantification of uncertainty is an 

important issue in RCO. It is most likely that during 

preparation of RHABC one will attempt to mix the design 

yielded quantities. However, there may be variations due to 

uncertainty arising out from manual error, loss during 

mixing, transportation, measuring error, etc. The quantities 

(except r and w/b) may be assumed as normally distributed 

(IS:10262 2009), with design yielded value as the mean and 

maximum 20% variation (i.e., Coefficient of Variation 

(COV)=0.2) with respect to the mean. However, uncertainty 

with RHA is not that straightforward. Due to several 

impurities and variation in fineness modulus, there may be 

substantial property variation of RHA even with same 

quantity of RHA (Fig. 1). The presence of impurity affects 

the property of RHABC significantly which has been also 

reported in de Sensale and Viacava (2018), Ewa et al. 

(2018). The type, chemical composition, grain size of 

impurity vary substantially among the same batch of RHA 

leading to considerable property variations of resulting 

RHABC. Since RHA is not produced in a controlled 

manufacturing process like cement, the fineness and grain 

size of RHA vary significantly (Ewa et al. 2018). Thus, it is 

more logical to assign RHA quantity a worst uncertainty 

case, which is assumed as Uncertain but Bounded (UBB) 

type in the present paper. With the UBB uncertainty, the 

RHA quantity will assume any possible values within the 

range of variation which is equally likely. It has been 

observed during the detailed experimentation that due to 

uncertainty in impurities and fineness (which induces 

heterogeneity in the mix), property of RHABC can vary  
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Fig. 2 Difference between RCO and conventional mix 

design 

 

 

maximum 20%, if RHA of same rice mill and brand is used. 

Thus, the dispersion of RHA content is assumed to be 20% 

in either side of the nominal value. Since, RHA content (r) 

is modeled as UBB type, the w/b is also UBB type. 

Maximum 20% dispersion is assumed for w/b. This UBB 

assumption is likely to incorporate the effect of uncertainty 

related to RHA heterogeneity directly in the RCO process. 

However, except r and (w/b), other constituents quantities 

(c,w,sp,fa,ca) are assumed to be normally distributed 

(IS:10262, 2009) with design yielded value as the mean and 

COV as 20% with respect to mean. The COV of cost related 

parameters is also taken as 20%. 

There may be significant property variation of RHABC 

if two or more of these uncertain material quantities vary 

simultaneously. The situation can be demonstrated with the 

help of a response surface in Fig. 2. Say, the compressive 

strength of RHABC is considered as (Y) and input material 

constituents are represented by X1 and X2. Let, a typical 

(conventional) mix design is denoted by a red circle in 

Fig.2. Now, if X1and X2 both vary by the amounts of ΔX1 

and ΔX2, the property of the RHABC will shift to the violet 

circle which is largely deviated from the original red circle. 

This shift in compressive strength (ΔY1) causes significant 

reduction in compressive strength of RHABC, yielding an 

undesired (or unsafe) mix. Thus, there should be a prudent 

mix design approach which will yield robust mix that will 

perform well even in presence of considerable input 

uncertainty. This task can be accomplished by the RCO. 

Let, an RCO yields a mix denoted by yellow circle in Fig. 

2. An RCO basically track the optimal solution in a 

comparatively flatter portion of response surface, which 

makes the design least sensitive to variation due to 

uncertainty. It may be clearly observed that even if the ΔX1 

and ΔX2 are dispersed by the same amount in opposite side 

of red circle, the shift in compressive strength (ΔY2) is 

substantially lesser than ΔY1. This indicates the RCO yields 

mix design which is less dispersed or in other words less 

sensitive to input parameter variation due to uncertainty 

(note that the gradients at this yellow circle are substantially 

less). In fact, in design of products in mechanical 

engineering and design of safe structures such notion is 

already used (Bhattacharjya et al. 2015, Abhiram et al. 

2018). However, this concept is not yet applied on RHABC 

and builds the scope of this study. 

Thus, the primary contribution of this study is to 

propose a new RCO approach of RHABC in the framework 

of the MLSM based RSM. The RHA related properties are 

considered as UBB type. These considerations have not 

been yet observed in the existing literature and constitutes 

the uniqueness of the present study. The MLSM based 

adaptive RSM is explored in RCO in place of conventional 

LSM based RSM to ensure accuracy. A detailed 

experimental program has been also carried out to validate 

the proposed RCO approach. 

 

 

2. Development of the RCO scheme 
 

2.1 The Deterministic Design Optimization (DDO) 
 
The performance of an optimal design depends on 

Design Variables (DVs) and Design Parameter (DPs). The 

DVs are the specific parameters need to optimize to achieve 

the desired performance(s). The DPs are those, which 

cannot be controlled or are difficult and expensive to 

control. In the present problem DVs (x) are c, r, sp, (w/b), fa 

per m
3
 of concrete. The DPs (z) are cost of cement, cost of 

RHA, cost of super plasticizer, cost of water, cost of 

aggregate per m
3
 of concrete, and specific gravities of the 

ingredients. The cost of mixing and placing per m
3
 of 

concrete are also considered as DP. The nominal values of 

DPs are considered as $114.3, $ 14.3, $ 22.5 and $ 12 per 

MT of cement, RHA, coarse aggregates and fine 

aggregates, respectively; $1.07 per kg of super plasticizer, $ 

0.71 per 100 kg of water, and $ 7.14 as mixing and placing 

cost per m
3
 of concrete. Here, manual mixing and placing is 

considered using conventional mixer machine. The 

electricity charge is included. It may be noted here that the 

cost reported in the paper is based on the Public Works 

Department rate schedule (PWD WB, 2017) prevailing in 

Bardhaman District of India. For foreign countries, these 

rates may substantially vary. However, the implementation 

procedure of RCO of RHABC will remain same for other 

countries and other currencies, as well. The DDO problem 

is formulated to find the optimal DVs, which will minimize 

the cost satisfying compressive strength and slump 

requirement (workability) criteria as 

 

 

minimize ( ) : cost

subjected to ( ) :  - 0
1

                                  ( ) :  - 0
2

, 1,2,....., .

f

tg c

tg s sc

L Ux x x i Kii i

  



  

x,z

x,z x,z

x,z x,z

 

(1) 

In the above, xi
L
 and xi

U
 are the lower and the upper 

bounds of the i
th

 DV, respectively. t
c , σ(x,z),  tsc  and s(x,z) 

are the target compressive strength, obtained compressive 

strength, the target slump and obtained slump, respectively. 

In the present study,  tsc  is taken as 25 MPa and 35 MPa in 

two separate cases. It may be noted that σ(x,z) and s(x,z) are 

implicit function of [x z], which will be explicitly 

approximated by the MLSM based RSM in the present 
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paper. 

It can be noted here that the DDO problem as described 

by Eq. (1) does not consider the effect of uncertainty in [x 

z]. But, the performance function and the constraints are the 

function of [x z]. Thus, the uncertainty in [x z] is expected 

to propagate at the system level, influencing the 

performance function and the constraints of the related 

optimization problem. The RCO approach under 

uncertainty is discussed in the next section. 

 

2.2 The Robust Cost Optimization (RCO) 
 
2.2.1 Robustness of the objective function 
The robustness of the objective function is generally 

expressed in terms of the dispersion of the performance 

function from its mean value. The objective of an ideal 

design is to achieve the optimal performance as well as less 

sensitivity of the performance function with respect to the 

variation in the DVs and DPs due to uncertainty. Thus, one 

needs to optimize the objective function as well as its 

dispersion (standard deviation for normal random 

parameters). Hence, the RDO problem is posed as the 

minimization problem of the mean and standard deviation 

of the objective function, leading to a two criteria RDO 

problem which can be expressed as 

Find x, to minimize  [ , ]f f  . (2) 

In the above, μf
 
and σf are the mean and the standard 

deviation of the performance function respectively. 

Normally, minimization of the mean and variance of the 

performance are sought leading to a set of Pareto-optimal 

solution as shown by Deb et al. (2002). The Weighted Sum 

Method (WSM) is an easy, computationally efficient and 

popular way to deal with the trade-offs between conflicting 

objectives (Doltsinis et al. 2005) and is adopted in the 

present study. Applying the WSM the multi objective 

function is converted to an equivalent single objective 

function as 

( ) (1 )           0 1* * ;f f ff
          u

 
(3) 

where, ϕ(u) is a new objective function, called desirability 

function and the parameter   serves as a weighting 

factor; μ
*
f

 
and σ

*
f
 
are the optimal values of the mean and the 

standard deviation obtained for α equals to 0.0 and 1.0, 

respectively. The maximum robustness will be achieved 

when α becomes 1.0. In the present case, two types of 

uncertain variables are involved in the RCO, i.e., normal 

random and UBB. Let us denote u=[x z]. By using first 

order perturbation approach, the mean and standard 

deviation of objective function can be obtained for normal 

random parameters as (Doltsinis et al. 2005) 

 ( ) 11
ff u u , 

2

2 21 
1 1

N f

f uu iii ui

 
  

  
 

   (4) 

Similarly, for UBB uncertainty, using worst case 

propagation concept, the nominal value f  (i.e., mean for 

normal random case) and dispersion Δf (i.e., standard 

deviation for normal random case) can be obtained as (Lee 

and Park 2001) 

  ,      2 2
1

N
f f f f u ui i

i

     


u  (5) 

In the above, u denotes nominal value of u, i.e., u = 

(u
L
+u

U
)/2. Finally, for a mixed system of UBB and random 

parameters, the resulting nominal value and dispersion of 

objective function can be obtained as 

,        2 21 1
f ff f f f        (6) 

The formulation presented above is valid for 

comparatively smaller levels of uncertainty (up to 25% 

level) in the u. However to deal with non-normal variables, 

the Monte Carlo Simulation (MCS) approach may be used 

in estimating mean and standard deviation values. 

 

2.2.2 Robustness of the constraints 
Due to uncertainty in [u], the optimal solution obtained 

by using the deterministic constraint functions, is expected 

to vary. Even, the final desired performance obtained by 

such deterministic constraints may become infeasible in the 

presence of uncertainty in u as shown by Cheng et al. 

(2017). Addressing the feasibility of constraints under 

uncertainty, Venanzi et al. (2015) developed a general 

probabilistic feasibility formulation for the j
th

 constraint gj
 as 

 [ 0] , 1,.........,P g P                 j Jj oj  u
 

(7) 

where, Poj is the desired probability to satisfy the j
th

 

constraint. To reduce the computational involvement of 

probabilistic feasibility evaluation, and assuming gj(u) as 

normally distributed, the probabilistic feasibility of the 

constraint can be approximated as (Lee and Park 2001) 

0.g j gj j
k  

 
(8) 

In the above, μgj
 
and σgj

 
are the mean and the standard 

deviation of gj, respectively and are evaluated by the first 

order perturbation approach (see Eq. (4)). The designer 

specified penalty factor, kj is used to enhance the feasibility 

of the j
th

 constraint and can be obtained from, kj=Ф
-1

(POj), 

where Ф
-1

(.) is the inverse of the cumulative density 

function of standard normal distribution. Thus, in other 

words, kj denotes the target reliability Index. However, for 

UBB parameters the dispersion of constraint should be 

obtained by worst case uncertainty propagation approach 

similar to Eq. (5). Thus, to consider the mixed system of 

random and UBB parameters equivalent mean μgj
 

and 

equivalent standard deviation σgj
 
is obtained as 

  
 , , , ;   gg R Bj R B

 x zx z    (9a) 

2 2

2 2 2=  +   

1 1

               +  +  

1 1

N Ng gj j
g j Ri RiR Ri iu ui i

N Ng gj j
Bi Bi

Bi Bii iu ui i

 
         

           
     

   
   

   
 

x zx z

x z
x z

  
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2 2

2 2 2=  +   

1 1

               +  +  

1 1

N Ng gj j
g j Ri RiR Ri iu ui i

N Ng gj j
Bi Bi

Bi Bii iu ui i

 
         

           
     

   
   

   
 

x zx z

x z
x z

  

 

(9b) 

In Eq. (9), xR, xB, zR and zB represent the random DVs, 

UBB DVs, random DPs and UBB DPs, respectively. A 

close examination of Eq. (9a) will reveal that the equivalent 

mean of constraint function has been evaluated at the mean 

values of probabilistic parameters and nominal values of 

UBB parameters. Similarly, the first part of Eq. (9b) refers 

to treatment to probabilistic parameters and the second part 

of Eq. (9b) depicts the consideration to UBB parameters for 

both the DVs and DPs. In the first part, first order 

perturbation approach for probabilistic parameters (see Eq. 

(4)) has been used and the second part uses worst case 

propagation principle for UBB parameters (see Eq. (5)). 

 

2.2.3 The RCO formulation 
Combining Eqs. (3) and (8) to meet the requirements of 

the performance and the constraints feasibility under 

uncertainty in u, the RCO problem is formulated as 

minimize:    ( ) (1 ) ,         0 1
* *

subjected to: 0                 1, 2,......,

                      ,                          1, 2......, .

f f

f f

k j Jg j gj j

L Ux x x i Kii i

    

  

  

u
 

   
 

   (10) 

It may be noted here that the individual gradient of the 

performance function and the constraints are required to be 

evaluated at each updated design point during the 

optimization process. For simple explicit performance 

function and constraints, one can directly evaluate the 

gradients. In cases of implicit functions involving complex 

response evaluations, the sensitivity gradients can be 

obtained by metamodeling (Bhattacharjya and Chakraborty 

2011). In the present study, an efficient MLSM based 

adaptive RSM of metamodeling approach has been adopted 

which is detailed in the next section. 

 

2.3 Efficient RSM in RCO 
 

Conventional RSM is hinged on the concept of the 

LSM. The fundamentals of the LSM based RSM is detailed 

in the subsection 2.3.1 followed by its fundamental 

difference with the MLSM in subsection 2.3.2. 

 

2.3.1 The LSM based RSM 
The object of the RSM is to obtain an explicit 

mathematical function ŷ=Φ(u) which best fits to a given set 

of experimental data (u) and associated output (Y), i.e. 

 = + + =0
1 1 1

K K K
ŷ u u ui i ij i j

i i j

   
  

u Qβ     (11) 

where, Q is known as the design matrix and β is the 

unknown coefficient vector to be evaluated by the LSM. It 

may be noted that actual response vector is Y and predicted 

response is ŷ. The input experimental data are chosen 

following well established judicious methods, referred as 

Design of Experiment (DOE). Thus, at first, based on the 

selected DOE scheme, the input constituents for experiment 

are decided. Then, the experiments are physically 

conducted to obtain actual response vector, Y required for 

the RSM. Let us denote an error residual ε=Y−ŷ=Y−Qβ. 

The sum of the squares of error residual (ε
T
ε) is minimized 

in the conventional LSM as below 

     Minimize   
TTL x = ε ε =  Y -Qβ   Y -Qβy  

(12) 

Then, the following matrix operations yields (Myers and 

Montgomery 1995) 

T
=  

-1
*T * *β Q Q YQ  

(13) 

In the above, Q
*

 is the design matrix evaluated at the 

DOE points. Once, the unknown coefficients are evaluated, 

the response surface is explicitly determined in polynomial 

functional form as ŷ=Φ(u) (Eq. (11)). 

Though, the LSM based RSM is a widely used 

conventional method, possibility of inclusion of error by the 

LSM has been reported by various researchers (Datta et al. 

2017, Li et al. 2018, Bhattacharjya et al. 2018). This may 

be due to characteristics of global approximation by the 

LSM. In this regard, a comparatively new MLSM, which is 

based on moving and local approximations, seems to be 

more elegant and explored in the present study. The concept 

of the MLSM based RSM is presented in the next section. 

 

2.3.2 The MLSM based RSM 
The MLSM based RSM is a weighted LSM which has 

varying weight functions based on the position of 

approximation (Taflanidis 2012). The weight corresponding 

to a particular sampling point ui decays as the prediction 

point u moves away from ui. The weight function is defined 

around the prediction point u and its magnitude changes 

with u. The modified error norm  Ly u
 
is defined as the 

sum of the weighted errors (Taflanidis 2012) 

           TT
L = ε W ε =  Y -Qβ  Wu u u Y - Qβy  (14) 

In the above equation, W(u) is a diagonal matrix of the 

weight function and it depends on the location of the 

associated approximation point of interest (u). W(u) is 

obtained as, 

 
 
 
 
 
  

1

2

n

w(u - u ) 0 ... 0

0 w(u - u ) ... 0
W(u) =

... ... ... ...

0 0 ... w(u - u )

 

where, expw(u -u ) = w(d) = (-d/ ) i IR  

(15) 

In the above, RI denotes a hyper ellipsoidal space with 

prediction point (u) as centre. If a DOE point is located 

inside the space, the weight defined in Eq. (15) is assigned 

for the DOE point. Otherwise, for the DOE points located 

beyond this hyper ellipsoidal space, the weight is assigned 

as zero. Also, more weight is assigned to those DOE points 

which are more close to the prediction point. d is the Euclid 

distance between sampling point and the prediction point. 

RI is calculated as the Euclid distance between the  
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Fig. 3 Implementation of the proposed RCO in the MLSM 

based RSM framework 

 

 

prediction point and a point located at twice the standard 

deviation distance of individual variable (Bhattacharjya and 

Chakraborty 2011). Now, the coefficient vector, β(u) which 

is also a function of u, can be obtained by the matrix 

operation analogous to Eq. (13) as (Kim et al. 2005) 

 
-1

*T * *T
β(u) = Q W(u)Q Q W u Y    

(16) 

Thus, unlike the LSM, the response surface 

approximation by the MLSM changes for every realization 

of u to capture minute localized variations of constraint 

function. The implementation procedure of the RCO in the 

MLSM based RSM framework is presented by a flowchart 

in Fig. 3. 

Three experimental programs (EPs) are required to 

complete the RCO procedure. EP I is executed to construct 

the DOE for the RSM (i.e., for training of metamodel). 

Once, the metamodel is developed, it is validated with a 

second round of experiment (EP II). This validation is done 

by comparing experimental results with the RSM predicted 

values. If the accuracy by the RSM is not up to the mark, a 

second training is performed by repeating EP I in order to 

gather some more data for increasing DOE sample size. In 

this way, these steps are repeated till the validation of the 

metamodel is satisfactory. Thereafter, the RCO is executed 

in the MLSM based RSM framework and a RHABC mix is 

recommended. The optimization is accomplished in 

Table 1 Details of the materials used in the experimental 

investigation 

Cement 

Ordinary Portland Cement (OPC) 43 grade 

conforming to IS: 8112 (2013), Specific gravity 

3.15. 

RHA 

Procured from Bardhaman District of India, 

Silica (SiO2) content is around 90% by weight. 

Specific gravity 2.1. 

Coarse 

Aggregate 

Pakur variety of 20 mm graded down as per (IS) 

383 (1970). Bulk density: 1454 kg/m3. 

Fine 

Aggregate 

Air-dried River sand obtained from Bardhaman 

District of India conforming to grading zone II 

as per (IS) 383 (1970); Bulk density:  1466 

kg/m3; Fineness modulus: 3.02. 

Superplasticizer 

High Range Water Reducer BASF MasterPel 

777, having polymer base complying with (IS) 

9103-99 (2007), ASTM C 494 Types A and D. 

Specific gravity:1.05; Color : dark brown. 

Water 
Normal tap water available from the Institute 

water supply system 

 

 

MATLAB using available subroutine fmincon for the 

Sequential Quadratic Programming (SQP). Then, the third 

round of experiment program (i.e., EP III) is conducted to 

ascertain whether the proposed RCO yields the target 

performance (slump and strength) of RHABC. If not, 

training of metamodel is to be processed with those failed 

experimental points again. In the subsequent sections, 

details of EP I, validation of metamodel by EP II, The RCO 

results and validation of the proposed RCO by EP III are 

explained. 

 

 
3. Experimental programme I 
 

Before starting EP I, 300 random mix compositions are 

theoretically generated using Latin Hypercube Sampling 

assuming r and (w/b) as UBB type and other parameters as 

normal random. Then, 24 best candidate mixes out of these 

are selected which are promising. Here „promising mix‟ 

indicates the mixes which are practicable and supposed to 

(based on user‟s experience) yield target slump and 

strength. These 24 points constitute the DOE. Six cubes are 

casted for each of these 24 mixes. Cubes were of 150 mm 

size. The details of various materials used in this 

experimental investigation are mentioned in Table 1. 

Necessary physical tests for cement, RHA, superplasticizer 

and aggregates were conducted in the Institute laboratory to 

obtain free moisture, water absorption, specific gravity and 

grading of the ingredients. To determine the workability of 

concrete, slump test was conducted using standard slump 

cone following the procedure as per (IS) 1199 (1959). The 

24 DOE points considered during EP I are shown in Table 2 

along with the obtained average slump values. In this table 

„C80%, R20%‟ implies c:r=0.8:0.2 by weight. It can be 

observed from Table 2 that the weight of concrete cubes 

decreases as the RHA content increases. The decrease of 

weight and workability of concrete with increase in RHA 

content is due to the low specific gravity of RHA compared 

to cement. 

All specimens were water cured until the age of testing  
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(a) Mixing of ingredients 

 
(b) Compressive strength test set up 

 
(c) Failure of concrete cube 

Fig. 4 Experimental works at Civil Engineering Laboratory 

 

 

at 28 days. The cubes were tested for compressive strength 

using 200 t capacity electrical compression testing machine 

following the procedure of IS: 516 (1959). The load is 

applied without shock and increased continuously at a rate 

of approximately 140 kg/cm
2
/min. Mixing of ingredients, 

compression test set up and a sample failure pattern of cube 

are shown in Fig. 4(a), Fig. 4(b) and Fig. 4(c), respectively.  

The variation of compressive strength as obtained 

during EP I for different RHA replacement levels and total 

binder contents (c+r) are presented in Fig. 5. It can be 

observed from this figure that in all the considered cases 

compressive strength increases with increasing RHA 

replacement levels up to an optimum dose. Thereafter, there 

is a drop in compressive strength. The maximum 

compressive strength is attained at an optimum RHA 

replacement levels of 20%, 20% and 10% for total binder 

content of 350 kg/m
3
 and 380 kg/m

3
 and 450 kg/m

3
, 

respectively. For total binder content of 410 kg/m
3
 the 

maximum compressive strength is obtained in three 

optimum RHA replacement levels (i.e., 10%, 15% and 

20%). However, beyond 20% RHA replacement level, a 

drop in the compressive strength is noted for all the 

considered cases and the reduced compressive strength 

becomes even less than that of 0% RHA replacement case. 
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Fig. 5 Compressive strength of RHABC at different RHA 

replacement levels 

 

 

It can be further noted from Fig. 5 that the variation of 

compressive strength is not a smooth and monotonous 

function in terms of variables of optimization problem.  

Thus, in place of conventional LSM, the MLSM based 

RSM is adopted in the present paper to accurately capture 

the trends of compressive strength and slump as functions 

of the DVs. Based on the test results of EP I, response 

surfaces for compressive strength and slump have been 

developed by both the LSM based RSM and the MLSM 

based RSM in separate modules. Type III RSM polynomial 

is adopted in the present study for developing the 

metamodels. These metamodels are now validated with 

actual test results before using these in RCO, which is 

described in the next section. 

 

 
4. Validation of the metamodel 

 

Once the metamodels for slump and compressive 

strength are developed, the accuracy of these metamodels 

are checked by another round of experiments (EP II). These 

checking experimental points are distinctly different than 

the test points of EP I used for training the metamodels. The 

new 24 checking points are shown in Table 3. 

The predictions by the conventional LSM based RSM 

and the present MLSM based RSM are compared with the 

experimental results of round EP II in Table 4. It may be 

clearly observed that the conventional LSM based RSM 

fails to predict the experimental trends in most of the cases; 

whereas, the proposed MLSM based RSM consistently 

captures the experimental results of EP II. The coefficient of 

determination (R
2
) values for the metamodel of slump are 

0.79 and 0.967 by the LSM and the MLSM, respectively. 

The R
2
 values for compressive strength are 0.83 and 0.971 

by the LSM and the MLSM, respectively. Thus, the R
2
 

values by the MLSM are more than 0.95 in both the cases, 

which further attests the accuracy and acceptability of the 

MLSM based RSM predictions. On the other hand, the  
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LSM predictions have significantly lesser R
2
 values which 

denotes application of LSM in RCO may result in erroneous 

and unsafe results. 

 

 
 
5. RCO results and discussion 

 

After validation of metamodels, the response surface  

Table 2 Composition of concrete mixes for the 24 DOE points in the EP I round and Test Results 

Sample 

Number 
Sample Type 

Ingredients (kg/m3) w/b 
Slump 

(mm) 

28 Days Weight 

(kg/m3) 

c r w ca fa sp    

1 C100%, R0% 350 0 122.5 1280 730 2.2 0.35 63 2506 

2 C95%, R5% 332.5 17.5 133 1280 730 2.4 0.38 67 2506 

3 C90%, R10% 315 35 140 1280 730 2.75 0.40 66 2506 

4 C85%, R15% 297.5 52.5 150.5 1280 730 2.75 0.43 60 2480 

5 C80%, R20% 280 70 157.5 1280 730 2.75 0.45 75 2472 

6 C75%, R25% 262.5 87.5 168 1280 730 3.1 0.48 68 2470 

7 C100%, R0% 380 0 133 1270 720 2.4 0.35 65 2518 

8 C95%, R5% 361 19 144.4 1270 720 2.75 0.38 70 2518 

9 C90%, R10% 342 38 152 1270 720 3.1 0.40 62 2510 

10 C85%, R15% 323 57 163.4 1270 720 3.1 0.43 60 2494 

11 C80%, R20% 304 76 171 1270 720 3.1 0.45 64 2482 

12 C75%, R25% 285 95 182.4 1270 720 3.3 0.48 66 2472 

13 C100%, R0% 410 0 143.5 1260 710 2.75 0.35 60 2548 

14 C95%, R5% 389.5 20.5 155.8 1260 710 3.1 0.38 64 2548 

15 C90%, R10% 369 41 164 1260 710 3.3 0.40 60 2520 

16 C85%, R15% 348.5 61.5 176.3 1260 710 3.3 0.43 62 2500 

17 C80%, R20% 328 82 184.5 1260 710 3.3 0.45 62 2504 

18 C75%, R25% 307.5 102.5 196.8 1260 710 3.7 0.48 68 2490 

19 C100%, R0% 450 0 157.5 1250 700 3.1 0.35 62 2556 

20 C95%, R5% 427.5 22.5 171 1250 700 3.3 0.38 60 2548 

21 C90%, R10% 405 45 180 1250 700 3.5 0.40 65 2534 

22 C85%, R15% 382.5 67.5 193.5 1250 700 3.5 0.43 65 2522 

23 C80%, R20% 360 90 202.5 1250 700 3.7 0.45 64 2530 

24 C75%, R25% 337.5 112.5 216 1250 700 3.8 0.48 60 2522 

Table 3 Composition of RHABC mixes used for validation of the metamodels 

Sample 

Number 
Sample Type 

Ingredients (kg/m3) 
w/b 

c r w ca fa sp 

25 C97.5%, R2.5% 341.25 8.75 122.5 1280 730 2.2 0.35 

26 C92.5%, R7.5% 323.75 26.25 133 1280 730 2.4 0.38 

27 C87.5%, R12.5% 306.25 43.75 140 1280 730 2.75 0.40 

28 C82.5%, R17.5% 288.75 61.25 150.5 1280 730 2.75 0.43 

29 C78.5%, R22.5% 271.25 78.75 157.5 1280 730 2.75 0.45 

30 C72.5%, R27.5% 253.75 96.25 168 1280 730 3.1 0.48 

31 C97.5%, R2.5% 370.5 9.5 133 1270 720 2.4 0.35 

32 C92.5%, R7.5% 351.5 28.5 144.4 1270 720 2.75 0.38 

33 C87.5%, R12.5% 332.5 47.5 152 1270 720 3.1 0.40 

34 C82.5%, R17.5% 313.5 66.5 163.4 1270 720 3.1 0.43 

35 C78.5%, R22.5% 294.5 85.5 171 1270 720 3.1 0.45 

36 C72.5%, R27.5% 275.5 104.5 182.4 1270 720 3.3 0.48 

37 C97.5%, R2.5% 399.75 10.25 143.5 1260 710 2.75 0.35 

38 C92.5%, R7.5% 379.25 30.75 155.8 1260 710 3.1 0.38 

39 C87.5%, R12.5% 358.75 51.25 164 1260 710 3.3 0.40 

40 C82.5%, R17.5% 338.25 71.75 176.3 1260 710 3.3 0.43 

41 C78.5%, R22.5% 317.75 92.25 184.5 1260 710 3.3 0.45 

42 C72.5%, R27.5% 297.25 112.75 196.8 1260 710 3.7 0.48 

43 C97.5%, R2.5% 438.75 11.25 157.5 1250 700 3.1 0.35 

44 C92.5%, R7.5% 416.25 33.75 171 1250 700 3.3 0.38 

45 C87.5%, R12.5% 393.75 56.25 180 1250 700 3.5 0.40 

46 C82.5%, R17.5% 371.25 78.75 193.5 1250 700 3.5 0.43 

47 C78.5%, R22.5% 348.75 101.25 202.5 1250 700 3.7 0.45 

48 C72.5%, R27.5% 326.25 123.75 216 1250 700 3.8 0.48 
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Table 4 Validation of metamodels for Slump and 28 days 

Compressive strength 

Sample 

Number 

Slump (mm) Compressive Strength (MPa) 

MLSM 

Based 

RSM 

Experimental 

LSM 

Based 

RSM 

MLSM 

Based 

RSM 

Experimental 

LSM 

Based 

RSM 

25 65 63 69 26.73 27.0 30.47 

26 63 65 70 31.87 33.4 30.69 

27 62 60 65 38.22 37.33 35.17 

28 62 62 66 46.61 44.3 48.59 

29 66 67 63 29.27 28.5 26.60 

30 67 70 62 34.73 35.5 33.59 

31 65 64 61 40.32 39.33 42.85 

32 62 60 66 47.31 45.33 48.64 

33 64 66 62 31.85 31.31 28.49 

34 61 62 58 36.51 36.71 34.05 

35 61 60 56 40.83 40.49 43.32 

36 67 65 60 46.96 47.33 44.77 

37 60 60 65 32.05 31.07 29.38 

38 61 60 64 35.22 34.77 37.90 

39 61 62 65 39.96 40.41 43.09 

40 63 65 60 45.19 42.32 46.39 

41 73 75 68 31.68 31.73 29.65 

42 63 64 60 35.25 36.27 34.91 

43 63 62 63 38.31 40.13 36.80 

44 65 64 60 42.89 42.4 40.13 

45 70 68 62 28.24 26.33 30.84 

46 65 66 63 32.32 29.47 26.49 

47 66 68 59 33.86 31.47 26.85 

48 63 60 55 37.47 34.53 29.41 

 

 

expressions of strength and slump are used to formulate the 

constraint functions of Eq. (1). Subsequently, the gradients 

of the constraint functions are evaluated and the RCO 

problem of Eq. (10) is mathematically casted.  

The RCO is solved by the SQP. The RCO results are 

presented in this section. At first a parametric study has 

been made by varying uncertainty levels in the DVs and 

DPs, kj and α. Then, the efficiency of the proposed RCO 

procedure is validated by a third round of experimental 

programme (EP III).  

The optimal cost (in USD) obtained by the RCO for 

producing 100 m
3
 of RHABC is presented in Figs.6 for 

varying uncertainty levels in the DVs and DPs. Results are 

presented for M25 and M35 grade of concrete with 50 mm 

target slump. α is considered as 0.5 to develop these figures. 

Fig. 6(a) depicts the RCO results for kj=2 and Fig. 6(b) 

presents the robust optimal cost for kj= 3. It may be noted 

here that the assumption of kj=2 is associated with 2.275% 

probability of failure. kj=3 implies 0.135% probability of 

failure. The prevailing code of practice in India (IS: 10262 

2009) considers 5% probability of failure, which 

corresponds to kj=1.65. Thus, the present RCO solutions 

provide sufficient reliability of attaining desired strength 

and slump in presence of uncertainty especially when kj is 

taken as 3.0. The results by the MLSM based RCO and the 

LSM based RCO are shown in the same figures for 

comparison. It may be clearly observed that the MLSM 

based RCO results are distinctly different than the LSM 

based RCO results. The LSM predicts comparatively lesser  
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Fig. 6 The optimal cost by the RCO for varying uncertainty 

levels and concrete grade for (a) kj=2, (b) kj=3 

 

 

cost than the MLSM case. However, the possibility of error 

inclusion by the LSM has been already pointed out in the 

previous section. Hence, it may be inferred that the optimal 

cost predicted by the LSM may not be practically possible 

to attain. It may be further observed from Fig. 6(b) that 

there is a jump in optimal cost over 5% uncertainty level in 

case of M35 grade concrete when kj= 3. This is due to the 

fact that robust constraint conditions become very stringent 

in such cases requiring substantially higher optimal cost. 

The COV of the optimal cost of M25 and M35 grade 

RHABC yielded by both the LSM based RCO and the 

MLSM based RCO for varying uncertainty level of the DVs 

and DPs are presented in Figs. 7(a) and 7(b) for kj=2 and 3, 

respectively. Interestingly, the COV remains almost 

constant at maximum 5.6% level (for the MLSM case), 

even when the uncertainty is varied to higher extent. Thus, 

the RCO yields optimum mixes which are insensitive to the 

variation of input uncertainty (i.e., robust solutions). The 

deviation of conventional LSM based RCO results in 

comparison to that by the proposed MLSM based RCO 

approach can be clearly envisaged from these figures. 

The LSM based RCO yields more COV of optimal cost 

(i.e., this solutions have lesser robustness compare to the 

proposed MLSM based RCO approach), which clearly 

establishes the efficiency of the proposed MLSM based 

RCO approach. It may be also noted that the LSM based  
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Fig. 7 COV of the robust optimal cost by the RCO for (a) 

kj=2 and (b) kj=3 

 

 

predictions are erroneous (Section 4) and hence one should 

not resort on the LSM based RCO results. 

The RCO is a multi-objective optimization problem. 

The two objectives, i.e., the optimal cost and the associated 

dispersion (which is the measure of robustness) are 

conflicting in nature. In order to achieve more robustness in 

the mix one may have to incur more expenditure (i.e., 

optimal cost is more), or vice versa. This situation is 

generally studied in terms of Pareto-front (Deb et al. 2002), 

which is a plot between these two objective functions. The 

Pareto-front is obtained by varying α in Eq. (10). Two 

typical Pareto-fronts are presented in Fig. 8(a) and Fig. 8(b) 

by the MLSM based RCO and the LSM based RCO, 

respectively. These curves have been developed for kj=2.0 

and 20% uncertainty level in the DVs and DPs. The grade 

of concrete is M35. It can be clearly observed that the 

MLSM based RCO approach (Fig. 8(a)) requires more cost, 

but also provides more robustness (i.e., less COV of optimal 

cost) in comparison to the LSM based RCO approach (Fig. 

8(b)). Thus, it can be inferred that the MLSM based RCO 

yields more robust Pareto-front than the LSM based RCO. 

It has been observed that the cost of production of 100 

m
3
 of RHABC in India is approximately $ 8820 for M25 

grade and $ 9475 for M35 grade of concrete. This is the 

average cost obtained based on the first round of 

experiment without using the RCO. After executing the 

proposed RCO, optimal cost of $ 9420 for M25 grade and $ 
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Fig. 8 The Pareto-fronts by (a) the MLSM based RCO and 

(b) the LSM based RCO 

 

 

9855 for M35 grade RHABC have been yielded when kj is 

3.0. Thus, the RCO suggests 6.8% and 4% increment of 

cost for M25 and M35 grade of concrete, respectively.  

However, by sacrificing this marginal cost, the designer can 

have a guarantee of achieving desired slump and strength 

by ensuring low probability of failure (0.135%) and less 

deviation from expected performance criteria. 

To validate the accuracy by the proposed RCO approach 

a third round of experimental programme (EP III) has been 

taken up. This experimentation will ascertain whether the 

desired properties of RHABC are really achieved or not. 

Twelve numbers of cubes were casted and tested for each 

MLSM based RCO predicted mix in this round to arrive at 

the mean, standard deviation and COV values of 

compressive strength and slump. The RHABC mix 

properties (slump and compressive strength) predicted by 

the RCO are compared with the experimental results 

obtained during EP III in Table 5 for different set up of kj 

and uncertainty levels. It may be observed from this table 

that both the experimental compressive strength and slump 

values are in close conformity with the RCO predictions in 

all the cases. The errors by the RCO predictions with 

respect to the experimental results are also shown in Table 

5. It can be observed that the error with the compressive 

strength is marginal. Though, error with slump values are 

little bit higher but acceptable since the target slump is 

achieved.  
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To validate the actual robustness achieved by the RCO, 

the calculated COV values of slump and compressive 

strength associated with test results of EP III are compared 

with RCO predictions in Table 5. The RCO predicted COV 

values are mentioned in the footnote of Table 5. It can be 

observed that the experimental COV values are in well 

conformity with that predicted by the proposed RCO. The 

maximum COV of slump is only 4.25% based on 

experimental result, and is 6.1% by the proposed RCO. 

Similarly, the maximum COV of compressive strength is as 

small as 4.8%; whereas the proposed RCO predicts 5%. 

Lesser the COV of slump and compressive strength, more 

will be the robustness, because deviation from the expected 

value is lesser. Hence, it can be inferred that the proposed 

MLSM based RCO approach yields mix proportions which 

are optimum and robust as is clear from the experimental 

investigations.  

 

 

6. Conclusions 
 

An RCO of RHABC is presented considering 

uncertainty in mix constituents and cost related parameters. 

The RHA related uncertain parameters have been assumed 

as UBB type. To formulate the constraint function of RCO, 

metamodeling technique is adopted in the present study. In 

doing so, the MLSM based RSM is explored in RCO in 

place of conventional LSM approach to ensure accuracy by 

the metamodeling. The experimental results reveal that the 

MLSM has captured the trend of the experimental results 

even for the test points located outside the DOE, whereas, 

the error by the LSM is substantially high at those points. It 

has been observed that there is a nominal increment in the 

optimal cost by the RCO in comparison to the conventional 

deterministic optimization technique. However, by 

sacrificing this marginal cost increment, the present RCO 

ensures guarantee of achieving desired workability and 

strength of RHABC by limiting probability of failure to 

sufficiently low values. The COV of optimal cost remains 

almost constant over the varying uncertainty levels by the 

proposed RCO approach even for higher uncertainty levels. 

This indicates that the RCO yields solutions which are 

insensitive to the variation (or robust) in presence of 

uncertainty. The efficiency of the RCO approach is  

 

 

validated by an experimental study. The experimental 

results in terms of compressive strength, slump and the 

associated COV values are in good agreement with the 

proposed RCO prediction. The test results depict that the 

COV of both the slump and compressive strength are 

sufficiently low as has been predicted by the proposed 

RCO. This indicates lesser deviation of the mix properties 

from their desired values. Thus, it can be concluded that the 

proposed MLSM based RCO approach yields mix 

proportions which are optimum and robust for the present 

case.  
It may be noted that the RCO presented in this study has 

been validated for M25 and M35 grades of concrete, with 
slump ranging between 50 to 75 mm. However, the 
proposed metamodeling based RCO procedure will be 
similar for other grades of concrete and other target slump 
of concrete, as well. Only, for other grades and slump 
requirement, a fresh metamodel has to be constructed by 
experimentation based on the influence of different 
ingredients. 

It may be further noted that cost reported in the paper is 
based on the prevailing rates at Bardhaman District of India. 
For foreign countries, these rates may substantially vary. 
However, the implementation procedure of RCO of 
RHABC will remain same for other countries and other 
currencies, as well.  
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