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1. Introduction 
 

Due to the rapid increase in infrastructure development, 

depletion of natural resources in the construction industries 

has posed a serious challenge to researchers (Katpady et al. 

2015, Karanth et al. 2017). To address this issue, one is now 

forced to look for alternatives as replacement to natural 

stone aggregates (Prusty et al. 2015, Sunil et al. 2015, 

Mukharjee and Barai 2015, Yaragal et al. 2016, Yaragal and 

Roshan 2017, Dan et al. 2018). Keeping this motto in mind, 

several researchers are working in the area of sustainable 

concrete production. Production of concrete requires large 

volume of natural coarse aggregate (NCA). Over 

exploitation of NCA is a serious threat for future generation 

in the concrete production too. One remedial measure to 

reduce the use of NCA is by use of industrial byproducts 

optimally. Further, utilization of industrial byproducts in the 

concrete production will also reduce the associated landfill 

problems. 

Ferrochrome slag (FCS) is an industrial byproduct of 

Ferro-alloy industries. Stainless steel industry requires 

ferrochrome alloy for production of stainless steel. Lind et 

al. (2001) have carried out experiments on the utilization of 
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FCS in road construction. Nath (2018) used FCS as binder 

to study the geopolymerization behaviour of FCS and FA 

blends. Dash and Patro (2018a, b) studied the effect of FCS 

as fine aggregate in concrete. Acharya and Patro (2016) 

reported the use of FCS in lieu with NCA. Zelic (2005) and 

Gencel et al. (2012) used FCS as NCA and identified that 

FCS replacement has a significant influence on compressive 

strength. Gencel et al. (2012) utilized FCS as coarse 

aggregate instead of limestone aggregate with three 

replacement levels of 25, 50, and 75%. FCS as coarse 

aggregate influences the hardened properties of concrete 

such as strength, and wear resistance. Al-jabri et al. (2018) 

have used image analysis to find roughness index of FCS 

and natural fine aggregate. Roughness index was found to 

be around 142.48 and 36 microns for FCS and natural fine 

aggregate respectively. To get required workability, 

additional water was essential for the use of FCS as 

replacement to natural fine aggregate. Requirement of 

additional water was due to higher surface area and rough 

surface texture of FCS. Mechanical properties of FCS 

replaced mixes were also improved due to the phenomena 

of “Mechanical Interlacing” of aggregate and paste system 

in the interfacial transition zone (ITZ) region. 

 

1.1 Design of experiments and multi objective 
optimization  
 

Acharya and Patro (2016) carried out full factorial 

analysis by considering single factor and single response at 

a time. Singh et al. (2016) involved design of experiments 

to reduce the number of experiments since full factorial  
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Table 1 Physical properties of OPC, GGBS, and FA 

Constituents Specific gravity Fineness Color LOI (%wt) 

OPC 3.14 340 Grey 1.4 

GGBS 2.9 370 White 1.2 

FA 2.22 205 Light Grey 0.4 

Note: LOI = Loss of ignition 

 

Table 2 Chemical composition of OPC, GGBS, FA, and 

FCS (% weight) 

Constituents CaO Al2O3 Fe2O3 SiO2 MgO Na2O K2O SO3 Cr2O3 MnO 

OPC 59.53 9.12 3.52 20.34 2.02 0.19 0.42 2.39 - - 

GGBS 36.72 17.14 1.30 34.45 4.50 0.14 0.06 0.88 - - 

FA 0.80 32.08 2.93 58.91 0.94 0.36 1.12 0.49 - - 

FCS (Present 

study) 
8.99 18.15 - 28.08 23.19 - - - 19.88 1.70 

FCS 

(Acharya and 

Patro 2016) 

9.06 24.70 3.81 27.50 22.50 0.40 - 9.34 - 

FCS (Nath 

2018) 
12.55 26.05 2.20 22.70 25.30 - - - 4.15 - 

 

 

analysis is time consuming and uneconomical, and also 

grey relational analysis (GRA) were adopted as multi 

objective optimization method to obtain optimal mixture. 

Simsek et al. (2013) proposed a technique for order of 

preference by similarity (TOPSIS) as multi objective 

optimization method to obtain optimal mixture. Sengul and 

Tasdemir (2009) adopted desirability function approach 

(DFA) to find optimal mixture. All the three methods were 

carried out for equal weightage of responses. Majumder et 

al. (2017) showed the importance of principal component 

analysis (PCA) in weightage calculation of each multi 

objective optimization methods stated above. Further, 

Sadhukhan et al. (2014) showed that different multi 

objective optimization methods yields different optimal 

values and suggested spearmen’s correlational coefficient 

method.  

 

1.2 Objective and research significance 
 

Although several studies are available, there is still 

scope for optimization of FCS utilization under multi 

objective condition with industrial byproducts as binder in 

concrete. Optimization of concrete mixtures usually 

involves several responses simultaneously, such as high 

workability, low density, and high compressive strength 

under fresh and hardened states. High workability is good 

for placement of concrete in the fresh state. Low density of 

concrete reduces the dead weight of concrete. Reduced dead 

weight can reduce the stresses, total quantity of steel 

required, and cost of reinforced concrete structure (RCC). 

Also, high compressive strength of concrete is important 

from the structural safety point of view. In order to obtain 

high workability, low density, and high compressive 

strength concrete mixtures, multi objective optimization 

methods (GRA, TOPSIS, and DFA) are preferred, in which 

the slump and compressive strength is to be maximized but 

the density of concrete is to be minimized. Weightage for 

each responses in multi objective optimization method were 

calculated based on the PCA. In the present study, multi 

objective optimization methods were coupled with 

Spearman’s correlation coefficients calculation. Spearman’s 

correlation coefficients are invoked in between different 

multi objective optimization methods, since different multi 

objective optimization methods are likely to yield different 

optimal results.  

This paper is an effort towards sustainable construction 

by way of reducing the amount of conventional binder and 

NCA in concretes. Industrial byproducts such as GGBS, 

FA, and FCS were utilized as binder and aggregate, instead 

of discarding them into landfills. Also, multi objective 

optimization method provides suitable optimal mixtures for 

the decision maker under different set of responses.  

 

 

2. Materials and methodology 
 

2.1 Materials 
 

2.1.1 Binder  
Ordinary Portland cement (OPC) of 53 grade (IS-

12269:2013) is used as primary binder in the preparation of 

concrete. Physical and chemical properties of OPC are 

presented in Tables 1-2 respectively. The compressive 

strength of cement using standard Ennore sand were 

measured to be around 46.4 MPa, and 57.5 MPa for 7, and 

28 days respectively. GGBS and FA are used as 

supplementary cementitious materials (binder) in the 

preparation of FCS based concretes. Physical and chemical 

properties of GGBS (IS-12089:1987) and FA (IS-

3812(P1):2013) are also presented in Tables 1-2 

respectively. GGBS is procured from M/s JSW, Iron and 

steels limited, Bellary, India. FA is procured from M/s 

Adani Power Ltd. (Udupi thermal power plant, Ltd.,) 

Udupi, India. FA used belongs to class F grade.  

 

2.1.2 Fine aggregate  
Natural river sand is used as fine aggregate. Fine 

aggregate was sourced from Gurupura River, Dakshina 

Kannada, India. Fine aggregate confirms to zone II 

requirement of IS-383:2016. Specific gravity, water 

absorption, compacted dry bulk density, and fineness 

modulus of fine aggregate were 2.54, 0.9%, 1681 kg/m3 and 

2.59 respectively. Fine aggregate used was free from 

deleterious materials and in surface saturated dry condition 

for producing concrete. Table 3 presents the results of sieve 

analysis. 

 
2.1.3 Coarse aggregate  
NCA was procured from local market and FCS was 

supplied by M/s Balasore alloys limited, Balasore, Odissa, 

India. NCA and FCS were used as coarse aggregate in the 

 

 

Table 3 Sieve analysis results of fine aggregate 

Sieve size 
10 

mm 

4.75 

mm 

2.36 

mm 

1.18 

mm 
600µ 300µ 150µ 

Cumulative 

percentage passing 
100 98 96.2 75.3 53.6 14.8 2.9 

Remarks Zone II (As per IS-383:2016) 
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Table 4 Sieve analysis results of NCA and FCS 

 

 

preparation of concretes. NCA and FCS both confirm to the 

requirement of IS-383:2016. Sieve analysis results for both 

NCA and FCS are given in Table 4. Specific gravity, water 

absorption, and compacted dry bulk density of NCA were 

2.62, 0.4%, and 1723 kg/m3 respectively. Similarly, specific 

gravity, water absorption, and compacted dry bulk density 

of FCS were 3.14, 0.8%, and 2182 kg/m3 respectively. 

Further, various test results of NCA like aggregate crushing 

value, Los Angeles abrasion value, aggregate impact value, 

flakiness index, and elongation index (IS-2386:1963 

reaffirmed in 2002) were conducted with experimental 

results of 30.4, 30.6, 20.6, 12, and 24% respectively. 

Similarly, for FCS these results were 20, 25, 16, 13, and 

25% respectively. Both NCA and FCS satisfies the codal 

requirement to be used as coarse aggregate.  

 

2.1.4 Water  
Potable tap water that confirming to IS-456:2000 is used 

for mixing and curing of the concrete mixes.  

 

2.1.5 Super-plasticizer 
A commercially available CONPLAST SP 430 

(FOSROC make), Sulfonated Naphthalene Formaldehyde 

(SNF)-polymer based high-range water-reducing admixture 

is used as a super plasticizer (SP) in the present 

investigation. Specific gravity being around 1.18 at 250C. 

SP used confirms to IS-9103:1999. 

 

2.2 Testing of concrete  
 

In order to obtain required workability of concrete, with 

different industrial byproduct replacement slump tests were 

performed on fresh concrete. Density of concrete mixtures 

were calculated using the sum of all the ingredients used in 

the concrete mixture preparation. Compressive strengths of 

concretes were determined as per IS-516:1959. 

Compressive strength test on cast specimen were conducted 

at 28 and 90 days interval, to optimize GGBS, FA, and FCS 

replacement levels in OPC based concretes.  

 

2.3 Design of experiments  
 

Replacement of industrial byproducts in concrete is a 

multi-variable process, in which different factors (like 

industrial byproducts as binder and coarse aggregate) can 

affect the process of workability, density and mechanical 

strength of concrete. Design of experiments was employed 

using response surface methodology (RSM). RSM through 

Box-Behnkan design (BBD) was adopted to study the effect 

of GGBS, FA, and FCS replacement in concretes. Three 

factors with three levels were identified and considered to 

Table 5 Different factors and levels (Coded and Un-coded) 

used in Box-Behnkan design 

Factor 
Levels 

1 2 3 

GGBS (% wt) 0 15 30 

FA (% wt) 0 15 30 

FCS (% vol) 0 50 100 

 

Table 6 Experimental design for optimization of various 

influencing variables on concrete 

Run No GGBS (% wt) FA (% wt) FCS (% vol) 

1 0 0 50 

2 30 0 50 

3 0 30 50 

4 30 30 50 

5 0 15 0 

6 30 15 0 

7 0 15 100 

8 30 15 100 

9 15 0 0 

10 15 30 0 

11 15 0 100 

12 15 30 100 

13 15 15 50 

14 15 15 50 

15 15 15 50 

 

 

optimize the industrial byproducts replacement level in 

concrete. Table 5 shows different factors and different 

levels used in the present study. Table 6 gives component 

variables of different factors and their levels based on 

RSM-BBD for different concrete mixtures. Total fifteen 

concrete mixtures were prepared with 3 center points to 

represent full factorial experiments. Concrete mixtures were 

prepared according to IS-10262:2009 bureau of Indian 

standard for “Concrete mix proportioning – guidelines”. 

Medium degree of workability i.e., slump range of 50-

100mm was targeted in the present study, which can be used 

for RCC sections like slabs, beams, columns etc. Table 7 

gives mixture proportion of fifteen experimental runs (three 

central points) with different materials used in the present 

study. Effect of GGBS, FA, and FCS in concretes were 

measured using responses like workability, density, and 

compressive strength.  

 

2.4 Optimization techniques 
 

In the present study, different multi objective 

optimization techniques like GRA, TOPSIS, and DFA were 

employed. Different optimization techniques were used to 

check the effectiveness of different factors like GGBS, FA, 

and FCS content that have influence on the responses of 

concrete and also to convert multi response optimization 

problem (Slump, density, 28 days, and 90 days compressive 

strength) into single response optimization problem.  

 

2.4.1 Grey relational analysis (GRA)  
GRA is firstly introduced and formulated by Dang  

Sieve size 25 mm 20 mm 10 mm 4.75 mm 

Cumulative percentage 

passing NCA  
100 100 44 2 

Cumulative percentage 

passing FCS  
100 100 47 3 

Remarks 
NCA and FCS used satisfies the 

requirements of IS-383:2016 
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Julong. GRA is suitable for solving complicated 

interrelationships between multi factors and variables. GRA 

involves the following steps (Gopal and Prakash 2018, 

Singh et al. 2016). 

 

Step 1: Normalization of responses 

Normalization of responses usually involves whether the 

response to be maximized or minimized. In the present 

study, maximization and minimization of responses can be 

done using the Eqs. (1)-(2) respectively. 

0 0
* i i
i (k) 0 0

i i

(x min x )
y

(max x min x )





 (1) 

0 0
* i i
i (k) 0 0

i i

(max x x )
y

(max x min x )





 (2) 

Where, 0
ix = Responses value 0

imax x and 0
imin x = 

Maximum and minimum values of responses respectively 

Step 2: Calculation of grey relational coefficient (GRC) 

Eq. (3) is employed to calculate the GRC of normalized 

values from step 1. 

min max
i(k)

oi(k) max

  
 

  
 (3) 

Where, oi(k) = Offset in the absolute values 

max and min =Maximum and minimum values of 

oi(k)  

 =Characteristic coefficient  

 

Step 3: Calculation of grey relational grade (GRG) 

GRG can be computed using the Eq. (4)  

n

i i(k)
k 1

1

n 

     (4) 

Where, n = Number of experimental runs 

 

 

ω= Weightage of each response 

γi= Grey relational grade  

 

2.4.2 Technique for order of preference by similarity 
to ideal solution (TOPSIS) 

TOPSIS is one of the multi-objective based optimization 

technique. TOPSIS was mainly based on the closeness 

coefficient values. Closeness coefficient values involve the 

conversion of multi-objective responses into single 

dimensionless quantity. Following steps are involved in the 

calculation of closeness coefficient value (Vijayaraghavan 

et al. 2017, Mousavi-Nasab and Sotoudeh-Anvari 2017, 

Simsek et al. 2013). 

 

Step 1: Preliminary step is to arrange the responses into 

matrix form  

11 1n

m

m1 mn

x ... x

D ... ... ...

x ... x

 
 

  
 
 

 

Where, xmn=Response of ith alternative about the jth 

attribute. 

 

Step 2: Normalization of responses  

Normalization of responses were done using the Eq. (5). 

ij

ij
n

2
ij

i 1

x

x


 



 
(5) 

Where, xij= Actual values of responses  

γij= Normalized values of responses  

 

Step 3: Calculation of weighted normalized responses  

Weighted normalized responses were calculated using 

Eq. (6). 

ij ij ijV w    (6) 

Where, wij= Weight of response  

Table 7 Concrete mixture proportion with different ingredients. 

Run No OPC (kg/m3) 
GGBS 

(kg/m3) 

FA 

(kg/m3) 

Water 

(kg/m3) 

SP 

(kg/m3) 

NCA 

(kg/m3) 

FCS 

(kg/m3) 

Fine aggregate 

(kg/m3) 

1 440 0 0 176 3 536 642 693 

2 308 132 0 176 3 533 639 689 

3 308 0 132 176 3 522 626 675 

4 176 132 132 176 3 519 622 671 

5 374 0 66 176 3 1058 0 684 

6 242 132 66 176 3 1052 0 680 

7 374 0 66 176 3 0 1268 684 

8 242 132 66 176 3 0 1261 680 

9 374 66 0 176 3 1069 0 691 

10 242 66 132 176 3 1041 0 673 

11 374 66 0 176 3 0 1281 691 

12 242 66 132 176 3 0 1248 673 

13 308 66 66 176 3 527 632 682 

14 308 66 66 176 3 527 632 682 

15 308 66 66 176 3 527 632 682 
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Vij = Weighted normalized response  

 

Step 4: Calculation of positive and negative ideal solution  

Positive and negative ideal solution were calculated 

based on Eqs. (7a)-(7b). 

 

max min

ij
i i

1 2 3 n

V ( U j J) , ( j J i 1,2,3..m)

     V ,V ,V ,.....V



   


      
 



 (7a) 

 

min max

ij
i i

1 2 3 n

V ( U j J) , ( j J i 1,2,3..m)

     V ,V ,V ,.....V



   


      
 



 (7b) 

Step 5: Calculation of Euclidean distance and closeness 

coefficient  

Euclidean distance or separation were calculated using 

the positive and negative ideal solution using Eqs. (8a)-(8b). 

Closeness coefficient is evaluated based on Eq. (9).  

n
2

i ij j
j 1

D (V V ) ,i 1, 2,....i 


     (8a) 

n
2

i ij j
j 1

D (V V ) ,i 1, 2,....i 


     (8b) 

D
CC

D D



 



 (9) 

 

2.4.3 Desirability function approach (DFA) 
To maximize (workability, and compressive strength) 

and minimize (density) the responses from DFA are used. 

DFA involves the following steps (Sengul and Tasdemir 

2009). 

 

Step 1: Conversion of responses into individual desirability 

(di)  

Individual desirability is computed based on whether the 

responses are to be maximized or minimized. In the present 

case, slump value and compressive strengths at 28 and 90 

days are to be maximized and density to be minimized. To 

maximize or minimize responses, each response is to be 

translated into individual desirability. Eqs. (10)-(11) are 

used to maximize and minimize the responses into 

individual desirability respectively. Individual desirability 

will vary between 0-1.  

i imin

i imin
i imin i imax

imax imin

i imax

r

  0                        y y

y y
d    y y y

y y

  1                        y y




  
    

 
 


 (10) 

i imin

imax i
i imin i imax

imax imin

i imax

r

  0                        y y

y y
d    y y y

y y

  1                        y y



  

    
 

 


 (11) 

Where, yi = Individual responses value  

yimax and yimin = Maximum and minimum values of 

responses  

di = Individual desirability value 

r= Weight to determine the scale of individual desirability  

  

Step 2: Calculation of overall desirability (D) 

Each individual desirability values were converted to 

overall desirability. Overall desirability can be computed 

using the Eq. (12). Higher value of overall desirability, 

indicates that it is preferable mixture. The lower value of 

overall desirability indicates the worst case, and the higher 

value of overall desirability was considered as optimum.  

1

n
1 2 nD (d d ....d )    (12) 

Where, D = Overall desirability of responses value  

d1, d2, d3…. dn = Individual desirability (di) and n represents 

a number of experimental runs. 

 

2.5 Principal component analysis (PCA) for weights 
calculation for responses  

 

PCA or dimensionality reduction technique, is first 

introduced by Pearson in 1901, further developed by 

Hotelling in 1933. PCA is a multivariate statistical analysis 

technique which explains the construction of variance and 

co-variance of all the performance characteristics by 

linearly integrating them. The different steps involved in 

PCA are detailed as follows (Kaushik and Singhal 2018, 

Majumder et al. 2017). 

 

Step 1: It starts with developing original multiple quality 

characteristic array.  

1 1 1

2 2 2

m m m

x (1) x (2) ... x (n)

x (1) x (2) ... x (n)
X

... ... ... ...

x (1) x (2) ... x (n)

 
 
 
 
  
 

 

Where, m is the number of experiments, n is the number of 

responses and x is the normalized values of responses. In 

the present paper m= 15, n= 4. 

  

Step 2: Computation of correlation coefficient  

Correlational coefficient array is developed using Eq. 

(13). 

i i
jl

i i

Cov(x ( j), x (l))
R  

x ( j) x (l)

 
  

  
 (13) 

Where, i iCov(x ( j), x (l)) is the covariance of sequences 

ix ( j)  and ix (l) , ix ( j) is the standard deviation of 

sequence ix ( j) , and ix (l)  is the standard deviation of 

sequence ix (l) .  

 

Step 3: Computation of Eigen values and Eigen vectors.  

The Eigen vectors and Eigen values are computed from 

the correlation coefficient array using Eq. (14). 

k m ik(R I )V 0   (14) 
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Where, k is the Eigen values and 

 
n

T

k ik k1 k2 km

k 1

n,  k = 1,2,......,n, V  = a a ......a



   is the 

Eigen vectors corresponding to the Eigen value λk. 

 

Step 4: Finding principle components. 

The uncorrelated principal component is formulated 

using Eq. (15). 

n

mk m ik

i 1

Y x (i).V



  (15) 

Where, Ym1 is the first principal component, Ym2 is the 

second principal component and so on. The principal 

components are aligned in the descending order with 

respect to variance. The components with an Eigen value 

greater than one are chosen to replace the original responses 

for further analysis. 

 

2.6 Hybrid optimization technique  
 

Current study involves integrated approach of coupling 

the PCA and three traditional optimization technique. PCA 

is used to get the weightage of each response measured 

from the experiments. Optimization technique like GRA, 

TOPSIS, and DFA were used to convert multi- responses 

measured during the production of industrial byproducts 

based concrete into single response. Current study involves 

weightage calculated from PCA method will be 

accompanied with converting multi response problem into 

single response problem in the GRA, TOPSIS, and DFA 

approach. Normalized values were used in the calculation 

of principal component, Eigen values and Eigen vectors. 

Based on principal component, Eigen values, and Eigen 

vectors values weightages were calculated for each 

response.  

 

 

Fig. 1 Slump value of concrete with respect to different 

levels of replacement of FA, GGBS, and FCS 

 

 

3. Results and discussion 
 

In order to ascertain and to evaluate the feasibility of 

different industrial byproduct replacement levels, 

workability of fresh concrete, density, compressive 

strengths at 28 and 90 days have been computed and are 

presented in Table 8.  

 

3.1 Workability  
 

Workability of concretes were measured in terms of 

slump value. Effect of different replacement levels of 

industrial byproducts on slump values have been tabulated 

in Table 8. The slump values measured were in the range of 

58-77 mm. The measured slump values were in good 

agreement for the construction of RCC structures as per IS 

456 requirement. Fig. 1 shows the mean effect of different 

replacement levels of industrial byproducts on workability 

of concrete. As the replacement level of FA increase, the 

slump value of concrete is also increasing. The increase in 

slump value is due the ball bearing effect of spherical FA 

particles. However, increase in levels of either GGBS or  

Table 8 Box-Behnkan design (BBD) and results 

Run No 

Test design Test results 

GGBS 

(% wt) 

FA 

(% wt) 

FCS 

(% vol) 

Slump 

(mm) 

Density 

(kg/m3) 

Compressive strength 

at 28 days (MPa) 

Compressive strength 

at 90 days (MPa) 

1 0 0 50 59 2490 61 63 

2 30 0 50 66 2480 63 69 

3 0 30 50 71 2442 50 61 

4 30 30 50 72 2431 39 44 

5 0 15 0 77 2361 54 55 

6 30 15 0 61 2351 49 51 

7 0 15 100 67 2571 54 55 

8 30 15 100 58 2560 49 51 

9 15 0 0 61 2379 60 66 

10 15 30 0 71 2333 50 52 

11 15 0 100 63 2591 60 64 

12 15 30 100 66 2540 48 53 

13 15 15 50 64 2460 53 56 

14 15 15 50 64 2460 53 56 

15 15 15 50 65 2460 53 56 
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Fig. 2 Density of concrete with respect to different levels of 

replacement of FA, GGBS, and FCS 

 

 

Fig. 3 Compressive strength of concrete at 28 days with 

respect to different levels of replacement of FA, GGBS, and 

FCS 

 

 

FCS reduces workability of fresh concrete.  

 

3.2 Density  
 

Density of concrete is the important parameter in 

structural design of RCC. As density of concrete increases 

dead load of structure will also increase. Due to the increase 

in dead load, structure need to be provided with additional 

reinforcement, which is uneconomical. In order to reduce 

density of concrete in industrial byproduct replacement 

Table 8 is formulated for density of concrete. The computed 

density values are in the range of 2333 kg/m3-2591 kg/m3 

for different replacement levels of industrial byproducts in 

the concretes. Fig. 2 shows the mean effect of different 

replacement levels of industrial byproducts on density of 

concrete. As the replacement level of FCS increases, the 

density of concrete will also increase. The increase in 

density is due to the higher specific gravity of FCS. Further, 

decrease in density values were observed as replacement 

levels of FA, and GGBS increases due to lower specific 

gravity of FA and GGBS.  

 

3.3 Compressive strength  
 

Table 8 presents the results of 28 and 90 days 

compressive strength of concrete containing GGBS, FA, 

 

Fig. 4 Compressive strength of concrete at 90 days with 

respect to different levels of replacement of FA, GGBS, and 

FCS 

 

 

and FCS. Compressive strength was in the range of 39-63 

MPa, and 44-69 MPa for 28 and 90 days respectively. Figs. 

3-4 shows the mean effect of different replacement levels of 

GGBS, FA, and FCS on compressive strength of concrete at 

28 and 90 days respectively. GGBS, FCS did not show 

significant role in compressive strength both at 28 and 90 

days. Nevertheless, compressive strength of concrete 

decreases slightly as the replacement of FA increases at 28 

days. Due to secondary hydration reaction improvement in 

the compressive strength were observed in case of FA 

replacement at 90 days water cured concrete. Secondary 

hydration reaction is due to the consumption of one of the 

primary hydration product “calcium hydroxide” due to the 

“reactive silica” provided by fly ash. Further, secondary 

hydration reaction results in additional calcium silicate 

hydrate which enhances the strength property of concrete.  

 

3.4.1 Grey relational analysis (GRA)  
GRA is used to find the optimal combination of GGBS, 

FA, and FCS content in OPC based concrete mixture 

preparation. Normalization of responses were done using 

Eqs. (1)-(2). Maximization equations were employed for 

slump, compressive strength at 28 and 90 days responses. 

Minimization equation was employed for density. 

Normalized and deviation values have been tabulated in 

Table 9. Normalized values of responses were used for 

calculation of weightage of each response using PCA. PCA 

followed with calculation of Eigen values and Eigen vectors 

and are tabulated in Tables 10-11 using Eqs. (13)-(15). 

Weightages of each response were based on maximum of 

Eigen value obtained and square of the principal component 

values of the corresponding Eigen vectors chosen for the 

weightage. In the present case maximum Eigen value is 

found in the first principal component. So squares of Eigen 

vectors of first principal component values were considered 

as weightage of each responses. Weightage of slump, 

density, compressive strength at 28 days, and compressive 

strength at 90 days were 0.177, 0.093, 0.380, and 0.350 

respectively. Further, GRC were computed using Eq. (3). 

PCA-GRG is determined for all the proposed mixture as 

explained in Eq. (4) including computed weightage of each 

response. In the present study, PCA-GRG should be  
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Table 10 Eigen values and explained variation in PCA-

GRA 

Principal 

component 

Eigen 

values 

Percentage 

contribution of 

Eigen values 

Cumulative percent 

contribution of Eigen 

values 

1 2.225 55.64 55.64 

2 1.099 27.48 83.11 

3 0.592 14.80 97.91 

4 0.084 2.09 100.00 

 

 

maximum for the optimal industrial byproduct based 

concrete mixture. Table 11 provides the ranking of concrete 

mixture with the calculation of GRC and PCA-GRG values.  

 

3.4.2 Technique for order preference by similarity to 
ideal solution (TOPSIS) 

Similar to GRA, TOPSIS approach is used to arrive at 

optimal mixture of GGBS, FA, and FCS based concrete. 

Normalization of response was carried out by using Eq. (5), 

and results are tabulated in Table 13. Normalized response 

values were used for the weightage calculation using PCA. 

Eigen values and Eigen vectors are tabulated in Tables 14-

15, with the help of Eqs. (13)-(15). Weightage of each 

responses were calculated as explained in the sections. 2.5 

and 3.4.1. Weightage of each responses i.e., slump, density, 

compressive strength of concrete at 28 days and 90 days 

were found to be around 0.177, 0.093, 0.380, and 0.350 

respectively. Weightage obtained for each responses were 

used in the calculation of weighted normalized decision 

matrix. As explained the Eqs. 7(a)-(b), positive and negative 

ideal solutions were obtained. Positive and negative ideal 

solutions were used in the calculation of closeness 

coefficient. Closeness coefficient is determined by using 

Eqs. (8)-(9). In the present case, experimental run with 

higher values of closeness coefficient will be given rank 1 

and considered as optimal mixture. Table 16 gives the 

details of weighted normalized decision matrix, positive and 

negative ideal solution, followed with PCA based closeness 

coefficient and ranking for the different experimental runs.  

 

Table 11 Principal component analysis of results of PCA-

GRA 

Performance 

characteristic 

Principal 

component 

1 

Principal 

component 

2 

Principal 

component 

3 

Principal 

component 

4 

Slump -0.421 0.494 -0.756 -0.093 

Density -0.304 0.711 0.633 0.007 

Compressive 

strength (28 days) 
0.617 0.315 -0.049 -0.720 

Compressive 

strength (90 days) 
0.592 0.389 -0.160 0.688 

 

 

3.4.3 Desirability function approach (DFA) 
Similar to GRA, and TOPSIS as explained in sections 

3.4.1 and 3.4.2 respectively, DFA is also carried out to find 

optimal mixture. Section 2.4.3 is adopted to find optimal 

mixture, when GGBS, FA, and FCS were used as partial 

replacement to OPC, and NCA based concrete respectively. 

First step in DFA method to is convert actual response into 

individual desirability. Individual desirability calculation is 

based on maximization and minimization Eqs. (10)-(11). 

Individual desirability values are tabulated in Table 17. 

Further, Eigen values and Eigen vectors are presented in 

Tables. 18-19 which are calculated based on PCA method 

explained in the section 2.5. Weightage of each responses 

are calculated based on Eigen vector i.e principal 

component 1 that is obtained. Weightage of each responses 

i.e., slump value, density, compressive strength at 28 days, 

and compressive strength at 90 days are equal to 0.177, 

0.093, 0.380, and 0.350 respectively. Finally, PCA based 

overall desirability are calculated using weightage of each 

response, and Eq. (12). The obtained PCA based overall 

desirability values are tabulated in Table 17. In the present 

study, PCA based overall desirability should be maximum 

for the optimal mixture which occupies the rank 1. 

Finally, ranking reported in GRA, TOPSIS, and DFA 

methods are different due to the different steps and 

approaches. It may be noted that all three methods used for 

rating data analysis in the present study are well established 

in literature, but ranking cannot be comparable directly.  

Table 9 Normalized and deviation values of responses in GRA. 

Run 

No 

Normalized values Deviation values 

Slump Density 
Compressive 

strength (28 days) 

Compressive 

strength (90 days) 
Slump Density 

Compressive 

strength (28 days) 

Compressive 

strength (90 days) 

1 0.070 0.391 0.889 0.781 0.930 0.609 0.111 0.219 

2 0.421 0.430 1.000 1.000 0.579 0.570 0.000 0.000 

3 0.702 0.578 0.431 0.699 0.298 0.422 0.569 0.301 

4 0.772 0.620 0.000 0.000 0.228 0.380 1.000 1.000 

5 1.000 0.891 0.597 0.425 0.000 0.109 0.403 0.575 

6 0.175 0.930 0.417 0.288 0.825 0.070 0.583 0.712 

7 0.474 0.078 0.611 0.425 0.526 0.922 0.389 0.575 

8 0.000 0.120 0.417 0.260 1.000 0.880 0.583 0.740 

9 0.158 0.822 0.861 0.877 0.842 0.178 0.139 0.123 

10 0.702 1.000 0.458 0.315 0.298 0.000 0.542 0.685 

11 0.298 0.000 0.875 0.808 0.702 1.000 0.125 0.192 

12 0.421 0.198 0.375 0.342 0.579 0.802 0.625 0.658 

13 0.333 0.508 0.569 0.466 0.667 0.492 0.431 0.534 

14 0.316 0.508 0.583 0.466 0.684 0.492 0.417 0.534 

15 0.368 0.508 0.556 0.466 0.632 0.492 0.444 0.534 
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Table 14 Eigen values and explained variation in PCA-

TOPSIS 

Principal 

component 

Eigen 

values 

Percentage 

contribution of 

Eigen values 

Cumulative percent 

contribution of Eigen 

values 

1 2.225 55.64 55.64 

2 1.099 27.48 83.11 

3 0.592 14.80 97.91 

4 0.084 2.09 100.00 

 

 

Therefore, a comparison is made among the rankings 

obtained from GRA, TOPSIS, and DFA methods. In order 

to check the correlation of rankings obtained from the 

different methods, Spearman’s rank order correlation 

coefficients were calculated and found to be statistically 

significant at the 95% confidence level, indicating a 

positive rank order relationship among the three methods.  

Spearman’s rank order correlation coefficient between 

GRA and DFA is 0.699, between DFA and TOPSIS is 

0.932, and GRA and TOPSIS is 0.704. Based on 

 

Table 15 Principal component analysis of results of PCA-

TOPSIS 

Performance 

characteristic 

Principal 

component 1 

Principal 

component 2 

Principal 

component 3 

Principal 

component 4 

Slump -0.421 0.494 -0.756 -0.093 

Density -0.304 0.711 0.633 0.007 

Compressive 

strength (28 days) 
0.617 0.315 -0.049 -0.720 

Compressive 

strength (90 days) 
0.592 0.389 -0.160 0.688 

 

 

Spearmen’s rankings in the TOPSIS method strongly 

correlated with the rankings obtained from the GRA and 

DFA methods. Therefore, though the results from all three 

methods are acceptable, the ranking obtained from the 

TOPSIS method is preferred.  

 

 

4. Conclusions 
 

Hybrid approach of RSM-PCA-GRA, RSM-PCA- 

Table 12 GRC, PCA-GRG values and ranking in PCA-GRA. 

Run No 
GRC PCA-

GRG 
Rank 

Slump Density Compressive strength (28 days) Compressive strength (90 days) 

1 0.350 0.451 0.818 0.695 0.658 4 

2 0.463 0.467 1.000 1.000 0.856 1 

3 0.626 0.542 0.468 0.624 0.557 6 

4 0.687 0.568 0.333 0.333 0.418 14 

5 1.000 0.822 0.554 0.465 0.626 5 

6 0.377 0.878 0.462 0.412 0.468 12 

7 0.487 0.351 0.563 0.465 0.495 10 

8 0.333 0.362 0.462 0.403 0.409 15 

9 0.373 0.737 0.783 0.802 0.713 2 

10 0.626 1.000 0.480 0.422 0.534 7 

11 0.416 0.333 0.800 0.723 0.662 3 

12 0.463 0.384 0.444 0.432 0.438 13 

13 0.429 0.504 0.537 0.483 0.496 9 

14 0.422 0.504 0.545 0.483 0.498 8 

15 0.442 0.504 0.529 0.483 0.495 11 

Table 13 Normalized decision matrix values of PCA-TOPSIS 

Run No 
Normalized decision matrix 

Slump Density Compressive strength (28 days) Compressive strength (90 days) 

1 0.232 0.261 0.293 0.287 

2 0.258 0.260 0.306 0.311 

3 0.279 0.256 0.240 0.278 

4 0.284 0.255 0.190 0.201 

5 0.301 0.248 0.259 0.247 

6 0.240 0.247 0.238 0.232 

7 0.262 0.270 0.261 0.247 

8 0.227 0.268 0.238 0.229 

9 0.238 0.250 0.290 0.297 

10 0.279 0.245 0.243 0.235 

11 0.249 0.272 0.291 0.290 

12 0.258 0.266 0.233 0.238 

13 0.251 0.258 0.256 0.252 

14 0.250 0.258 0.257 0.252 

15 0.254 0.258 0.254 0.252 
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Table 18 Eigen values and explained variation in PCA-DFA 

 

 

TOPSIS, and RSM-PCA-DFA were used to establish the 

optimal mixture proportion of industrial byproducts based 

OPC based concretes. Integrated approach established, 

reduces the limitation of single objective problem in multi 

response problem. Further, difficulties involved in 

weightage calculation in conversion of multi-response 

problem to single response problem were suitably handled 

with PCA method. Finally, optimal replacement level is 

found to be 30% GGBS, 0% FA, and 50% FCS for the 

production of Industrial byproducts based concrete under 

fresh and hardened states. 

 

 

Table 19 Principal component analysis results of PCA-DFA 

Performance 

characteristic 

Principal 

component 1 

Principal 

component 2 

Principal 

component 3 

Principal 

component 4 

Slump -0.421 0.494 -0.756 -0.093 

Density -0.304 0.711 0.633 0.007 

Compressive 

strength (28 days) 
0.617 0.315 -0.049 -0.720 

Compressive 

strength (90 days) 
0.592 0.389 -0.160 0.688 
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