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Bending analysis of a micro sandwich skew plate using extended
Kantorovich method based on Eshelby-Mori-Tanaka approach
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Abstract. In this research, bending analysis of a micro sandwich skew plate with isotropic core and piezoelectric composite
face sheets reinforced by carbon nanotube on the elastic foundations are studied. The classical plate theory (CPT) are used to
model micro sandwich skew plate and to apply size dependent effects based on modified strain gradient theory. Eshelby-Mori-
Tanaka approach is considered for the effective mechanical properties of the nanocomposite face sheets. The governing
equations of equilibrium are derived using minimum principle of total potential energy and then solved by extended Kantorovich
method (EKM). The effects of width to thickness ratio and length to width of the sandwich plate, core-to-face sheet thickness
ratio, the material length scale parameters, volume fraction of CNT, the angle of skew plate, different boundary conditions and
types of cores on the deflection of micro sandwich skew plate are investigated. One of the most important results is the reduction
of the deflection by increasing the angle of the micro sandwich skew plate and decreasing the deflection by decreasing the
thickness of the structural core. The results of this research can be used in modern construction in the form of reinforced slabs or
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stiffened plates and also used in construction of bridges, the wing of airplane.
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1. Introduction

The skew plates find wide range of application in civil,
aerospace, naval, mechanical engineering structures. They
are mostly used particularly in civil and mechanical
engineering fields in construction of bridges, the wing of
airplane, body of ships, tails and fins of aircrafts, and
parallelogram slabs in buildings. However, several
alternatives are also available for analyzing such complex
problems by approximate methods including finite element
methods, differential quadrature method (DQM) and
extended Kantorovich method (EKM).

Extended Kantorovich method is known as a method of
semi-analytical solution in mechanical problems, which
transforms partial differential equations into two or more
ordinary differential equations (depending on the number of
variables in the equations). Unlike other methods such as
the Galerkin weighted residual method, the initial guess is
to start the desired and even need not satisfy the boundary
conditions in extended Kantorovich method. This method
was first used by Kantorovich and Krylor (1960) for the
numerical solution of bending problems of thin rectangular
sheets in 1933. The Kantorovich method was used by Kerr
(1968) to solve the torsional problem of the rectangular
cross-sectional prism rod. Subsequently, this method was
considered free vibration (Jones and Milne 1976), buckling
(Yuan and Jin 1998, Jana and Bhaskar 2006) and strain
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analysis by Kim et al. (2000) for solving special-value
problems in 1969. Extended Kantorovich method for the
first time in non-Cartesian coordinates in polar coordinates
was investigated by Aghdam et al. (2007) for analyzing the
sector plate and bending analysis of the orthotropic thin
plate by Aghdam and Mohammadi (2009) and for the
composite cylindrical panel by Abuhamza et al. (2007) was
investigated.

In recent decades, the smart materials are employed in
nano and micro electro-mechanical or magneto-electro-
elastic systems. For highly durability and enhancement of
them, the smart materials such as polymeric piezoelectric
nanocomposite can be reinforced by single-walled or multi-
walled carbon nanotubes. Employing carbon nanotubes in
these materials result in wonderful properties including
transparency, electrically and thermal conductive, light
weight, tolerance of different magneto-electrostatic fields.
Also these materials have been used in various applications
particularly in  wireless strain sensor, biosensors,
nanogenerator, and harvesting devises (Calleja et al. 2012,
Yun et al. 2014, Arani et al. (2012), Mohammadimehr and
Rahmati (2013), Mohammadimehr et al. 2016, 2017a,
2018a).

Along with the advancement of technology, materials
with good quality such as lightweight, and high strength to
weight ratio which is defined as the sandwich panel is
produced. Tolerance and the capacity of these panels
depends on the foam core and facesheet. Sandwich
structures are usually composed of two thin and high
strength face sheets separated by a thick and low density
core layer. One of the main advantages of the sandwich
panel is lightweight, and high strength to weight ratio.
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Based on what was said, a sandwich structure the
combination of two facesheet solid and thin a lightweight
core and a glue film that is bounded on two sides by two
layers and in the middle of an insulating layer, this
insulating material should be very soft and lightweight and
has certain physical properties. Piezoelectric materials have
different applications in electro-mechanical systems as
sensor and actuator. These materials can be used to detect
deformations and stresses or actuate a system. The
piezoelectric materials can exchange input electric potential
to mechanical deformation in actuating.

Calculation of displacement or electric potential in an
electro-mechanical system is one of important problem of
mechanical engineers. Considering the piezoelectric
materials in nano scale reflects interesting behaviours that
attract researchers.

In this article, some researches and applicability of
sandwich structures are illustrated as follows:

Free vibration analysis of functionally graded conical,
cylindrical shell and annular plate structures with a four-
parameter power-law distribution is studied by Tornabene
(2009). In the other work, functionally graded material
(FGM) and laminated doubly curved shells and panels of
revolution with a free-form meridian is performed by
Tornabene et al. (2011). Ghorbanpour Arani et al. (2011a)
considered thermal buckling analysis of double-walled
carbon nanotubes considering the small-scale length effect.
Also, in the other work, they (2011b) presented the dynamic
stability of the double-walled carbon nanotube under axial
loading embedded in an elastic medium by the energy
method. Stress and strain recovery for functionally graded
free-form and doubly-curved sandwich shells using higher-
order equivalent single layer theory is considered by
Tornabene et al. (2015). Effect of agglomeration on the
natural frequencies of functionally graded carbon nanotube-
reinforced laminated composite doubly-curved shells is
illustrated by Tornabene et al. (2015). Free vibration
analysis of sandwich plate with a transversely flexible core
and FG-CNTs reinforced nanocomposite face sheets
subjected to magnetic field and temperature-dependent
material ~ properties using SGT is studied by
Mohammadimehr and Mostafavifar (2016). Moreover,
Mohammadimehr and Mehrabi (2017) studied the stability
and free vibration analyses of double-bonded micro
composite sandwich cylindrical shells conveying fluid flow.
Static analysis of functionally graded nanocomposite
sandwich plates reinforced by defected CNT is studied by
Moradi and Aghadavoudi (2018). It is observed that when
CNT volume fraction is 5%, six vacancy defects in CNT
configuration can increase the deflection of the sandwich
plate up to 41.67%. Three dimensional transient analysis of
FGM rectangular sandwich late subjected to thermal
loading is performed by Alibeigloo and Tahri (2018).
Rectangular sandwich plates with Miura-ori folded core
under quasi-static loadings studied by Xiang et al. (2018). It
has been found that the maximum bending strength is
governed by the incipience or fully plastic yielding of the
core material for relatively thick cores, or elastic buckling
of the core compression for thin cores. Rectangular and
skew shear buckling of FG-CNT reinforced composite skew
plates using Ritz method is performed by Kiani and Mirzaei

(2018) is verified that, the buckling load of the plate
increases significantly with enrichment of the matrix with
more CNT. Mechanical buckling analysis of functionally
graded power-based and carbon nanotubes-reinforced
composite plates and curved panels is studied by Zghal et
al. (2018). Mohammadimehr et al. (2018c) investigated
bending, buckling, and free vibration analyses of carbon
nanotube reinforced composite beams and experimental
tensile test to obtain the mechanical properties of
nanocomposite. Dynamic analysis of functionally graded
carbon nanotubes-reinforced plate and shell structures using
a double director’s finite shell element is studied by Frikha
et al. (2018). Influence of material uncertainties on
vibration and bending behaviour of skewed sandwich FGM
plates is studied by Tomar and Talha (2019). They studied
that coefficient of variance (COV) of transverse deflection
increases with the increase in number of independent
random variables. A modified first-order shear deformation
theory (FSDT)-based four nodes finite shell element for
thermal buckling analysis of functionally graded plates and
cylindrical shells is performed by Trabelsi et al. (2019).

Bending analysis of sandwich plates with different face
sheet materials and functionally graded soft core is
performed by Li et al. (2018). The influences of volume
fraction distribution, the thickness to side ratio and the layer
thickness ratio on plate bending characteristics are studied
in detail.

3D capability of refined GDQ models for the bending
analysis of composite and sandwich plates, spherical and
doubly-curved shells is studied by Tornabene and Brischetto
(2018).

Thermo-electro-mechanical ~ bending  behavior  of
sandwich nanoplate integrated with piezoelectric face-
sheets based on trigonometric plate theory is performed by
Arefi and Zenkour (2017). Structural behavior of sandwich
panels with asymmetrical boundary conditions studied by
Studzinski et al. (2015). Simulation of static behaviour of
skew plates is an interesting area of work for the
researchers. Joodaky and Joodaky (2015) studied a semi-
analytical study on static behaviour of thin skew plates on
elastic foundation. They obtained the governing equations
of plate by using the classical plate theory. Using the
Kantorovich method, the stresses of the plate were
measured according to the angle of the skew plate and the
stiffness of the springs.

Arani et al. (2017), Kolahdouzan et al. (2018) presented
buckling and free vibration analysis of FG-CNTRC-micro
sandwich plate and vibration analysis of functionally graded
nanocomposite plate moving in two directions, respectively.
Some studies investigated the surface and size dependent
effect on the bending, buckling and vibration analysis of

micro  structures  (Arani and  co-workers 2015,
Mohammadimehr et al. 2017b, 2018b, Bahaadini et al.
2019).

Some researchers works about buckling (Bilouei et al.
2016), vibration analysis of concrete columns and buckling
of concrete columns retrofitted with Nano-Fiber Reinforced
Polymer (NFRP) and pipes reinforced by SiO,
nanoparticles, respectively. Also, Motezaker and Kolahchi
(2017) presented seismic response of SiO, nanoparticles-
reinforced concrete pipes based on DQ and newmark
methods.
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Fig. 1 Sandwich skew plate in oblique coordinate (X,Y)
resting on the elastic foundations with the stiffness of K and
reinforced by FG-SWCNTs
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Fig. 2 Configurations of CNTs reinforced composite face
sheets. (a) UD CNTRC (b) FG-X CNTRC (c) FG-O
CNTRC (d) FG-V CNTRC

This study presents a semi analytical closed-form
solution for governing equations of thin skew plates and
micro sandwich skew plate with an isotropic core and
functionally graded carbon nanotubes (FG-CNTSs)
reinforced nanocomposite face sheets. Single-walled carbon
nanotubes (SWCNTs) with different distributions are
employed to reinforce the micro sandwich skew plate.
Effective materials properties of the nanocomposites are
estimated using Eshelby-Mori-Tanaka approach. In this
research, the various boundary conditions such as clamped,
free and simply supported under uniform loading resting on
the elastic foundations are considered. Classical plate theory
(CPT) and modified strain gradient theory (MSGT) is used
for modeling the thin skew plates and micro sandwich skew
plate.

2. Geometry and simulation

A micro sandwich skew plate of length a and width b,
resting on Winkler and Pasternak foundation is presented in
Fig. 1. Furthermore, the coordinate axes for face sheets and
core of foundation in Oblique coordinates (X,Y) are shown
in Fig. 1.

The skew plate can be described by oblique coordinate
X-Y. The skew angle of the plate (phi or (p)) is measured
with respect to the y-axis, as shown in the Fig. 1. The length
and width of the skew plate in the X and Y directions are a
and b, respectively. Also, K,, and Kg denote two parameters
of elastic foundation. The relationship between the x-y
coordinate and the X-Y coordinate can be written as X=x-y
tan(ep) Y=y/cos(¢p).

If phi angle is equal to zero, the skew plate is converted
to rectangular plate.

Fig. 2 displays various distribution patterns of SWNTSs
in the nanocomposite plate. As it can be seen from this
figure, these patterns are a) uniform distribution (UD), b)
FG-X, ¢) FG-O d) FG-V, respectively. Volume fraction of
various SWCNTs distribution patterns can be expressed as
follows (Mohammadimehr et al. 2016)

*

Venr D)
1+ ZTZ)VC*NT (FG-V)
Vour (2)= 2(1—|2h—2|)vc*NT Fe-0) &
2|2h—zlv,;;uT (FG -X)
where
. WCNT
B, (1w, ) @

Went, pm and pent are SWCNTs mass fraction, matrix
density and SWCNTs density, respectively. Mass and
volume of SWCNTs is same for four types of SWCNT
distributions.

The face sheets and core are considered as thin plate,
thus CPT is applied to model the face sheets and core in Eq. (3)
and therefore the displacement fields are given as follows

ow (X,y)

OX

ow (X,Y)
oy

u(x,y,z) =u,(x,y) -z

V(X,y,Z)ZVO(X,y)—Z (3)

w(x,z,t)=w(X,Yy)

So the kinematic relations for the micro structher are
considered the following form

gyy:%V(x,y,z)

_0
Sxx_axu(xiylz) (4)

0 0
7V yx zau(x1ylz)+a_xv(xiylz)

V2 :yyz =&, =0

The effective mechanical properties of the
nanocomposite face sheets reinforced by single-walled
carbon nanotubes are developed by employing the EMT
approach. CNTs fibers are assumed to be straight and long
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with UD in the isotropic matrix. According to EMT
approach, the parameters from this theory have been
defined as follows

~ En {EV, +2K, (14+0,)[14V oy A-20,)]}
20+0,)[E, @V e —20,)+2V K, (-0, —202) ]

_ En Va0 [En 42K (L4 0,)]+ Vg | (L-07)}
- @+o,)[E, (1+vCNT 20,)+ 2V k, (L-v, —202) |

_ Errzwvm(l+VCNT VinUn) + 2V, Ve (KN, 7|r2)(1+um )2(172L)m)
A+ 0,) | En (0 4+V or —20,)+ 2V K, (1-0, —202) ]
Ep [V 2K, (L=0,) Ve N, @4V g —20,) =4 1,0, |
E,(@+Ver —20,)+ 2V, k, (1-0v, —207)

_ En[EnV,+2p, (1+0,)A4HV )]
20+ 0,)[Ep @V o )+ 2V, P, (14 0,)]

3 En[EnVa,+2m, (1+0,)B+V oy ) —40, ]
20+ 0, ) {E Vo + Ny A-0,)]+ 2V m, B—0, —402)}
(®)

where K is the plane-strain bulk modulus normal to the fiber
direction | is the associated cross modulus, m and p are
known as the shear moduli in planes normal and parallel to
the fiber direction, respectively. These coefficients are
called the Hill’s elastic moduli for the CNTs. Also, the
subscripts m and r represent the quantities of the matrix and
the reinforcing phase, respectively. Also, E, vy, and V,, are
the Young’s modulus, the Poisson’s ratio, and the volume
fraction of the matrix, respectively. It is noted that these
parameters have been used in Eq. (7) that the components
of stiffness for composite facesheets have been obtained.

The mechanical and electrical properties of composite
material which is presented by Akbari Alashti et al. (2012)
is shown in Table 1.

Kr, I, my, ne and p, are the volume fraction and Hill’s
elastic modulus of the reinforcement for CNT in Table 2.
Also Vent and V,, are volume fraction of the nanotube

Table 1 The mechanical, electrical properties of composite
material (Akbari Alashti et al. 2012)

Symbol  Unit of measurement PZT_4
mechanical v 0.30
properties P) Kg/m?® 7600
Cc’y GPa 139
(O GPa 77.80
Elastic Ch GPa 115
mechanical .
constants Cu GPa 25.60
C’y GPa 25.60
C’e GPa 25.60
en C/m? -5.20
Piezoelectric €n C/m? -5.20
constants e, c/m? 15.10
X nC%/Nm? 6.5

&

Table 2 The volume fraction and Hill’s elastic modulus for
SWCNTs

Elastic Constant ke I m; ne Pr
GPa 30 10 1 1 450

and matrix, respectively and are related by the following
form

v m +VCNT =1 5)

Finally, by combining the relationships (1) and (5) and
(6) using the data of Tables 1 and 2, inserting the results
obtained from them in Eshelby-Mori-Tanaka approach Eg.
(8), the mechanical equivalent properties and electric for
composite facesheets (Nasihatgozar 2016)

cy=k+m c,=1 c,,=1 c,,=n Cx=p Cy=k-m
C33:k +m 032=| Cz3:| C31:k —-m

()
Cp=C *12 —((CiLx) /C5)
*22 —((C232)/C33)

Cu :C*u _((0132)/033)
C21 =C *21 - ((Clscza) /C33) C22 =C

Ce =G12
=7 13— (37 33) Icy)
=1 13— (13- 33) /Cy)
=7 1 ((C;-€ 33) Icy) (6)

€3 =e’ 31 _(013 /Csa) € 5
€3, =€ 5 _(023 /C33)‘e 33

In Eq. (8), C, e and # are elastic, piezoelectric, and
dielectric constants, respectively.

Using Hook’s law, stress-strain relations for core can be
stated as follows

Gxx :Qllgxx +Q12‘9yy
yy :Q21g><x +Q228yy (7)
o-xy =Q667/xy

where gj; and &;; are the stress, strain components. Also, Qj
is the reduced elastic constant for core which can be
expressed as follows

E E
Qu= H Q= .
1- VioVa1 1- ViaVar
v,.E 8
Q= 1 S Qe =Gy, ®)
VoV
Q, =Q,

In order to obtain the governing equations for sandwich
skew plate with piezoelectric facesheet and composite-
reinforced with carbon nanotubes, the principle of minimum
potential energy is used. In this method, the total potential
energy is obtained from the sum of the energy of the strain
potential and the energy generated by the work of external
forces in the following form

[T=U +V) ©)
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where U and V are strain energy and external work,
respectively.

With the determination of the total potential energy and
employing of the principle of minimum potential energy, we
can derive the governing equations for the sandwich skew
plate

S[1=0 - SU +6V =0 (10)
Work done by the external loads can be stated as

& =—JA{K W (x,y)-K (MN(X ),

—62"Va§/X2’ y))})‘w }m + u[aow pA

where q(x,y) is transverse load per length.

The variation of strain energy based on MSGT for the
micro sandwich piezoelectric skew plate can be obtained as
follows

(11)

U = (0,55, +p,87, +7om,

+m{8 4 ~D,SE, )dV 1)
where #ij, xi; and y; are deviatoric stretch gradient tensor,
symmetric rotation gradient tensor and dilatation gradient
vector, respectively, and D; and E; denote the electric
displacement and the electric field, respectively, ( that they
can be obtained as the following form

1 aui(x,z,t)+6uj(x,z,t)

i =5 o, o ) (15)
_ 08
Vi = ox, (12)
1 o¢.; o¢..
(s) _ aj qi
2 == j ) (13)
] 2 Pq ax ) Jpq aX )
1 1
77i(jll<) :_(gjk‘i +& +8ij,k)__5ij (Enm x +26mj,m)
3 15
Iy (18)
15 jk (gmm i + ngi ,m) 5k| (gmm j Emj ‘m)
Ojj =Qij &j —e' E (19)
P, =265y, (20)
7y = 26177y (21)
m =261} (22)

In the above relations, u; represents the displacement
field components, G the shear modulus, ¢ the Kronecker
delta, and e permutation symbol, which, in accordance
with Eqg. (23), can take values of zero, 1, and —1. Also o, I;
and I, known as three material length scale parameters are
the length of a substance, whose values are according to
Table 3 for classical, modified couple stress and modified
strain gradient theories.

{e123 =65 =€5p =1

(14)
€3 =€15 =€y =1

Table 3 The values of the small-scale particle size of the
material for classical, modified couple stress and modified
strain gradient theories

Theory ly (um) Iy (um) I, (um)
CPT 0 0 0
MCST 0 0 17.6
MSGT 17.6 17.6 17.6
£ __07:(xy.2)
' OX; (15)

D =¢; gu+77, ;

In the relation (24) ej, n and @ (X,y,z) represent
piezoelectric constants, dielectrics and electrical potential,
respectively. Also, the electrical potential according to (25)
can be defined as follows (Arefi and Zenkour 2017)

Pe (XY, 2) =—cos@z)pe (X, Y) (16)

It should be noted that in the present paper, the electric
field is assumed to be two dimensional in the longitudinal
and transverse directions of each of the composite
facesheet.

Finally, with the formation of relations related to the
terms of stress and electrical displacement, and their
placement in relation (26), first order changes of strain
energy of micro sandwich skew plate with piezoelectric
facesheet and composite reinforced nanotubes are defined.
Due to the sandwich structure of the microstructure and the
changes in their properties in each of the upper, lower and
middle corners, the integral curves are divided into three
parts, each of which represents the thicknesses of the
diagonal micro-sheet layers.

2 2 2 3
]
—%Mxx—%'\/‘w%%'\ﬂw%ﬂx

A3 3 3 ~2
+(;Wax+;fayay+%ay_;xizpoz

2 3 3

a z POz E;{g XXX zaxaayz Tlxxx

4 18
+3 — lxxy 3 Tlxxy
5 ax oy 5oy
40 . 10
15 6X2 Oxxz 15 ay Oxxz

3[
-1 ¢? 44 o° 1°
+6 — Oxyz 2 Tlxyy TE A3 Tlxyy W
3 oxoy 5 OXoy 5 ox

+

ol = dA
IA 190 1 ¢ 2 63
+3 - 3 Tlxzz - 772T1xzz lyyy
5 OX 5 oxoy 5 3)/
3 0 40 1 ¢°
“sacy [*EWTOYW*E?TW
3 3 ~2
+3 - L 2 Tl z L aaTl 7 _E%TOZZZ
5 ox é’y vz g oy y 5 ox
19° & & i
_7721—0121 +t—— ROx T oA ROy T2 Roxy
50y OXoy Oxoy OX
52
T2 ROxy
L o ]
0 0
J{;D +5D1Y+D }5;//

A7)



366 Javad Rajabi and Mehdi Mohammadimehr

where the values for resultant forces and moments, higher
order stresses, and electrical displacement are defined in
Appendix A.

The governing equations of equilibrium can be derived
by using the principle of minimum potential energy (Eq.
(12)). Using Egs. (26) integrating through the thickness of
the plate by part and setting the coefficients of dw and Jy
to zero separately, one can obtain the equilibrium equations
associated with CPT theory as follows

2 2 2 3
aW:_6_2|\/|><><_a_2'vlyy_2 0 xu+a_3plx
OX oy Oyox OX
0 AN 0 0
+_2Pl>< 3Ply__2 OZ__ZPOZ
oxdy oy vty ox oy
2 o° 3 o°

5 axa Ixxx 5 axayz Tlxxx
4 & 10 4 o° 1.

3 lxxy 3 Tlxxy +3 ___zTOxxz Oxxz
5 ox2oy 50y 15 ox 15 oy

(555

10° 4 & 10
6[?@ ] 3(§ax—ayz“xw‘§¥%
[ 168, 1@ ] 2 & 3 &

+3 5 ox A3 lxzz - 5 axayz 1xzz g? 1yyy_gm1—lyyy

4 az 10 1 8 10°
+3 - 2 Oyyz 2 TOyyz +3 - _Tlezz - __3T1yzz
5 oy 15 OX 5 ox“oy 50y

1 8? 1 8? 0? 0?

TS ol o —gy'rmzz +@R0x —@Rw
o° o o o°
_67R0xy+WROXY_KG 'WW(X,YI)_KG .WW(XY y,1)
+ K, -w(x, y,t)—a(x,y) =0
0 0
aw:&Dlx_FEDly_FDlz =0

(18)

Governing equations of (27) must be converted from
Cartesian coordinates system (x,y) to Oblique coordinates
system (X,Y) as it is shown in Fig. 1. The relations between
Cartesian (x,y) and Oblique (X,Y) are

X =x -y tan(op) (19)

Y =y /cos(op) (20)

3. lterative Solution by Kantorovich method
3.1 Classical plate at macro scale

In the present study, solving differential equations
governing the micro sandwich skew plate has been used a
semi-analytic method solution of (EKM). This method is
one of the semi-analytic methods for solving various
differential equations with partial derivatives. In this study,
based on the classical theory of plates, the application of
this method, along with the application of the Galerkin
method .

The governing fourth-order
equation (PDE) for skew plate and

partial differential
sixth -order partial

differential equation (PDE) for micro sandwich skew
plate, there are two-variable function of deflection,
w(X,Y), is defined in obliqgue coordinates system.
Application of EKM together with the idea of weighted
residual technique, converts the fourth and sixth-order
governing equation to two ODEs in terms of X and Y in
oblique coordinates. Both resulted ODEs, are then solved
iteratively in a closed-form manner with a very fast
convergence.

Finally deflection function is obtained. It is shown that
some parameters such as angle of skew plate and stiffness
of elastic foundation have an important effect on the results.
Comparisons of the deflection at the various points of the
plates show very good agreement with results of other
analytical and numerical analyses.

To explain this method, the simplicity of the description
is ignored by the sandwich and the micro-state.

D oW (X .Y) oW (X.Y)

COS4((p){ ox ¢ oY 20X ?
a”w(xv) 6M(XY))+6M(X,Y)}

oY aX?* oY X oy *

1 (dwX)Y) ow(XY)
Gcos((p)( X2 oave
dw (X .Y)
oY ox

+2(1+2sin*(¢))

—4sin(p)(
(21)

KW (X Y ) -

—2sin(o) j—q(X Y )=0

In this method, the multi-variable function of the
multiplicative function is considered first from the variables
in the main function, as follows.

w (X,Y) =1(X).g(Y) (22)

Initially, one of the functions is assumed to be definite
and a function is guessed for it.

Then, relation (30) and (31) is placed in the relation of
the remaining weighting method (Galerkin), which, with the
recent assumption that one of the functions of the
relationship is known to be simpler, leads to the obtaining
of one of the ordinary differential equations, which
simplicity is solvable.

By solving this equation, another function is obtained,
repeated this time with the function obtained, and another
differential equation is obtained in terms of the same
function as it was originally found to be.

Eventually, this repetition takes place so that the
necessary convergence is achieved.

According to the description of the function of the
Extended Kantorovich method (EKM), by substituting Eq.
(31) into Eq. (30) yields the following equation

(s (DY (<) )+ K @
_ Kg cos (gp)(
D X’

f(X)g( )
(f(X)at)-

2sin(p) o

{oen™g (X )+2(1+2sm (o * S
d g )d’f (x) d° g«)df(x))
dy dx3 dYS

4sin((p)(
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#9901 o0} KB ) g1 -

E
K, cos*(p) A (X) .. dgt)dfX)
D (o0 T v

o (X )%):%@’)q(x Y)
(23)

According to the Galerkin weighted residual method, we
have

Now, for a prescribed function of g(Y) and referred to
the Eq. (34), owbecomes

dw =g()of (x) (25)

Substituting Eq. (31) into Eq.(33) in conjunction with
Eq. (34) leads to the following equation

(DVW —q+K,w —K,Viw )dwdXdY =0 (24)

c_!—.c

_j _hJ;(DV“(f 9)-q+K, (f.9)-KV*(f .g))gdY 5fdX =0

(3%)

Based on the existing rules in the Variational principle,
Eqg. (35) is satisfied if the expression in the bracket is
vanished

b

[(DVA(F.9)-q+K, (f .9)-KsV*(f.g))gdY =0 (36)

-b

Now, with the integration of Eqg. (36) and using the
function for the initial conjecture, we can calculate the
constants A; (i=0: 6), and Eq. (36) converts to a fourth order
equation.

df x) . df x) . d’f (X)

dx * 3dX3 deZ

Aldf(x)
X

A4

(26)
+(Ao +A5)f (X)=A,

The sides of the Eq. (37) are divided into A,
df (X), A d’f (X) A, d*f (X)
dx * A4 dx ? AA dX ?
LA X) (AtA)
A, dX A

@7)

f(X)=A—6

4

In the following, the characteristic equation for equation
(38) is obtained as follows
4 3 2 A (Ag+A;)

A3 A2 1
m*+—=m’+—=2m?+—_Lm+

=0 28
A4 A4 A4 A4 ( )

Eq. (39) consists of two parts, which have two private
and general solutions.

The characteristic equation also has four mixed roots
m,=ta;tb,i r=1:4. Therefore, the general solution of the
equation is equal to relation (40)

f (X)=e* (C,cos(b,X )+C,sin(0,X))

(29)
)+~ (C,cos(b,X )+C,sin(b,X ))+C,

Table 4 Types of boundary conditions

boundary Equations satisfying boundary
conditions conditions in different situations
2
f(X)= df (x) =0 for X=a, X=-a
$SSS dx *
gty )= Y(Y):o for Y=b , Y=-b
f(X)= df (X )_O for X=a, X=-a
ccce dé )
gy )_T=o forY=b, Y=-b
f(X)= (x):o for X=a, X=-a
CFCF ; dx
g )_ﬂ 0 forY=b,Y=b
2
f(X)= fX(X ) =0 forX=a, X=-a
SFSF s
g )de%(t )_0 fory=b,v=b

In the equation, Cs answers the partial part which is
AB
(Ao +A,)
obtain the coefficients of C; i=1:5, boundary conditions

must be checked According to the Table 4.

By solving the Eq. (40), the first function f(X) is
obtained. Now, we continue the process of solving the
equations, and by putting the f(X) function as the second
guess, the new éw form is obtained as (41)

ow =f (X).0g (30)
The Galerkin equation is again written as follows

considered equal to according to Eq. (39). To

Wj(w‘(f 9)-q+K, (f )

—al-b

(31)

~K VA(f .g))f dX }Jg dy =0

To satisfy the equation (42), the bracket should be zero.

Using the obtained function for f(X) and its integration in

the above equation with X being taken into the second

quadratic equationODE with respect to g(Y) to obtain the
function g(Y) is equal to

4 3 2
5,000 5 dotr) 5 d'00)
dy dy dy (32)
dg() _
+B, v +(By+B;)g( )=B,
The characteristic equation for equation (43) is equal to
B,+B
nieBoipe Bope By (BotB) o oy
BA 4 4 B4

Again, by solving the characteristic equation, we obtain
four roots nc=ta,th,i k=1 to 4, so g(Y) is represented by
the relation (2-35)

g )=e* (D,cos(by )+D,sin(y ))+e

(D, cos(-by )+D,sin(-byY ))+Ds (49)
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— BG
° (B,+Bg)’

This process continues by solving the equation r for new
boundary conditions and obtaining the new g conjecture
function. To obtain the w(X,)Y) skew plate deflection
function, the solving process continues until a reasonable
convergence is obtained.

Private answer is D

4. Micro sandwich skew plate

Previously, the use of this solving method has been
described in the detailed equations. In this section, using the
previous description of Eq. (27), it is rewritten to use in this
method.

o dOF (X)) e df (X)) wedYF (X)) e d3f (X
5 OO0 & dT 00 5 d'T00 ke dT ()
dX dX dX dXx

. d 3 (X ..d f (X
+A, dX(2)+A1 dX( )+A0f (X)=8B

(34)

The coefficients A i=0:6 are explained in

Appendix A. By dividing the relationship (46) into A, the
equation for the characteristic of the above equation is
written as follows

m6+$m5+im4+$m3+im2+ﬁm1+'.6.‘—9:0 (35)
A, A, A, A, A, Aq

By solving the characteristic Eq. (47), six roots are
obtained. The solution of the above equation is presented as
the sum of the private and public answers in the form of
relation (48)

Cieaix
f(X)={Ce**sinb,X) i=1:6
C,e** cos(b, X ) (36)
B ~
f(X) A, +f (X)

In the relation (48), the coefficients C; i=1:6 are
obtained according to the boundary conditions of the
problem. After determining this constancy and obtaining the
general answer, this answer is used as a new conjecture, and
this response time is obtained in terms of the Y variable.
The rise of the problem is the product of W(X,Y)=f(X)g(Y).
A fixed point is obtained at each calculation of a given
function. This repetition continues until the desired
convergence is achieved. The guessing functions in this
section are presented in Appendix A.

Fig. 3 shows the convergence of the Kantorovich
method in deflection of micro sandwich skew plate method
that in this paper is accomplished at an acceptable rate in
two steps. But for more certainty it's done in four steps.

5. Results and discussion

Consider a micro sandwich skew plate resting on the
Winkler-Pasternak foundation as Fig. 1. The plate is

-4
45210
| s
4 .
35+
3 F
c
S
825
2
w
[m]
2 1.
15
5
0.5 . . . . ‘
1 15 2 25 3 35 4

Iteration

Fig. 3 Convergence of the Kantorovich method in
deflection of micro sandwich skew plate

Table 5 The mechanical properties and geometry of the
skew plate on elastic foundation

Properties of Stainless Steel 304
a b h v @ Ky Ks Jo E

o 1x10° 1x10° 1x10%
05 05 002 025 20° [ - ", 193GPa

Table 6 The obtained results of the skew plate for various
boundary conditions

Bounday Iterations
Conditns 1 2 3
cece 0-4523”0:2 0.6698><10:z 0.6703><10::
0.6495x10 0.6703x10 0.4703x10
3555 0.05747x10;‘3 0.1977x10‘2 0.1978><10'§
0.1879x10° 0.1978x10° 0.1978x10°
SCEC 0.0601x10° 0.1079x10° 0.1079x10°°
0.1077x10°® 0.1079x10° 0.1079x10°®
SCSC 0.5747x10* 0.9949x10* 0.9953x10
0.9757x10™ 0.9953x10* 0.9953x10™
CECE 0.0452x10°° 0.1164x107 0.1160x107
0.1081x10°° 0.1160x10° 0.1160x10°

subjected to a uniform loading and different combinations
of clamped, free and simply supported boundary conditions
for skew plate.

The initial guess of g(Y)=(Y>~b?%? and g(Y)=(Y*~b?)® for
skew plate and micro sandwich skew plate respectively that
does not satisfy all boundary conditions necessarily, is
considered.

Table 5 presented the mechanical properties and
geometry of the skew plate on elastic foundation.

In Table 6, a plate of stainless steel 304 with the
characteristics of the Table 5 is presented for a variety of
boundary conditions. All diagrams are shown inversely
along z direction. When the skew angle is equaled to zero,
the results can be employed for rectangular plates. The
angle of skew plate in Fig. 4 and Table 6 is considered as
20°. It is shown from this Table that after third interation,
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5
20 x10
—v—ccce
18 ssss |
ccss
165 —#— CCSF |

Fig. 4 Deflection of the skew plate for various boundary
conditions

x10°

Fig. 5 The deflection of skew plate for various skew angles

(9)

Table 7 The mechanical properties of the core made of soft
materials
E G P Qu, Q2 Q2 Qa4 Qss, Qes
(GPa) (GPa) (KG/m®) (GPa) (GPa) (GPa)
130 22.05 0.27 60 60.40 16.31 22.05

]

the obtained results are convergence for deflection of skew
plate based on various boundary conditions.

The effect of various boundary conditions such as SSSS,
CCCC, CCSS, and CCSF on the deflection of skew plate is
investigated in Fig. 4. It is shown that the greatest and
lowest deflection is related to all edges simply supported
(SSSS) and clamped (CCCC) boundary conditions,
respectively. In this figure, it can be seen that the maximum
deflection of skew plate does not occur in the center of the
sheet for CCSS and CCSF states.

Fig. 5 shows the effect of various skew angles (¢) on the
deflection results of CCCC skew plate. As can be seen, with
the increase in the angle of the sheet, the amount of heights
in the center decreases.

The mechanical properties of the micro sandwich skew
plate for facesheet are given in Table 1 and for the core

-16
45700 : . .

Fig. 6 Variation of deflection of the micro sandwich skew
plate with different values of CNTs volume fraction (SSSS)

-16
45 x10 i

X %1073
Fig. 7 Deflection of the SSSS micro sandwich skew plate,
for various skew angles of ¢

-16
45719 .

—7— KW=158 Pa/m
K, =1e6 Pa/m

—=—K =1e4 Pa/m| -

X %107
Fig. 8 The effect of Winkler's spring coefficient on the
deflection of micro sandwich skew plate for ¢p=15°

according to Table 7. The geometric characteristics of the

micro sandwich skew plate are also explained as follows:
As shown in Fig. 6, with an increase in the volume

fraction of carbon nanotube, the deflection of the micro
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T .
05f

AV;KW:ong:o
K =1e3 K =1e3
w 9

—8—K =1e4 K =1e4
w 9

—&— K =1e5 K =1e5
w 9

s © 4 2 o0 2 4 & s

X %1073
Fig. 9 Deflection of the SSSS micro sandwich skew plate
for various elastic foundation along the Y=b and X axes

-16
45710

X %107
Fig. 10 The effect of the thickness of the core on the
deflection of micro sandwich skew plate at p=15°

sandwich skew plate decreases.

Fig. 7 shows the effect of the angle ¢ on the deflection
of the skew microstructure. As can be seen, by increasing
the angle of the skew plate, the deflection of the
microstructure decreases. To the extent that $=60° upwards
changes do not occur.

Fig. 8 depicts the effect of Winkler's spring coefficient
on the deflection of micro sandwich skew plate for ¢p=15°.
It is shown from this figure that with an increase in
Winkler's spring coefficient due to enhancing stiffness of
micro structures, the deflection of micro sandwich skew
plate reduces. It is evident in this diagram that the micro
sandwich structure does not change much in stiffness of
K.=1x10° Pa/m and the rate of change is less dependent on
the deflection, while the effective changes occur in
K,=1x10° Pa/m later.

The effect of shear constant of elastic foundation on
micro structures is more than the spring constant that is
shown in Fig. 9.

Fig. 10 shows an increase in the thickness of the core
and its effect on the deflection. It is seen that by increasing
the thickness of the core (the thickness of the facesheet
decreases due to the total thickness is constant), the

. x1071 .

—v—foam H45
foam H60

—&—foam H100

—#*— foam H200

-3

Fig. 11 The effect of various foam materials for the core

Table 8 Comparison of results for Kantorovich and Navier’s
methods

Navier
0.43041x10°3

Solving method EKM
0.44528x10°®

Deflection

Table 9 Comparison of the results for the skew plate

Boundary Deflection(m)

conditions  Joodaky and Joodaky (2015) Present work
cccce 0.1882x107? 0.1881x107?
scsc 0.3179x10? 0.3179x10

deflection of micro sandwich plate increases.

Fig. 11 shows the effect of various foam materials for
the core on the deflection of micro sandwich skew plate. By
increasing the elasticity modulus for various foam core,
from Foam H45 to Foam H200, the deflection of micro
structure decreases.

The obtained results by Kantorovich method is
compared with the presented results by Naviers’s type
solution in Table 8. It is shown that they have a good
agreement between them for =0, g=1000 and K,=1¢°.

The obtained results from this research has been
compared the presented results by Joodaky and Joodaky
(2015) for two cases boundary conditions in Table 9. It is
seen that they have a good agreement each other for ¢=0,
0=1000 and K,~=1¢°.

6. Conclusions

In this research, bending analysis of micro sandwich
skew plate with isotropic core and piezoelectric composite
face sheets reinforced by carbon nanotube on the elastic
foundations was studied. The classical plate theory (CPT)
was used to model micro sandwich skew plate and to apply
size dependent effects based on modified strain gradient
theory. Eshelby-Mori-Tanaka approach is considered for the
effective mechanical properties of the nanocomposite face
sheets. The governing equations of equilibrium are derived
using minimum principle of total potential energy and then
solved by extended Kantorovich method (EKM). The some
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important results from this research has been presented as

follows:
1. The Kantorovich method is suitable for obtaining a
deflection of plate and skew plate. Using this method,
we can calculate the plate deflection for a variety of
simply supported, clamped, and free boundary
conditions. This method is very suitable for solving two-
dimensional problems in comparison with other
methods, such as limiting elements and differential
squares. Appropriate convergence of this method occurs
in three stages. It can be seen that this method has the
best convergence in lower iterations.
2. This method is suitable for solving lower-order
equations. By increasing the equation and increasing the
boundary conditions, the quality of this method is
reduced.
3. The effect of the angle of the micro sandwich skew
plate shows that with increasing the amount of it, the
deflection of micro-plate decreases and the increase in
the thickness of the core, the deflection of micro
sandwich structures increases.
4. In a survey on a variety of boundary conditions and
its effect on the deflection of the microstructure, it is
shown that the maximum point of deflection is not in the
non-symmetric boundary conditions in the center of the
plate.
5. The effect of various boundary conditions such as
SSSS, CCCC, CCSS, and CCSF on the deflection of
skew plate is investigated in this research. It is shown
that the greatest and lowest deflection is related to all
edges simply supported (SSSS) and clamped (CCCC)
boundary conditions, respectively. It can be seen that the
maximum deflection of skew plate does not occur in the
center of the sheet for CCSS and CCSF states.
6. The effect of various foam materials for the core on
the deflection of micro sandwich skew plate is
presented. It is seen that by increasing the elasticity
modulus for various foam core, from Foam H45 to
Foam H200, the deflection of micro structure decreases.
7. The effect of shear constant of elastic foundation on
micro structures is more than the spring constant.
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Appendix A

The values for resultant forces and moments, higher
order stresses and electrical displacement are defined as
relationships (A.1) to (A.22).
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By placing the Eqgs. (A.1) to (A22) in the governing Eq.
(27), Egs. (A23) and (A.24) are obtained without

dependence on each other.
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+75m, cos(¢)°C,h * —75m, cos(p)’Q,,h,° —300m, cos()’C H * +75m_ cos(p)’C,H " —75m cos(¢p)’C h.°
+75m, cos(¢)°Q,,h.° —300m, cos(p)‘C .h * +300m, cos(p)‘Q,.h * +75m, cos(p)‘C ,H* —75m cos(¢p)‘C h
+75m, cos(¢)'Q,h.* +75m, cos(p)‘C,H * —75m cos(¢)'C,h * +75m, cos(p)‘Q,h.’ +300m cos(p)'C H’
+75m, cos(¢)’C H* —7m_ cos(p)’C h* +75m, cos(p)’Q h.* +75m cos(p)’C,H" —75m cos(p)’C,h°
+75m, cos(¢)’Q,,h.”)
(A31)
1 m,sin(p)GH* (51,7 +21,7)
5 cos (o)’
1 GH® (517 +217)m,

A, = : (A.33)
30 cos(gp)

A =

5

(A.32)






