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1. Introduction 
 

It was experimentally confirmed that mechanical 

properties of concrete like the compressive and tensile 

strengths and the apparent modulus of elasticity, exhibit a 

temperature effect at low and moderate high temperatures 

between 20°C and 70°C (Yu et al. 1989, Miura 1989, 

Shoukry et al. 2011, Nandan and Singh. 2014, Kallel et al. 

2018, Wang et al. 2018). The aim of such tests done 

generally in compression at low and moderate high 

temperatures is to reproduce after curing how concrete and 

reinforced concrete will behave in service under 

environmental changes with new moderate temperature 

conditions. Effect of temperature on behaviour of concrete 

in compression remains the most important input when 

modelling reinforced concrete columns, beams and slabs 

according to design codes which neglect contribution of 

concrete in tension for example in steel reinforced concrete 

sections.  

In literature several studies are related to residual 

mechanical properties after exposure to high temperatures, 

for example under fire, where concrete hydration takes 

place at temperatures of up to 100°C.  

After exposure to high temperatures, tests are done at 

room temperatures and show that mechanical properties 

may be affected in a non reversible way (see for example 

Abdulhaleem et al. 2018, Ashteyat et al. 2018, Eren Gulsan 
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et al. 2018, Liang et al. 2017). Due to a higher thermal 

expansion difference and water evaporation, the 

compressive strength dropped abruptly after exposure to 

temperatures higher than 500°C (Eren Gulsan et al. 2018). 

However, fewer studies are related to moderate 

temperature effect on concrete which is a phenomenon 

independent of concrete damage under fire and very 

elevated temperature. Mechanical properties of unloaded 

concrete structures may be change in a reversible manner 

with temperature changing in a moderate range between 

20°C and 70°C. Furthermore new temperature conditions 

have an effect on structural health monitoring methods 

based on dynamic analysis and which often use changes in 

the modal parameters to identify damage. In fact, the 

vibration parameters are not only influenced by damage but 

also by temperature. For example, Nandan and Singh 

(2014), Wang et al. (2018) introduce in a dynamic analysis 

of concrete beams and slabs, the thermal effect on the 

secant Young modulus with a reversible linear decreasing as 

temperature increases and increasing as temperature 

decreases. Such phenomenon should be predictable by a 

damage constitutive behavior which exhibits a temperature 

effect coupled with mechanical damage.  

Damage mechanics was firstly developed by (Kachanov 

1958) and has been applied to model creep damage. In the 

context of Portland cement concrete, the term damage is 

related to irreversible changes of microstructures and the 

damage variable describes micro-cracks and voids created 

in the material and traduced by a loss of the apparent or 

sequent stiffness. For very small strains, changes are 

reversible and classical theory of thermo-elasticity is 
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generally assumed. Application of thermo-elasticity to 

concrete structures is valid within a moderate range of 

temperature variation considering constant values of the 

elastic stiffness. In classical theory of thermo-elasticity the 

stress tensor   is expressed by the Hooke’s law in three 

dimensions by  : , where   is the elastic stiffness 

tensor, independent of temperature and strain, and   is the 

elastic strain tensor equal to the difference between total 

strain and thermal dilatation. In the case of isotropic 

behavior, elastic stiffness is defined as function of the 

Young modulus E and the Poisson’s ratio  , assumed 

intrinsic characteristics of the material. Intrinsic should be 

understood as a property of material which remains constant 

within a moderate range of temperature and independent of 

the structure size. Continuum damage behavior can be 

exemplified by simple isotherm isotropic damage model 

with one scalar mechanical damage variable D to represent 

distributed micro-cracks considering the effective stress 

concept and hypothesis of strain and energy equivalence 

(Lemaître and Chaboche 1978, Mazars 1986 and 1991, Ju 

1989). It’s given by Eqs. (1)-(4).  

The apparent or sequent stiffness  )1( DD
 

should 

be understood as the reduced stiffness of a representative 

volume element (RVE) due to damage and where the 

stiffness of the non-damaged material at the microscopic 

level in the RVE remains equal to  . 

In order to build a damage constitutive behavior in the 

framework of thermodynamics of generalized standard 

materials, the most common choice of state variables is the 

elastic strain second order tensor  , the absolute 

temperature T and the damage variable D. 

 :)1(:  DD  (1) 
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In the context of generalized standard behaviours, 

verifying Clausius Duhem inequality, stress tensor, entropy 

S and the associated variable to damage Y are respectively 

given by 
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the specific free energy of material defined per unit volume 

and given by Eq. (5). 
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1
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Where φ
 

is a function of T. The scalar mechanical 

damage variable D varies from 0 for reversible states to 1 

for a fully damaged state depending on Ymax which is the 

maximum of Y reached in the previous history of the 

material.  

 

Fig. 1 Experimental strain-stress uniaxial compressive 

behavior of concrete under different temperatures tested by 

Yu et al. (1989) (stress in10
5
Pa) 

 

 

Fig. 1 presents an example of experimental isotherm 

compressive behaviour of ordinary concrete from tests done 

at different temperatures ranging from 0° to 40° and 

conducted by Yu et al. (1989). Yu et al. (1989) proposed 

continuum temperature-dependent elastic damage behaviour 

asymptotic to isotropic thermo-elasticity at small strains    

when material is undamaged and with an orthotropic 

damage tensor.  

In the case of compression tests presented in Fig. 1, 

Young modulus E is independent of temperature and 

corresponds to the same initial slope of the experimental 

curves at different temperatures. 

Furthermore, it was observed through experimental tests 

that there is a volume size effect of concrete specimens on 

their compressive strength and behavior (see for example 

Del Viso et al. 2008, Vu et al. 2018, Miled et al. 2012, Eren 

Gulsan et al. 2018).  

Continuum damage theory was unable to describe such 

phenomena. It was extended later to non-local damage 

approach which gives a connection between a considered 

volume element size L and the damage parameter D in the 

constitutive behavior through the damage process 

(Pijaudier-Cabot and Bazant 1987). 

In non-local damage approaches, the macroscopic 

stress-strain response of a damaged volume element subject 

to homogenous strain   applied at its boundary can be 

expressed by Eq. (6). A scaling law can be introduced 

through a D dependency on L. This can be explained, for 

example, by a random character of the heterogeneous 

material micro structure, or by a fractal dimension of the 

damaged surface (Ostoja-Starzewski 1998, Bazant and 

Jirasek 2002, Kale and Ostoja-Starzewski 2017, Rinaldi and 

Mastilovic 2014, Mazars et al. 1991).  

 :))(1()(  LDL  (6) 

In Eq. (6), D is not an intrinsic property of material but a 

property also of the considered volume element size L. 

 
 
2. A temperature dependent scalar damage model 
 

In the case of uncoupled damage and temperature 

effects, free energy defined by Eq. (5) leads to an entropy 
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T

T
S






)(
 depending only on temperature.  

In order to describe disorder observed through a damage 

process under isotherm quasi-static loading, entropy should 

be expressed as function of D,   and T. For example in 

previous studies, damage evolution functions linked to 

entropy and statistical mechanics was introduced (Ostoja-

Starzewski 1998, Basaran and Nie 2004, Limam et al. 

2014). Basaran and Nie (2004) proposed a continuous 

damage theory based on statistical mechanics and define 

damage variable D directly as function of entropy. Ostoja-

Starzewski (1998) shows that the specific free energy 

should be written as given by Eq. (7) where in a non-local 

damage approach a scaling law should be associated to 

specific entropy depending on L. In fact, internal energy is 

extensive and specific internal energy should not exhibit a 

scaling effect. Furthermore, based on an extensive internal 

energy and non-additive entropy, Limam et al. (2014) 

proposed a specific free energy given by Eq. (8) in 

agreement with Eq. (7).  

The proposed free energy is a quadratic function of D. 

The associated variable to damage is

0::])()1(1[
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1
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The specific internal energy U is independent of L and 

given by Eq. (9). The specific entropy is a function of 

damage and given by Eq. (10).  
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For a thermodynamic process in equilibrium, it is shown 

that specific entropy S(L) increases as function of L and 

tends to a constant to infinity (Tsallis 2009). For volume 

elements larger than a RVE of a size L0, κ(L)
 

tends to a 

constant κ and entropy become extensive and specific 

entropy S tends to a constant. For L≤L0 
we assume a power 

scaling law for specific entropy given by Eq. (11) with α>0 
a parameter considered as function of loading configuration.  

This assumption was inspired from works related to the 

fractal concepts and strength of concrete (Carpinteri et al. 

1991). For L≥L0 
we assume that entropy is extensive which 

means that κ(L)=κ=κ(L0) and α=0. 

 ))(()(
0

0
L

L
LL   (11) 

The next assumptions are also made. 

1) In the particular case of reversible changes, the 

classical theory of thermo-elasticity is recovered. It 

means that, the Young modulus E and the Poisson’s ratio 

of concrete v are independent of temperature and size L. 

2) The evolution law of damage is considered as a fixed 

material characteristic independent of temperature and 

size L. 

3) The effect of moisture content is not considered.  

 
 
3. The proposed damage model applied to the 
compression test 
 

In order to model the compression test, consider an 

isotropic damageable elastic material subject to a 

monotonic strain control denoted εc 
applied in a uniform 

temperature T. Consider the free energy given by Eq. (8). 

The uniaxial compressive behaviour is given by Eq. (12). 
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In Eq. (12), stress is the sum of two components the first 

one is derived from the internal energy and given by Eq. 

(13). 
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The second component is an entropic stress given by Eq. 

(14). 
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This entropic stress is opposite to the first one Eq. (13) 

and points to the direction of higher entropy and disorder 

induced by damage. It becomes important when 

temperature (and/or) L increase which explains firstly the 

volume size effect phenomenon on the compressive 

behavior and secondly the observed phenomenon related to 

strength and apparent Young modulus decreasing when 

temperature increases. The entropy per unit volume of the 

material is a sum of damage entropy denoted SD and 

thermal entropy denoted ST as follows 

T
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The damage entropy is null before damage initiation in 

reversible states (Dc=0). 

In Eq. (12), the parameter )
2

1()( c
cc

D
DLTD    can 

be interpreted as the apparent damage in order to recall the 

classical definition of the non local scalar damage defined 

by Eq. (6). It is noticed also from Eq. (12) that a linear 

decreasing of the apparent or secant Young modulus 

E
D

DTD c
cc ))

2
1(1(   emerges without a need to 

introduce any dependence of temperature neither on E nor 

on the evolution law of Dc. We consider the  evolution law 

of damage given by Eq. (16) (Mazars et al. 1991, Torrenti et 

al. 2013), in which, the gradual degradation of the material 

under a uni-axial compression test is governed by the lateral 

extension due to the Poisson’s effect and in agreement with 

the splitting failure mode (Nemat-Nasser and Horii 1982). 

The damage variable D is defined by the linear combination 

of two scalar variables noted Dt and Dc, corresponding 
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respectively to the damage in tension and compression. In 

the multiaxial loading case we have D=αtDt+αcDc, where αt 

and αc are defined as a function of the signs of the principal 

stresses and where, in uniaxial tension, αt=1 and αc=0, and 

in uniaxial compression, αt=0 and αc=1. Coupling between 

elastic strain and damage is introduced through the 

evolution law of damage and the history of loading.  

The damage evolution law given by Eq. (16) is 

governed by an equivalent strain ~  related to the local 

measure of extensions and defined by Eq. (17) as the 

maximum of all the equivalent extension elastic stains 

reached in the history of loading.  
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Where εi 
are the principal strains, εD0 

is the elastic 

equivalent extension elastic strain threshold and Ac, At, Bc 

and Bt are fixed characteristics of the material identified 

from tensile and compression experimental tests.  

For the compressive test, the equivalent strain extension 

defined by Eq. (17) is given by c 2~  , where the 

principal strains are the axial contraction ε1=εc<0 and the 

two lateral extensions due to the Poisson effect are 

ε2=ε3=−vεc>0. The compression damage evolution under the 

monotonic increasing of εc is therefore expressed by Eq. 

(18). 
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4. The T-dependant damage model applied to C30/37 
concrete compression test at standard conditions 
 

In this section the compressive behaviour of a regular 

concrete C30/37 at standard conditions is presented in 

agreement with FIB recommendations. Fig. 2(a) presents, 

an example of the compressive stress-strain curve given by 

Eqs. (12) and (18), for a C30/37 concrete at a temperature 

T=293K using the Young modulus E and Poisson’s ratio v 

and parameters of the evolution law of damage identified 

and defined in Table 1. As shown in Fig. 2(a), using these  

 
(a) Damage model and FIB results 

 
(b) Evolution law of damage 

 
(c) Scaling law of entropy 

Fig. 2 Uniaxial compressive behavior of a C30/37 concrete 

at standard conditions 

 

Table 1 The fixed material characteristics and parameters 

v E (MPa) εD0 κ At Bt 

0.2 32000 10-4 0.0089 0.936 249 

 

 

identified parameters, the compressive behavior of a 

standard specimen (L=L0) obtained by the model reproduces 

FIB recommendations. Table 2 recapitulates some 

characteristics. According to the FIB recommendations 

(Müller et al. 2013), for a C30/37, the tangent modulus of 

elasticity at the origin of the stress-strain diagram is 

estimated by 3/1

0
)

10
( cm

f
EE

Ecci
  where fcm is the 

compressive strength, αE is a coefficient depending on 

aggregates and Ec0=21.5 GPA. The tangent modulus of 

elasticity at the origin is Eci=33.6
 

GPA while the secant 

modulus from the origin to 0.4 fcm is Ec=29.7
 

GPA. The 

strain corresponding to the peak compressive strain is 

εc1=2.3°%. Furthermore, as showing in Fig. 2(a), when 

considering L=L0/2 and L=L0/4 and using the same fixed  
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Table 2 Comparison of the T-dependant model and the FIB 

model at ambient temperature T=293K 

Peak compressive strain %3.2
1

FIB

c


 
%3.2mod

1
 elT

c
  

Tangent modulus of 

elasticity at the origin 
GPa6.33FIB

ci
E  GPa0.32mod  elT

ci
E

 

Secant modulus from the 

origin to 0.4 fcm 
GPa7.29FIB

c
E  GPa8.30mod  elT

c
E  

 

 

Fig. 3 Comparison of the model size effect prediction and 

size effect laws from literature 

 

 

parameters of Table 1, a size effect on compressive strength 

is highlighted. The power scaling law on specific entropy 

given by Eq. (11) and presented in Fig. 2(c) was applied 

with α=0.105. The evolution law of damage is fixed and 

presented in Fig. 2(b).  

Fig. 3 presents a comparison between the compressive 

strength fc(L) predicted by the damage model for specimens 

with different sizes L and a power size effect law (Miled et 

al. 2012) given by fc(L)=fc(L0)(L/L0)
-α

 
considering α=0.105. 

In Fig. 3 is presented also a size effect law proposed by 

(Eren Gulsan et al. 2018) for cubic specimens in 

compression. This size effect law given by Eq. (19) was 

derived taking in to account fracture mechanics theory 

(Bažant and Xiang 1997).  

It was applied, here, considering a standard size L0=32 

cm and a characteristic materiel length l0=2 cm. A good 

agreement is observed between the different approaches.   

)(81.0

1

)(76.0
)( 0

0

0 Lf

l

L

Lf
Lf c

c
c 



  
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5. The compressive behavior of concrete at different 
temperatures  
 

The objective of this section is to apply the T-dependant 

damage model to the uniaxial compression test at various 

temperatures using the fixed characteristics identified at  

T=293K in section 4 (Table 1).  

In order to illustrate results of the T-dependent damage 

model, the same typical C30/37 concrete of section 4 is 

considered with the same characteristics indicated in Table  

 

Fig. 4 Compressive behavior at different temperatures 

obtained by the T-dependant model 

 

Table 3 Comparison of the compressive strength of a 

C30/37 concrete for different temperatures (the T-dependant 

model and FIB results) 

T (°C) 20 30 40 60 70 
FIB

cm
f (MPa) 30 29.1 28.2 26.4 25.5 

elT

cm
f mod

(MPa) 30 29.4 28.6 27 26.2 

 

 

1. Fig. 4 presents the compressive stress-strain curves given 

by the model expressed by Eqs. (12) and (18) with L=L0 at 

different temperatures from 293K to 343K using the fixed 

parameters for the evolution law of damage (Table 1). 

)003.006.1()( TfTf
cmcm

 (T in °C) (20) 

The compressive behavior obtained by the model at 

different temperatures is in agreement with the trend 

emphasized by experimental results, obviously, the 

decreasing of the secant elastic modulus and the 

compressive strength when temperature increases is 

highlighted.  

This decreasing of the secant elastic modulus and the 

compressive strength when temperature increases is 

predicted by the FIB model code. Effect of temperature in 

the range of 0°C≤T≤80°C on the compressive strength of a 

regular concrete with moisture content m=2% (fcm=30 MPa) 

is given by Eq. (20). Table 3 summarizes results of the 

model and the FIB recommendations Eq. (20). 

 

 

6. Effect of the difference in  the coefficient of 
thermal expansion 
 

The effect of the difference in the coefficient of thermal 

expansion (CET) between the mortar and coarse aggregates 

on the compressive behavior was also reported in literature 

(Masad et al. 2013). We consider in this section, at the        

microscopic level, concrete as a 2-phase composite 

material, composed of the mortar and aggregates. In order 

to illustrate this effect, a phenomenological simplified 

model is considered. The same axial strain is considered in 

aggregates and mortar. The elastic strain induced in the 

mortar phase by a thermal variation (T-Tc) is given by Eq. 

(21).       
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Table 4 Comparison of the compressive strength of a 

C30/37 concrete for different temperatures (the T-dependant 

model and the FIB results) 

T (°C) 20 30 40 60 70 
FIB

cm
f (MPa) 30 29.1 28.2 26.4 25.5 

elT

cm
f mod

(MPa) 30 29.4 28.6 27 26.2 

p (MPa)
 

0 0.17 0.35 0.67 0.86 

p

elT

cm
f mod

 
30 29.2 28.4 26.3 25.3 

 

 

This hypothesis gives an upper bound of stresses 

induced in aggregates and mortar given by Eqs. (22) and 

(23) with a total stress induced by temperature equal to 0, 

given by Eq. (24) and  in agreement with a free boundary 

condition. Table 4 presents an actualization of Table 3 

considering concrete as prestressed by compression induced 

in mortar by the difference in CTE. Typical values of CTE 

(Masad et al. 2013) are considered and presented in Table 5. 

A better agreement with FIB recommendations is 

highlighted as shown in Table 4. The proposed model 

remains valuable for a moderate range of temperatures.  

However, after exposure to high temperatures, residual 

mechanical properties may be affected in a nonreversible 

way due to a higher effect of the difference in the CET and 

water evaporation. 
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Where,  

−Eag, Ep
 

are respectively the aggregate, and mortar 

Young’s Modulus. 

−λag, λp are respectively the aggregate, and paste thermal 

expansion coefficients. 

−ϕ is the aggregate volume fraction. 

−T is the actual temperature.  

−TC is the temperature at which concrete is cured, 

assumed in this example equal to 20°C.  

 

 

7. Conclusions 
 

• The proposed constitutive elastic damage behavior is 

expressed as a sum of a stress derived from internal 

energy and an opposite entropic stress pointing to the 

direction of damage, disorder and higher entropy.  

• A fixed evolution law of damage is considered and the 

model leads asymptotically to Hooke’s law at reversible 

states.  

• The proposed model was applied to predict 

Table 5 Characteristics of aggregates and mortar 

 
Young’s Modulus 

E (GPa) 

CTE 

(C-1) 

Volume 

fraction 

Aggregates 

properties 
36 8.10-6 0.25 

Mortar properties 31 10.10-6 0.75 

 

 

compressive behavior of concrete tested at different 

temperatures and predicts a secant Young modulus, a 

compressive strength decreasing as temperature 

increases and a size effect on the compressive strength 

induced by entropy scaling as function of specimens 

sizes.  

• The comparison of model predictions with a size effect 

law derived by fracture mechanics and a volume power 

size effect law shows a good agreement. 

• The comparison of model predictions of temperature 

effect with the FIB-recommendations shows a good 

agreement. Taking in to account the difference between 

CTE gives a better agreement. 
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